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Abstract: Formulated is a new instantaneous fatigue model and predictor based on ab initio
irreversible thermodynamics. The method combines the first and second laws of thermodynamics
with the Helmholtz free energy, then applies the result to the degradation-entropy generation theorem
to relate a desired fatigue measure—stress, strain, cycles or time to failure—to the loads, materials and
environmental conditions (including temperature and heat) via the irreversible entropies generated by
the dissipative processes that degrade the fatigued material. The formulations are then verified with
fatigue data from the literature, for a steel shaft under bending and torsion. A near 100% agreement
between the fatigue model and measurements is achieved. The model also introduces new material
and design parameters to characterize fatigue.

Keywords: fatigue; system failure; degradation analysis; entropy generation; stress strain;
plastic strain; thermodynamics; health monitoring

1. Introduction

All solids can yield or fail under continuous loading. For static loading, equilibrium and
monotonic conditions facilitate evaluation of a component’s strength. For dynamic loading, assessment
of degradation leading to fatigue failure is complicated by various dynamic loads, material composition
and load conditions. With metals under heavy structural loading, sudden failure can be catastrophic [1].
Cyclic loading causes about 90% of all metal failures [2–7]. Thermal cycle-induced stresses can fatigue
electronic components.

Common fatigue analysis methods include stress-life (Wohler) curves for high-cycle fatigue
(HCF) and strain-life curves for low-cycle fatigue (LCF). Vasudevan et al. [8] discussed deficiencies in
structural fatigue life models involving crack growth da/dN and the challenges in implementing these
models. Existing approaches sometimes give inconsistent results, and failure measures are usually
component- or process-specific. Recent entropy-based fatigue studies [9–23] have shown high accuracy,
establishing thermodynamic energies and entropies as measures of system damage, degradation and
failure [7,24].

Thermodynamics-Based Fatigue Models

Lemaitre and Chaboche [7] coupled damage mechanics with irreversible thermodynamics to
present a comprehensive breakdown of elastic, elastoplastic and elastoviscoplastic behavior of solids,
and considered spatial rate-dependent and rate-independent response to loading. Chaboche [25,26]
presented constitutive relations for isotropic and kinematic hardening (or softening) of metals, with
experimental data obtained for stainless steel. Investigating size effects in low-cycle fatigue of solder
joints, Gomez and Basaran [9,10] formulated thermodynamic models for isotropic and kinematic
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hardening, verified with experiments and finite elements. Via simulations and measurements, Basaran
et al. [11–13] directly related entropy to damage evolution in solids. Combining Boltzmann’s entropy
S = k ln W as a measure of molecular disorder with Prigogine’s entropy balance dS = dSe + dS′,
the authors defined a continuum damage mechanics damage variable

D = Dcr
W −W0

W
= Dcr

[
1− e−(m/R)(s−s0)

]
(1)

similar to Einstein’s oscillator energy of a nonmetallic crystalline solid [27]. Equation (1), where
Dcr = critical disorder coefficient, W = disorder parameter, m = specific mass and R = gas constant,
gives damage as a function of specific entropy change

s− s0 =

∫ t

t0

σ : εp

Tρ
dt +

∫ t0

t

k
ρ

∣∣∣grad T
∣∣∣2

T2 dt +
∫ t

t0

r
T

dt. (2)

Khonsari, Amiri and Naderi [14,23] related entropy to mechanical fatigue via extensive experiments
and data, and proposed fatigue fracture entropy FFE as a consistent material property independent
of load type, cycle frequency, amplitude or specimen size. Using thermodynamic formulations by
Lemaitre and Chaboche [7], Khonsari et al. presented entropy generation rate

.
S′ =

.
Wp

T
−

Ak
.

Vk
T
− Jq

grad T
T2 ≥ 0 (3)

where the first right-hand side term is the plastic strain entropy from plastic strain energy Wp, the second
term is the non-recoverable energy and the third term is heat conduction entropy. Assuming negligible
non-recoverable energy and neglecting heat conduction within the specimen, the second and third

right side terms were set to zero to give
.

S′ =
.

Wp
T . By integrating up to the time of failure tf, FFE was

obtained as

S′TF =

∫ t f

0

Wp

T
dt. (4)

Data from bending and torsional fatigue measurements and Finite Element Analysis validated
the constant process-independent, material-dependent FFE. Similar to Doelling et al. [28] for wear,
the authors showed a linear interdependence between normalized entropy generation and normalized
number of cycles as

si
sg
≈

N
N f

(5)

where si and sg are entropies at cycles N and failure N f , respectively. Results came from over
300 specimens. Through Equation (5), damage accumulation parameter D [29] was related to entropy
generation. Naderi and Khonsari [16] applied the approach in reference [15] to variable loading and
proposed a universally consistent damage accumulation model. Amiri et al. [18] replaced entropy
generation from plastic energy dissipation with entropy transfer out of the loaded specimen via heat.
With thermal energy balance, heat transfer out of the specimen into the surroundings was evaluated
from measurements of specimen and ambient temperatures during loading via(∮

σi jdεi j

)
f =

.
Hcd +

.
Hcv +

.
Hrd + ρcp

∂T
∂t

+
.
Ep (6)

where the first three right side terms represent heat transfer via conduction, convection and radiation.
The authors described the last two right side terms as variation of internal energy, comprised of
temperature-dependent change and a “cold” microstructural change assumed negligible at steady
state, to simplify evaluation of entropy flow rate. They reported an uncertainty of 7.8% in their entropy
values. Naderi and Khonsari [17] later developed a real-time fatigue monitoring system. With FFE(γ f )
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as failure parameter and a failure criterion γ ≤ 0.9γ f , failure was consistently predicted with about 10%
error, attributed to the difference between temperature measurement location on the sample and actual
failure location. Naderi and Khonsari [19] demonstrated entropy-based fatigue analysis methods
more consistent under varying load conditions than stress- and hysteresis energy-based models.
Naderi and Khonsari’s [20,21] entropy-based fatigue failure indicated stored energy in composite
laminates comparable to dissipated heat, leading to the inclusion in their formulations of heat
storage entropy and a crack-initiating damage entropy. Using hysteresis energy balance, entropy
accumulation was

S′ =
∫ t f

0

Eth
T

+

∫ t f

0

Ediss
T

+

∫ t f

0

Ed
T

(7)

where Eth is heat stored, Ediss is heat dissipated, and Ed is damage energy. Combining the first two
terms of Equation (7) as mechanical entropy, experimental results compared each entropy component
to the total entropy.

Russian works selected by Sosnovskiy and Sherbakov in reference [30] described the inadequacies
of existing models in characterizing complex damage of tribo-fatigue systems due to simultaneously
occurring degradation mechanisms, e.g., sliding friction, fretting, impact, corrosion, heating, etc.
Using a cumulative general damage term ω′ (0 < ω′ < 1) including mechanical, thermal and
electrochemical energy changes, they proposed a tribo-fatigue entropy

S′TF = ω′
dWD

T
(8)

where WD is the absorbed damage energy at the failure site. Total entropy change summed
thermodynamic entropy change and tribo-fatigue entropy, Equation (8), as

dST = dS + dSTF =
dU
T

+
δW
T
−
µdN′

T
+ω′

dWD

T
(9)

where the first right side term is internal energy change, the second term is boundary work, the third is
chemical reaction and the fourth is damage. The authors related ω′ to normalized time and predicted
human death via stress/damage accumulation from birth, depicting an exponential relationship.
They presented a human life version of the Wohler (S-N) curve showing a profile similar to metals.
Naderi et al.’s Equation (7) and Sosnovskiy et al.’s Equation (9) are equivalent formulations of entropy
evolution (with dN’ = 0 in Equation (9)). Direct comparison shows damage energy dED = ω′dWD.
Sosnovskiy et al. [31] further expanded and combined the above formulations with continuum damage
mechanics to form mechanothermodynamics (MTD). Their data for isothermal fatigue of steel indicated
an error of 15%.

Extensive data showed consistency of entropy measurements in estimating mechanical damage
and failure in dynamically loaded components. Currently, most fatigue-entropy formulations apply to
metal and composite laminate fatigue under mechanical loading only. Via thermodynamic principles
and the DEG theorem, this article relates existing fatigue damage measures to instantaneous active
process entropies to derive a fatigue model consistent with thermodynamics and natural laws.
Data [15,18,32] will verify this DEG approach.

Subsequent sections are as follows:

• Section 2 introduces and reviews the DEG theorem and procedure.
• Section 3 reviews thermodynamics and introduces phenomenological entropy, consisting of a

boundary work component and an internal fluctuation component.
• Section 4 couples fatigue analysis to thermodynamics.
• Section 5 uses published experimental data to validate and visualize the model.
• Section 6 discusses results and the models.
• Section 7 summarizes and concludes.
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2. Degradation-Entropy Generation Theorem Review

In accordance with Rayleigh’s dissipation function of mechanics [33], Onsager’s reciprocity
theorem in irreversible thermodynamics [34] and Prigogine’s dissipative structures [35,36],
a quantitative study of degradation of systems by dissipative processes [24] formulated the
Degradation-Entropy Generation DEG theorem, establishing a direct relation between material/system
degradation and the irreversible entropies produced by the dissipative processes that drive the
degradation. Entropy measures disorganization in materials. Since degradation is advanced and
permanent disorganization, entropy generation is fundamental to degradation.

2.1. Statement

Given an irreversible material transformation caused by i = 1,2, . . . , n underlying dissipative
processes and characterized by an energy, work, or heat pi. Assume effects of the mechanism can be
described by an appropriately chosen variable

w = w( pi ) = w( p1, p2, . . . , pn), i = 1, 2, . . . , n (10)

that measures the material transformation and is monotonic in the effects of each pi. Then the rate
of degradation

.
w =

∑
i

Bi
.
S′i (11)

is a linear combination of the rates of the irreversible entropies
.
S′i generated by the dissipative processes

pi, where the degradation/transformation process coefficients

Bi =
∂w
∂S′i

∣∣∣∣∣
pi

(12)

are slopes of degradation w with respect to the irreversible entropy generations S′i = S′i( pi), and the∣∣∣pi notation refers to the process pi being active. The theorem’s proof [24] is founded on the second law
of thermodynamics. Integrating Equation (11) over time yields the total accumulated degradation

w =
∑

i

BiS′i (13)

which is also a linear combination of the accumulated entropies S′i.

2.2. Generalized Degradation Analysis Procedure

Bryant et al.’s [24] structured DEG theorem-based degradation analysis methodology embeds
the physics of the dissipative processes into the energies pi = pi

(
ζi j

)
, j = 1, 2, . . . , m. Here the pi can

be energy dissipated, work lost, heat transferred, change in thermodynamic energy (internal energy,
enthalpy, Helmholtz or Gibbs free energy) or some other functional form of energy, and the ζi j are
time-dependent phenomenological variables (loads, kinematic variables, material variables, etc.)
associated with the dissipative processes pi. The approach

(1) identifies the degradation measure w, dissipative process energies pi and phenomenological
variables ζi j,

(2) finds entropy generation S′ caused by the pi,
(3) evaluates coefficients Bi by measuring increments/accumulation or rates of degradation versus

increments/accumulation or rates of entropy generation, with process pi active.

This approach can solve problems consisting of one or many variegated dissipative processes.
Previous applications of the DEG theorem analyzed friction and wear [24,37,38] and metal
fatigue [15,18,22,39] grease degradation [32] and battery aging [40].
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3. Thermodynamic Formulations

This section reviews the first and second laws of thermodynamics applied to real
systems [27,36,41–46].

3.1. First Law—Energy Conservation

The first law
dU = δQ− δW +

∑
µkdNk (14)

for a stationary thermodynamic system neglecting gravity, balances dU the change in internal energy,
δQ the heat exchange across the system boundary, δW the energy transfer across the system boundary by
work, and

∑
µkdNk the internal energy changes due to chemical reactions, mass transport and diffusion,

where µk are chemical, flow and diffusion potentials, Nk = N′k + Ne
k + Nd

k are numbers of moles of
species k with N′k, Ne

k and Nd
k the reactive/diffusive and transferred species respectively. Inexact

differential δ indicates path-dependent variables. For chemical reactions governed by stoichiometric
equations,

∑
µkdNk = Adξ [36,43,47] where A is reaction affinity and dξ is reaction extent.

3.2. Second Law and Entropy Balance—Irreversible Entropy Generation

Known as the Clausius inequality, the second law of thermodynamics states: The change in closed
system entropy

dS ≥
δQ
T

, (15)

equal to or greater than the measured entropy transfer across the system boundary via heat. For open
systems (having mass flow), the right side of Equation (15) would include a mass transfer term. For a
reversible process

dS = dSrev =
δQrev

T
(16)

approximates a quasi-static (very slow) process in which total entropy change occurs via reversible heat
transfer δQrev. The second law as the equality dS = δSe + δS′ [12,34] equates the change in entropy
dS to the measured entropy flow δSe across the system boundaries from heat transfer and/or mass
transfer (for open systems), plus any entropy δS′ produced within the system boundaries by dissipative
processes. Entropy generation δS′ measures the permanent changes in the system when the process
constraint is removed or reversed [27,43], allowing the system to evolve. For a closed system [11,33]

dS = dSirr =
δQ
T

+ δS′ (17)

where dSirr is entropy change via an irreversible (real) path, δQ/T is entropy flow by heat transfer
which may be positive or negative, and T is the temperature of the boundary where the energy/entropy
transfer takes place. The second law also asserts entropy generation δS′ ≥ 0.

3.3. Combining First and Second Laws with Helmholtz Potential

For a system undergoing quasi-static heat transfer and compression work, Equation (14) with
δQ = δQrev = TdSrev from Equation (16) becomes [45]

dU = TdSrev − PrevdV+
∑

µ
k,rev

dNk . (18)

Here P is pressure and V is volume. Replacing entropy S with temperature T as the independent
variable via a Legendre transform results in the Helmholtz free energy

A = U − TS, (19)
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an alternate form of the first law which can measure maximum work obtainable from a thermodynamic
system. Differentiating Equation (19) and substituting Equation (18) for dU into the result give the
Helmholtz fundamental relation

dA = dArev = −SrevdT − PrevdV+
∑

µ
k,rev

dNk , (20)

the quasi-static change in Helmholtz energy between two states, valid for all systems. Here dA = dArev

is the free energy change via the reversible (rev) path, maximum for energy transfer out of the system
and minimum for energy transfer into the system.

Via the thermodynamic State Principle, the change in system energy/entropy due to boundary
interactions and/or compositional transformation is path-independent. The change can be determined
via reversible (linear) or irreversible (nonlinear) paths between system states. Equality of Equations
(16) and (17) is based on this principle. Eliminating δQ from Equation (14) via Equation (17) gives,
for compression work PdV, [36–38,42,43]

dU = dUirr = TdSe − TδS′ − PdV+
∑

µ
k
dNk, (21)

where reversible entropy change dSrev was replaced by entropy flow dSe and entropy generation δS′.
Differentiating Equation (19) and substituting Equation (21) for dU into the result give the irreversible
form of the Helmholtz fundamental relation

dA = dAirr = −SdT − PdV+
∑

µ
k
dNk − TδS′ ≤ 0 (22)

where dA = dAirr is the free energy change via irreversible (irr) path, maximum for energy transfer out
of the system and minimum for energy transfer into the system. Equations (20) and (22) are equivalent
representations of total change in Helmholtz free energy of all active systems, and show dA can be
evaluated via an idealized change dArev, or a real spontaneous evolution dAirr. From Equation (22),
define phenomenological Helmholtz free energy change

dAphen = −SdT − PdV+
∑

µ
k
dNk, (23)

due only to changes in measurable intensive and extensive properties of a real system. With a known
dArev, Equations (20) and (22) are combined to give

δS′ = −
SdT

T
−

PdV
T

+

∑
µkdNk

T
−

dArev

T
≥ 0 (24)

which satisfies the second law. During energy extraction or loading, dT ≥ 0, dV ≥ 0, dNk ≤ 0 and
dArev ≤ 0, rendering δS′ ≥ 0. During energy addition or product forming process, dT ≤ 0, dV ≤ 0,
dNk ≥ 0 and dArev ≥ 0, reversing the signs of the middle terms in Equation (24) to preserve δS′ ≥ 0 [43].

Equation (24) defines entropy generation or production as the difference between

phenomenological δSphen =
dAphen

T = −SdT
T −

PdV
T +

∑
µkdNk

T and reversible dSrev = dArev
T entropies

δS′ = δSphen − dSrev ≥ 0 (25)

where for energy extraction dSrev ≤ δSphen < 0, and for energy addition 0 < dSrev ≤ δSphen.
Comparing Equations (16) and (17), (20) and (22), verifies that changes in entropy and energy

between two states are path-independent, i.e.,

dS = dSrev = dSirr = δSphen − δS′; dA = dArev = dAirr = dAphen − TδS′. (26)
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In Equation (26), the change in Helmholtz energy dA = dArev and entropy dS = dSrev, evaluated for a
reversible path requires only beginning and end state measurements of system variables. Contrast
this for an irreversible path, wherein dA = dAirr = δAphen − TδS′ and dS = dSirr = δSphen − δS′

require instantaneous account of all active processes. Now dA and dS can be negative or positive,
depending on energy flow TdSe or entropy flow dSe across system boundaries. Since neither dA nor dS
measures the permanent changes in the system, this limits success of energy and entropy formulations
in characterizing measurable permanent system changes. On the other hand, entropy generation,
Equation (24) or (25), evolves monotonically per the second law. With δS′ = 0 indicating an idealized
system-process interaction, Equation (25) also indicates that a portion of any real system’s energy is
always unavailable for external work, δS′ > 0. Equation (25) which gives the entropy generated by the
system’s internal irreversibilities alone, is in accordance with experience, similar to the Gouy-Stodola
theorem of availability (exergy) analysis [44,46,48,49]. The foregoing equations are in accord with the
IUPAC convention of positive energy into a system.

3.4. Entropy Content S and Internal Free Energy Dissipation “−SdT“

The Helmholtz fundamental relation, Equations (20) and (22), introduced “−SdT”, free energy
dissipated and accumulated internally by a loaded component, which can include effects of plastic
work, chemical reaction heat generation and heat from an external source. Temperature change dT
is driven by the system entropy content S. Equation (20) suggests Helmholtz-based entropy of a
compressible system S = S(T,V, N) depends on temperature T, volumeV and number of moles N.
Via partial derivatives

dS =

(
∂S
∂T

)
V,N

dT +

(
∂S
∂V

)
T,N

dV+

(
∂S
∂N

)
T,V

dN. (27)

From Maxwell’s thermodynamic manipulation of mixed partial second derivatives and Callen’s
derivatives reduction technique [27], Equation (27) can be re-stated using established and measurable
system parameters [27,36](

∂S
∂T

)
V,N

=
CV
T

;
(
∂S
∂V

)
T,N

=

(
∂P
∂T

)
V,N

=
α
κT

;
(
∂S
∂N

)
T,V

= −

(
∂µ

∂T

)
V,N

(28)

where CV is heat capacity (for solids, CP ≈ CV = C), α = 1
V

(
∂V
∂T

)
P,N

is the volumetric coefficient of

thermal expansion and κT = − 1
V

(
∂V
∂P

)
T,N

is isothermal compressibility. For a constant-composition

system (no independent chemical transformations or phase changes),
(
∂µ
∂T

)
V,N

= 0, to give

dS =
C
T

dT +
α
κT

dV. (29)

Integrating with initial condition S0 = 0 gives entropy content

S = C ln T +
α
κT
V (30)

and internal free energy dissipation

− SdT = −
(
C ln T +

α
κT
V

)
dT. (31)

4. Differential/Elemental Fatigue Analysis

The foregoing formulations will be applied to a component under cyclic mechanical, thermal and
chemical loading [40].
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4.1. Local Equilibrium

An extensively verified theorem by Prigogine [35,43,50] hypothesized that every macroscopic
system is made up of elemental volumes wherein observable system properties can be instantaneously
ascertained, and established equilibrium formulations valid for each elemental volume. If continuity or
thermodynamic contact exists between measurement location and the region of interest, the evolution of
locally defined state variables can adequately characterize the overall transformation of the component.

4.2. Helmholtz Energy Dissipation and Entropy Generation

Engineering Model: Thermodynamic boundary encompasses system only; loading occurs
across system boundary; system is closed; heat transfers with surroundings (system is not isolated).
Equation (22) gives the loss of Helmholtz energy in a compressible system. To represent all forms of
dynamic loading, thermodynamic boundary work δW = YdX replaces compression work δW = PdV.
Here Y is generalized constraint/force/load potential, X is generalized response/displacement/loading,∑
µkdNk (= µdN for a closed system with one reactive component) defines energy loss due to

independent chemical processes such as corrosion or radioactive decay, where dN = dm
Mm

, m is the
component’s mass and Mm is molecular mass. Equation (24) with generalized boundary loading and
active chemical reaction

δS′ = −
SdT

T
−

YdX
T

+
µdm
MmT

−
dArev

T
≥ 0 (32)

accumulates entropy generation of three simultaneous active processes. Note that derivations involving
pressure-volume work in Equation (18) and subsequent Equations such as (27) and (29) originated
from the general work term δW in the first law, Equation (14). Reformulating with generalized
force-displacement work YdX instead of pressure-volume work PdV allows replacement of pressure
and volume terms in these formulations, without loss of generality.

Using generalized directional boundary work YX, Equation (30) gives entropy content

S = C ln T +
α
κT

X (33)

which evolves monotonically in all systems. Note that the assumption of zero initial entropy content S0 in
Equation (33) is considered valid in a new component without defect, for analytical and characterization
purposes. The first right side term is entropy from temperature changes (thermal energy storage).
The second term emanates from internal changes in structure and configuration. Here generalized
system/material properties C = T

(
∂S
∂T

)
Y
> 0, α = 1

X

(
∂X
∂T

)
Y

and κT = − 1
X

(
∂X
∂Y

)
T
> 0 are obtained as in

Equation (28). While C and αmeasure system response to heat and temperature changes, generalized κT

represents isothermal loadability, a measure of the material/component’s “cold” response to boundary
loading, which for a compressible system is compressibility.

4.3. Stress and Strain as Thermodynamic Variables

Most fatigue damage analyses involve evaluation of the impact of loading on a component.
Energy-based formulations often define boundary work (e.g., thermal or mechanical cycling) as a
volume integral of stress tensor σ times strain tensor ε with elastic and plastic components σ = σe + σp

and ε = εe + εp. For a non-reactive system undergoing boundary work σ : dε [7], Equation (31) becomes

− SdT = −
(
C ln T +

α
κT
Vε

)
dT. (34)

To clearly indicate the combined effect of thermal and structural changes due to loading, internal
energy dissipation −SdT, expressed in terms of measured variables T, σ, ε in Equation (34), is named
MicroStructuroThermal (MST) energy dissipation [32]. Here κT = ∂εe

∂σ is the isothermal strainability
where εe is elastic strain and σ is stress. Similar to application in compression work, κT can be evaluated
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via the inverse of elastic or torsional modulus for normal or torsional loading. Torsional and frictional
loads are described using shear stress τ and shear strain γ tensors. Similar terms as in Equation (34)
were derived by Morris [51].

4.3.1. Cyclic Loading—High-and Low-Cycle Fatigue

Elastoplastic strain response to tensile stress is often modeled via the Ramberg-Osgood relation [52]:
ε = σ

E + K
(
σ
E

)n
. Fatigue failure results from dynamic loading. Fatigue measurements determine strain

response to stress-controlled loading or stress response to strain-controlled loading. For stress-or
strain-controlled cyclic loading, Morrow [53] experimentally showed that the corresponding strain or
stress amplitude and strain energy are nearly constant throughout, except for the first few cycles, and
last cycles before failure [7]. In systems subject to fatigue failure (high- and low-cycle fatigue HCF and
LCF), the plastic component of the response to loading is significant (predominant in LCF), especially
at critical locations on the system. To account for elastic and plastic loads, cyclic strain amplitude

as a function of applied stress amplitude is [53] εa =
σa
E + ε′ f

(
σa
σ′ f

)1/n′
where the first right side term

is elastic strain and the second is plastic strain. Via the Coffin-Manson relation, this can be restated
as [54–56]

εa =
σ′ f

E

(
2N f

)b
+ ε′ f

(
2N f

)c
(35)

where N f is the number of cycles to failure and 2N f is the number of strain reversals. Here b and c
are fatigue strength and ductility exponents. Cyclic elastic strain energy density We = σN : εeN is
often negligible in very low cycle failure [14–23,53]. Cyclic plastic strain energy density was given by
Morrow [53] as

Wp = σN : εpN

( 1− n′
1 + n′

)
(36)

where n’ is the cyclic strain hardening coefficient. With units J/m3 equivalent to Pa, energy density is
often described in mechanics as toughness [53]. Combining with cyclic elastic work gives the total
cyclic boundary work or strain energy density

W = We + Wp = σN :
[
εeN + εpN

( 1− n′
1 + n′

)]
. (37)

For cyclic loading conditions, differential cyclic time or period [57]

dtN =
dt

Ndt
=

1
h

(38)

where h is the load cycle frequency and Ndt is the number of cycles in time increment dt. Fatigue loads
are often defined per cycle as sinusoids with stress/strain amplitude or range per cycle. Here dt is
replaced by NdtdtN in integrals, such as upcoming Equation (47), for convenience and compatibility
with differential thermodynamic formulations such as Equation (32), as done by Meneghetti [57] and
Morris [51]. The measurement time step dt is often greater than dtN when measuring phenomenological
variables or parameters such as temperature, loads, etc. Entropy accumulates over cyclic loads.
Via Equations (37) and (38), cyclic stress range σN =

∫ tN+1
tN

.
σdtN or

.
σ = dσN/dtN and cyclic strain range

εN =
∫ tN+1

tN

.
εedtN +

∫ tN+1
tN

.
εpdtN together give the differential work density

δWN = σN :
[
dεeN +

(
1− n′

1 + n′

)
dεpN

]
. (39)

Using Equation (38), boundary work done during time increment dt is

δW = NdtδWN = NdtσN :
[
dεeN +

( 1− n′
1 + n′

)
dεpN

]
. (40)



Entropy 2019, 21, 685 10 of 24

Total strain accumulation over dt is

ε =

∫ t

0
(dεN/dtN)dt. (41)

Dividing Equation (34) by volumeV and combining with Equation (40) gives the change in Helmholtz
energy density or toughness under high- or low-cycle fatigue loading. For stress-controlled loading,
i.e., constant σN, and constant Ndt, Helmholtz energy dissipation density

dA = −
(
ρc ln T +

α
κT
ε
)
dT −NdtσN :

[
dεeN +

( 1− n′
1 + n′

)
dεpN

]
(42)

and Helmholtz entropy generation density

δS′ = −
(
ρc ln T +

α
κT
ε
)dT

T
−Ndt

σN

T
:
[
dεeN +

(
1− n′

1 + n′

)
dεpN

]
+
σ′ f : d(σ′ f /E)

T
. (43)

For strain-controlled loading, σ and ε are interchanged. When available, measurements of stress/strain
response to loading should be used in place of Equations (35) and (36), which assume constant cyclic
strain and strain energy. In Equation (43), the first term is the elemental microstructurothermal
MST entropy density δS′µT characterizing internal material-dependent dissipation, the second is the
boundary loading term δS′W characterizing energy dissipation across the system boundary via useful
work output and environmental conditions, and the third is the reversible entropy S′rev defined using
the component’s fatigue strength coefficient σ′ f . From Equation (42), MST energy density change

δAµT = −
(
ρc ln T + α

κT
ε
)
dT and boundary work density δAW = −NdtσN :

[
dεeN +

(
1−n′
1+n′

)
dεpN

]
.

In renewable energy systems, the maximum work obtainable from a system, its Helmholtz free
energy change dArev or Gibbs free energy change dGrev may be defined cyclically. In all other systems∫ t

t0
dArevdt = ∆Arev is constant and defined globally at manufacture as the maximum energy in the

system or component from its newly manufactured state to full degradation, or locally just before onset of
loading as the maximum energy change in the system/component before and after loading. This term is
relatively inactive in the characteristic path-dependent evolution of entropy generation [58]. Neglecting
the constant (between 2 states) reversible term in Equation (43) as in Prigogine et al.’s irreversible
entropy generation formulations for active process/work interactions [42,43], phenomenological entropy
generation or production in a mechanically loaded system is given as

δS′phen = −
(
ρc ln T +

α
κT
ε
)dT

T
−Ndt

σN

T
:
[
dεeN +

(
1− n′

1 + n′

)
dεpN

]
. (44)

The above considers a loading rate h different from sampling rate 1/dt. If cyclic loading and data
sampling rates are the same, Ndt = 1. Similar expressions can be obtained for shear stress τ and shear
strain γ, for torsion.

4.3.2. Infinite Life Design

In infinite life design, loading and material behavior are predominantly in the elastic region, hence
elastic formulations are reliable [4–6]. The Wohler (S-N) curve and the Goodman diagram show the
region below the fatigue limit in which certain materials may be loaded indefinitely without failure.
Others such as the Soderbeg criteria are based on the component’s elastic response. For bending,
normal strain εe = σ

E . For torsion, shear strain γe = τ
G . For simultaneous loads such as combined

bending and torsion, von Mises formulations can be used. Predominant elastic interactions are nearly
isothermal, so the Helmholtz energy density change from Equation (42) with dεpN = 0 becomes

dA = Ndt(σN : dεeN), (45)
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and phenomenological Helmholtz entropy generation density from Equation (44)

δS′phen = −
1
T

Ndt(σN : dεeN). (46)

Equation (46) is the minimum entropy generation in a dynamically loaded system (in terms of stress
and strain) defined by Prigogine’s stationary non-equilibrium theorem [43]. At the reversibility limit
or for a fully reversible (elastic) system—which would imply a “true” infinite life design—boundary
temperature T is constant, giving uniform δS′phen. Metals such as steel exhibit nearly reversible
characteristics (infinite life) when loaded below fatigue limits [2–7]. Equation (46) also applies to
isothermal loading conditions.

4.4. Degradation-Entropy Generation (DEG) Analysis

Rewriting Equations (23) and (24) in rate form without the compositional change term,
and integrating over time gives the total change in Helmholtz energy from t0 to t as
∆A = −

∫ t
t0

S
.
Tdt−

∫ t
t0

Y
.

Xdt, and phenomenological entropy generation as

S′phen = −

∫ t

t0

S
.
T

T
dt−

∫ t

t0

Y
.

X
T

dt. (47)

Via the DEG formulations in Section 2, system degradation measured by fatigue parameter w is directly
related to phenomenological entropy generation as

w = BµT

∫ t

t0

−
S

.
T

T
dt + BW

∫ t

t0

−
Y

.
X

T
dt = BµTS′µT + BWS′W . (48)

Via Equation (12), DEG coefficients

BµT =
∂w
∂S′µT

; BW =
∂w
∂S′W

(49)

which pertain to MST entropy S′µT =
∫
−

S
.
T

T dt and boundary work entropy S′W =
∫
−

Y
.

X
T dt, respectively,

can be evaluated from measurements of slopes of w versus entropy production components S′i .

4.4.1. Applying the Degradation-Entropy Generation Theorem to Cumulative Strain (or Stress)

Assuming the cyclic effects of measured strain are cumulative (to account for all simultaneous
variable and complex loading) and vary with strain intensity, a strain measure may be defined for the
DEG theorem (using Equation (43) for S′phen) as

ε =

∫ t

t0

.
εdt = −BµT

∫ t

t0

(
C ln T +

εα
κT

) .
T
T

dt + BW

∫ t

t0

Ndt
σN

T
:
[

.
εeN +

(
1− n′

1 + n′

)
.
εpN

]
dt. (50)

For truly infinite life and assuming elastic work

ε = BWe

σN

T
εe . (51)

If loading is strain-controlled, the measured stress response may become a cumulative degradation
measure and similar relations developed.
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5. Fatigue Experiments and Data Analysis—Instantaneous Characterization

Low-cycle fatigue data by Naderi, Amiri and Khonsari [15,18] will verify formulations.
Details about equipment, procedures and data are in references [15,18]. Briefly, at sampling frequency
7.5 Hz, a high-resolution infra-red camera monitored temperature profiles of the SS 304 stainless steel
fatigue specimen depicted in Figure 1, with material properties in Table 1.
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Figure 1. Torsion fatigue-tested steel sample SS 304 showing dimensions in mm, reproduced from [14].

Table 1. Material properties for SS 304 steel used in evaluating loading parameters [2,15,55,56].

Property Bending Torsion

Modulus, GPa E = 195 G = 82.8

Fatigue strength coefficient, MPa σ′ f = 1000 τ′ f = 709

Fatigue strength exponent b −0.114 −0.121

Fatigue ductility coefficient ε′ f = 0.171 γ′ f = 0.413

Fatigue ductility exponent c −0.402 −0.353

Cyclic strain hardening exponent n’ 0.287 0.296

Specific heat capacity C, J/kg K 500

Density ρ, kg/m3 7900

Coefficient of linear thermal expansion α 17.3 × 10−6

Displacement-controlled bending and torsional loads oscillated at 10 Hz. Plots in the upcoming
figures, generated from Naderi et al.’s data, have “a” subfigures on the left pertaining to bending
fatigue, and “b” subfigures on the right pertaining to torsional fatigue. Signs follow the thermodynamic
convention of the formulations, e.g., boundary loading and MST energies and entropies are negative.

Figure 2a plots the constant cyclic stress amplitude obtained from σa = σ′ f
(
2N f

)b
, constant elastic

strain amplitude from Hooke’s law εea = σa
E , constant plastic strain amplitude from Morrow’s

relation [53] εpa = ε′ f

(
σa
σ′ f

)1/n′
and measured temperature T versus number of cycles N. Torsional

loading in part (b) of the figures employs shear stress τ and shear strain γ. In the rest of this article σ and
ε will denote generalized stress and strain. Number of cycles accumulated at failure was N f = 14,160
for bending, N f = 16,010 for torsion [15].
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Figure 2. Parameters during cyclic (a) bending and (b) torsional fatigue of the SS 304 steel at a constant
frequency 10 Hz and displacement loading δ = 45.72 mm and δ = 33.02 mm [15]. Temperatures and
cyclic stress amplitude are on the left axis, and cyclic strain amplitude is on the right.

For bending, Figure 2a shows a constant normal stress amplitude σa = 311 MPa, a steady normal
elastic strain amplitude εea = 0.17% and steady normal plastic strain amplitude εpa = 0.29%. For torsion,
Figure 2b shows a constant shear stress amplitude τa = 202 MPa, a steady elastic shear strain amplitude
γea = 0.24% and steady shear plastic strain amplitude γpa = 0.59% (this last value is high due to the
high torsional fatigue ductility coefficient γ′ f found in literature, see Table 1). In both cases, a steep rise
in temperature (purple curves in Figure 2) arose from high hysteresis dissipation from an initial rest
state. After this initially transient response region (about 2000 cycles for bending and 5000 for torsion),
pseudo-steady state temperature persists until a sudden rise occurs, followed by fatigue failure [14,15].
Substituting Naderi et al.’s data into Equations (42), (43) and (50), Table 2 was constructed. Units of
%N, GJ/m3 and MPa/K are used for cumulative strain, energy density and entropy density respectively
(1 GPa = 1 GJ/m3; 1 MPa/K = 1 MJ/m3K) giving strain-based B coefficient units of %NK/MPa.

Table 2. Helmholtz energy-based DEG fatigue analysis results for bending and torsional loading to
failure of the SS 304 steel specimen in Figure 1.

Load εf,γf
%N

AW
GJ/m3

AµT

GJ/m3
S′W

MPa/K
S′µT

MPa/K
BW

%NK/MPa
BµT

%NK/MPa

Bending 130.1 −58.0 −7.8 −143.5 −18.8 −0.92 0.22
Torsion 268.5 −73.4 −12.3 −143.5 −24.1 −1.96 0.42

Table 2 column 1 lists fatigue loading types, bending and torsion. Section 4 formulations involved
integrals over time. Trapezoidal quadratures with widths inverse to the data sampling frequency
(7.5 Hz [15]) estimated time integrals. For a process occurring from t0 to t, cumulative strain in
Equation (41), Table 2 column 2, was estimated as

ε =

∫ t

0

.
εdt =

∫ t

t0

(dεN/dtN)dt ≈
( 1

∆tN

) m∑
1

(εm)∆t = N∆t

m∑
1

(εm) (52)

where indices 1, 2, 3, . . . , m correspond to times t1, t2, t3, . . . , tm and ∆t = tm − tm−1, period
∆tN = 1/10 [15], data sampling time increment ∆t = 1/7.5, and total number of cycles within sampling
time increment N∆t = 10/7.5, see Equation (38). Finally, εm is strain range at tm. Shear strain γ was
similarly obtained for torsion. Via constant cyclic strain ranges [53] εN and γN, cumulative strains
varied linearly with number of cycles N until sudden failure, with no indication of failure onset
(Figure 3).
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5.1. Instantaneous Evolution of Helmholtz Energy Density (Toughness) and Entropy Density

Table 2 lists components of Helmholtz toughness, Equation (40), AW = −N∆t
∑m

1(
σm

[
εem + εpm

(
1−n′
1+n′

)])
(column 3) and AµT = −

∑m
1

(
ρc ln Tm + α

κT
εm

)
∆Tm (column 4) during bending

and torsional fatigue of the steel member. Figure 4 plots the accumulated boundary/load (blue curves)
and MST (red curves) entropy densities. In Figure 4, a near linear relationship is observed between
load entropy, column 5 of Table 2,

S′W =

∫ t

0

σ
.
ε

T
dt = N∆t

m∑
1

{
σm

Tm

[
εem + εpm

( 1− n′
1 + n′

)]}
(53)

and accumulated strain for the assumed constant stress amplitude loading and constant strain
amplitude response, with a slight curvature from the initial temperature rise (Figure 4). Table 2
shows the same failure value of 143.5 MPa/K for both bending and torsion, as previously observed by
Naderi, Amiri and Khonsari [15,18–20], unlike load (strain) energy density AW . MST entropy density
(red curves), column 6,

S′µT =

∫ t

0
−

(
ρc ln T +

α
κT
ε
) .

T
T

dt = −
m∑
1

(
ρc ln Tm +

α
κT
εm

)∆Tm

Tm
(54)

shows a profile significantly influenced by the measured temperature profile but less steep than the
latter due to the microstructural effect (second right side term in Equation (54), see Figure 4). Accurate
determination of MST entropy includes effects of instantaneous temperature, especially for anisothermal
conditions. Amiri and Khonsari [14] related fatigue life to the gradient of the initial temperature
rise. Both MST energy and entropy densities are higher for torsion than bending. At every instant,
load entropy S′W and an accompanying MST entropy S′µT are produced, both at the instantaneous
boundary temperature. Figure 4 shows that with S′µT stabilizing with steady temperature, S′W quickly
becomes more significant to total irreversible entropy, a desired feature (the boundary loading is
the component’s output work, hence the higher its contribution to total phenomenological entropy,
the more optimal the component’s response to loading). However, the sudden rise in magnitude of
S′µT just before failure is not evident in load (boundary work) entropy.
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emphasize the coincidence of points with the planes. This suggests a linear dependence of 
degradation/fatigue on both the actual output work/boundary loading and MST entropies at every 
instant of loading. The measured data points in the curves of Figure 6 that define the component’s 
paths during loading—its Degradation-Entropy Generation (DEG) trajectories—lie on planar DEG 
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Figure 4. Phenomenological Helmholtz entropy density components—load entropy (blue plots) and
MST entropy (red plots)—versus accumulated strain during bending (continuous curves) and torsion
loading (dashed curves). Note 1 MJ/m3/K = 1 MPa/K.

Figure 5 plots rates of phenomenological Helmholtz entropy generation components—load and
MST entropies—versus number of cycles. Cyclic load entropy (blue curves) starts at a slightly higher rate
and quickly steadies as quasi-steady temperature is reached. MST entropy rate (red curves in Figure 5,
right axes label) shows more significant fluctuations with sudden discontinuity (large spike) just before
failure. With measured non-constant strain response using appropriate equipment (particularly for
variable and complex load types), the boundary work/load entropy characteristics could differ from
those presented here in which constant stress and strain amplitudes were used, as often done in fatigue
analysis [15,53–55].
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5.2. DEG Analysis—Strain Versus Entropy (Linear Transformation)

By associating data from various time instants, accumulated strain ε from Equation (41) was
plotted versus accumulated entropies S′W and S′µT in 3-dimensional Figure 6. Time is a parameter
along curves: successive points from bottom to top on each curve correspond to later times along
the fatigue evolution. Coincidence of measured data points with planar surfaces in Figure 6 has
goodness of fit R2 = 1, asserting a statistically perfect fit for all cases prior to impending failure. The end
views emphasize the coincidence of points with the planes. This suggests a linear dependence of
degradation/fatigue on both the actual output work/boundary loading and MST entropies at every
instant of loading. The measured data points in the curves of Figure 6 that define the component’s
paths during loading—its Degradation-Entropy Generation (DEG) trajectories—lie on planar DEG
surfaces. The orthogonal 3D space occupied by the DEG surfaces, the component’s material-dependent
DEG domain, appears to characterize the allowable regime in which the component can be loaded.
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In (a), loading trajectories start from lowest corner. (Axes are not to scale and colors are for visual
purposes only).

The dimensions of the DEG planes are determined by the accumulation of the entropy generation
components before failure onset. As previously observed, bending and torsion have the same boundary
work entropy dimension, indicating that this dimension is characteristic of the specimen material,
not the process, further verifying Naderi, Amiri and Khonsari [15,18–20]. Overall, AW and S′W are
about 7 (6 for torsion) times AµT and S′µT, respectively. MicroStructuroThermal (MST) dissipation
accompanies boundary interaction/loading. Figure 6b also shows points of the trajectory not lying on
the DEG plane. These points violate the linearity of Equation (50), suggesting another fundamentally
different dissipative process at work. The pseudo-constant temperature region (see Figure 2) appears
in the DEG domain as a pseudo-constant MST region, with fluctuations.

Degradation Coefficients Bi: Degradation coefficients BW and BµT, partial derivatives of fatigue
measure—cumulative strain—with respect to loading and MST entropies respectively, Equation (49),
were estimated from the orientations of the surfaces in Figure 6, see columns 7 and 8 of Table 2.
For bending, BW = −0.92 %K/MPa and BµT = 0.22 %K/MPa, and for torsion, BW = −1.96 %K/MPa
and BµT = 0.42 %K/MPa. A lower value for B implies lesser impact on fatigue degradation.

5.3. Phenomenological Transformation Versus Measured/Estimated Fatigue Parameter

Using constant B coefficients given in Table 2, instantaneous entropy transformations were
projected onto the estimated fatigue or degradation parameter to determine phenomenological fatigue
parameter, analogous to the previously defined phenomenological entropy generation. Figure 7a,c show
reversible Helmholtz entropy S′rev (green curves), phenomenological entropy S′phen (purple curves)
and boundary work/load entropy S′W (blue curves) during bending and torsion of the steel sample.
In Figure 7b,d, DEG-evaluated phenomenological strains εphen and γphen (purple curves) and estimated
strains ε = εe + εp and γ = γe + γp (blue curves) are plotted. The actual transient response of the
component under load is unobservable in cyclic strains ε and γ estimated from currently available
LCF analysis methods. The DEG methodology, via entropy which uses a component’s instantaneous
temperature, introduces more representative cyclic strains εphen and γphen which consistently show all
instantaneous nonlinear transitions during loading including the initially high energy dissipation rate
observable in Figure 7b,d.
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bending (a,b) and torsion (c,d) of the steel specimen. Region between S’phen and S’rev is entropy
generation S’ given by Equation (25). A similar critical failure entropy S’CF is shown for both
loading types.

Substituting coefficient values into Equation (48) gives the SS 304 steel sample’s DEG cumulative
strain-based fatigue life/degradation models for bending and torsion

εphen =
(
0.22S′µT − 0.92S′W

)
∗ 10−6 (55)

γphen =
(
0.42S′µT − 1.96S′W

)
∗ 10−6, (56)

which linearly relate the phenomenological fatigue strains εphen and γphen to the phenomenological
entropies S′phen = S′W + S′µT produced. Via the known relations between entropy production and the
active variables of loads, materials and environment, Equations (55) and (56), in turn, relate the fatigue
strains to the phenomenological variables.

Critical Failure Entropy S′CF—MST Entropy and Fatigue Failure

A corollary of the DEG theorem: “if a critical value of degradation measure at which failure occurs
exists, there must also exist critical values of accumulated irreversible entropies” [24]. Naderi, Amiri
and Khonsari’s extensive measurements [15,18–20] showed existence of a material-dependent fatigue
fracture entropy FFE or S′ f evaluated as the load entropy (using constant plastic strain amplitude)
accumulated at failure. The data of this article, obtained from references [15,18], verified similar
magnitudes of cumulative S′W for both bending and torsion of the SS 304 steel specimen. To anticipate
onset of failure, Khonsari et al. empirically determined a normalized onset of failure entropy criterion
S′

S′ f
≤ 0.9 from several temperature profiles measured during loading [17]. Other common fatigue

tools like σ—N and ε—N curves, with constant stress and strain amplitudes, do not exhibit the critical
phenomenon. The DEG domain shows a distinct and consistent critical onset of failure. In Figure 7a,c,
the abrupt drop in phenomenological Helmholtz entropy generation just before failure is attributed
to the sudden rise in specimen temperature. Via the B coefficients, this abrupt drop is transferred to
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phenomenological strain, Figure 7b,d, introducing the critical feature to the hitherto steady fatigue
measure, cumulative strain.

To understand the entropy generation critical value, reexamine Figure 7. The region between the
reversible entropy S′rev and phenomenological entropy Sphen curves—the subtraction difference—is
entropy generation. With the stable evolution criterion Srev ≤ Sphen < 0, the abrupt spike in Sphen resulted
in the second law-prohibited negative entropy generation of Equations (25) and (43). The intersection of
Srev and Sphen marks the critical failure entropy S′CF (Figure 7a,c). With constant cyclic stress and strain,
the cyclic load entropy (blue plots in Figure 7a,c) trends directly with measured temperature (Figure 2),
accumulating linearly over time (Figure 4). Comparing Figures 5 and 7 shows that the downward
spike in cyclic Sphen, also observed as the trajectory discontinuity in the DEG domains, is introduced
by the microstructurothermal (MST) entropy composed of a thermal change- and microstructural
change-induced internal entropy generation. If a pseudo-steady temperature was not attained, the MST
entropies would have risen continuously and accelerated failures. Note that the initial temperature
rise is less for bending fatigue than torsion [15], Figure 2, the effect of which is evident in the MST
dimensions of the respective DEG planes. Hence, MST entropy measures a component’s instantaneous
instabilities and ultimate failure. In other forms of loading including thermal and chemical cycling of
components, the significance of MST entropy is underscored by the limited safe operating temperature
ranges specified by device manufacturers to prevent instabilities/runaway events.

5.4. Nonlinear Response

Via Morrow [53] and Lemaitre and Chaboche [7], this article assumed a constant cyclic strain
response to constant stress loading, similar to Khonsari et al. However, for variable and complex
asynchronous loading, a nonlinear response is typically observed.

6. Discussion and Contributions

Other experimental verification of the DEG methodology include nonlinear shear stress
response to shear rate-controlled shearing of lubricant grease [32], (Figure 8), and abusive cycling
of Li-ion batteries [40] have been demonstrated by Osara and Bryant. In Figure 8b, the DEG
trajectories—independent datasets measured at different times and durations—all lie on the same DEG
plane, characteristic of the grease.
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Figure 8. (a) Monitored parameters—shear stress and temperatures—and (b) DEG domain for
mechanical shearing of high-consistency lubricant grease show multiple nonlinear shear stress
trajectories coincident with the same DEG plane. Reproduced from [32].

Similar to Prigogine’s successful extension of hitherto reversible thermodynamic formulations to
irreversible and non-equilibrium processes and states [35,36,42,43], this study derived and verified
a consistent utility-based, time-dependent system entropy generation. Based on Gibbs theory of
thermodynamic stability of equilibrium states and the second law entropy balance, this article
demonstrated that
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• phenomenological entropy generation S′phen is the sum of boundary work/load entropy S′W and
microstructurothermal MST entropy S′MST;

• entropy generation is the difference between phenomenological S′phen and reversible S′rev

Helmholtz entropies at every instant;
• entropy generation is always non-negative in accordance with the second law, whereas components

S′phen and S′rev are directional, negative for a loaded system. This implies
∣∣∣S′phen

∣∣∣ < |S′rev| during
load application in accordance with experience and thermodynamic laws. The actual work
obtained from the system is always less than the maximum/reversible work.

Stress and strain (bending and torsional) were used as system conjugate variables to characterize
energy dissipation and entropy generation in a loaded metal bar.

6.1. Features of the DEG Methodology

Basaran et al. [9–13] and Khonsari et al. [14–23] in several fatigue-entropy works demonstrated
the robustness, consistency and ease of use of entropy generation-based damage/fatigue analysis.
This article showed that the DEG methodology relates accumulated irreversibilities to the resulting
damage in systems using entropy generation components. DEG theorem methods can accurately
describe a system’s fatigue level during operation in a fatigue measure versus entropy generation
components space. Since the entropy generation depends on the load, materials and environment,
the DEG methods in turn relate a material’s fatigue measure to the working phenomenological variables
of interest.

6.1.1. DEG Trajectories, Surfaces and Domains

Thermodynamics authors have consistently used multi-dimensional orthogonal spaces to describe
thermodynamic states of reversible processes: Callen’s thermodynamic configuration space [36],
Messerle’s energy surface [47] and Burghardt’s equilibrium surface [41]. This study introduced
the DEG domain, a multi-dimensional space that linearly characterizes a real system’s nonlinear
phenomenological transformation paths. Proper formulation of the governing entropies from the
active dissipative processes is required to accurately determine fatigue degradation during loading.

DEG trajectories characterize loading conditions (torsion, bending, stress/strain amplitudes, etc.);
DEG surfaces appear to characterize component material and process rates; and the DEG domain seems
to define the normal operating/aging region and the failure region, fully characterizing the component’s
life for all loads and process rates. A component having a DEG domain with large accumulated fatigue
measure span and small MST entropy span (relative to load entropy dimension) will accumulate
more load strain (or do more work) before failure. Hence, the DEG fatigue methodology can directly
compare designs and materials for manufacture and applications.

The out-of-plane points at the termini of the DEG trajectories of Figure 6 occurred at the onset of
failure. Here, a crack in the fatigued specimen attains a critical length, which causes a catastrophic
fracture crack growth that ruptures the specimen [56,59]. Fracture cracking as opposed to fatigue
cracking involves fundamentally different dissipative processes and entropy generation [60]. The DEG
model could add this effect via an additional term in Equation (50) for fracture entropy generation,
similar to the fracture entropy formulated by Rice [61]. This third orthogonal entropy generation
axis in Figure 6 would extend the plots to 4D: cumulative strain vs. load entropy, MST entropy and
fracture entropy. Via the thermodynamic state principle [45] and the DEG theorem, other concurrent
independent processes would append additional dimensions to the DEG domain.

6.1.2. DEG Coefficients

Unlike existing fatigue methods wherein stress-life and strain-life diagrams predict suitability of a
component using extensive data from several failed samples, DEG coefficients can be obtained from
one or two representative samples and applied to other components of the same material(s) undergoing
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similar processes. These coefficients show a component’s response to prevalent interactions and
conditions by quantifying the processes’ contributions to fatigue failure.

Boundary work/load coefficient BW is negative for positive evolution of fatigue measure—load
entropy is negative during loading. MST coefficient BµT has varying sign characteristic. To understand
BµT sign changes, rewrite Equation (48) as w = wphen = BµTS′µT + BWS′W and rearrange to get

BµT =
1

S′µT

(
wphen − BWS′W

)
(57)

where phenomenological fatigue measure wphen (e.g., εphen) fluctuates about the load-based measure
BWS′W (Figure 7b,d), making the parenthesis expression in Equation (57) fluctuate about zero during
operation. It is also observed from Figure 5 that instantaneous MST entropy S′µT fluctuates about zero
(more significantly for torsion).

6.2. Entropy Generation vs Number of Cycles—A Linear Arrow of Time

Describing entropy S as “time’s arrow”, Eddington [36] stated

at t ≥ t0, S ≥ S0 (58)

for an isolated system where is entropy at initial/reference time t0. Amiri et al. [15,18,23] via several
experiments, observed an approximately linear relationship between normalized entropy and number
of cycles. In Figure 9, normalized load entropy S′W/S′W f (blue curves), microstructurothermal
(MST) entropy S′µT/S′µT f (red curves) and total phenomenological Helmholtz entropy generation
S′phen/S′phen, f (purple curves) vs. normalized number of cycles N/N f are presented for bending
fatigue (9a) and torsional fatigue (Figure 9b). An approximate linearity was observed in S′W/S′W f .
Figure 9 also shows that S′µT/S′µT f and, consequently, S′phen/S′phen, f do not evolve linearly with
N/N f ; entropy generation as prescribed by the Helmholtz formulation for stress-strain loading,
Equation (43), for an anisothermal process, includes a significant nonlinear microstructurothermal
(MST) component.

Entropy 2019, 21, x 19 of 23 

Boundary work/load coefficient 𝐵ௐ is negative for positive evolution of fatigue measure—load 
entropy is negative during loading. MST coefficient 𝐵ఓ்  has varying sign characteristic. To 
understand 𝐵ఓ் sign changes, rewrite Equation (48) as 𝑤 = 𝑤௣௛௘௡ = 𝐵ఓ்𝑆′ఓ் + 𝐵ௐ𝑆′ௐ and rearrange 
to get 𝐵ఓ் = 1𝑆′ఓ் ൫𝑤௣௛௘௡ − 𝐵ௐ𝑆′ௐ൯ (57) 

where phenomenological fatigue measure 𝑤௣௛௘௡  (e.g., 𝜀௣௛௘௡)  fluctuates about the load-based 
measure 𝐵ௐ𝑆′ௐ (Figure 7b,d), making the parenthesis expression in Equation (57) fluctuate about 
zero during operation. It is also observed from Figure 5 that instantaneous MST entropy 𝑆′ఓ் 
fluctuates about zero (more significantly for torsion). 

6.2. Entropy Generation vs Number of Cycles—A Linear Arrow of Time 

Describing entropy S as “time’s arrow”, Eddington [36] stated 

at 𝑡 ≥ 𝑡଴, 𝑆 ≥ 𝑆଴ (58) 

for an isolated system where 𝑆଴ is entropy at initial/reference time 𝑡଴. Amiri et al. [15,18,23] via 
several experiments, observed an approximately linear relationship between normalized entropy and 
number of cycles. In Figure 9, normalized load entropy 𝑆′ௐ/𝑆′ௐ௙  (blue curves), 
microstructurothermal (MST) entropy 𝑆′ఓ்/𝑆′ఓ்௙  (red curves) and total phenomenological 
Helmholtz entropy generation 𝑆′௣௛௘௡/𝑆′௣௛௘௡,௙ (purple curves) vs. normalized number of cycles 𝑁/𝑁௙ 
are presented for bending fatigue (9a) and torsional fatigue (Figure 9b). An approximate linearity 
was observed in 𝑆′ௐ/𝑆′ௐ௙. Figure 9 also shows that 𝑆′ఓ்/𝑆′ఓ்௙ and, consequently, 𝑆′௣௛௘௡/𝑆′௣௛௘௡,௙ do 
not evolve linearly with 𝑁/𝑁௙; entropy generation as prescribed by the Helmholtz formulation for 
stress-strain loading, Equation (43), for an anisothermal process, includes a significant nonlinear 
microstructurothermal (MST) component. 

  
(a) (b) 

Figure 9. Normalized phenomenological entropy and components—load (blue), MST (red), 
phenomenological (purple) versus normalized cycles for (a) bending, (b) torsion of the SS 304 steel 
specimen. 

Similar to Figure 6 which uses accumulated strain for component characterization via the DEG 
methodology, Figure 10 plots the components of phenomenological entropy generation 𝑆′ௐ  and 𝑆′ఓ் versus number of cycles 𝑁. Via Equation (38), 𝑁 can be replaced by time t via ׬ 𝑑𝑡௧೑௧బ = ׬ ௗே௛ே೑ேబ  

where ℎ is the load cycle frequency. For constant ℎ and 𝑁଴(𝑡଴ = 0) = 0, 𝑡 = ே௛. Considering the SS 
304 steel torsional fatigue (last row of Table 2 and (b) figures in article), 𝑁௙ = 16010 and ℎ = 10 Hz 
give total time to failure ∆𝑡௙ = 26.68 min. As depicted by Figure 10 using number of cycles, the DEG 
methodology linearizes the natural evolution of entropy generation over time: there exists a linear 
arrow of time. 

Figure 9. Normalized phenomenological entropy and components—load (blue), MST (red),
phenomenological (purple) versus normalized cycles for (a) bending, (b) torsion of the SS 304
steel specimen.

Similar to Figure 6 which uses accumulated strain for component characterization via the DEG
methodology, Figure 10 plots the components of phenomenological entropy generation S′W and S′µT

versus number of cycles N. Via Equation (38), N can be replaced by time t via
∫ t f

t0
dt =

∫ N f
N0

dN
h where h

is the load cycle frequency. For constant h and N0(t0 = 0) = 0, t = N
h . Considering the SS 304 steel

torsional fatigue (last row of Table 2 and (b) figures in article), N f = 16010 and h = 10 Hz give total time
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to failure ∆t f = 26.68 min. As depicted by Figure 10 using number of cycles, the DEG methodology
linearizes the natural evolution of entropy generation over time: there exists a linear arrow of time.Entropy 2019, 21, x 20 of 23 
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sample. Life trajectories start from lowest corner. (Axes are not to scale and colors are for visual 
purposes only). 
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Figure 10. 3D plots and linear surface fits of numbers of cycles N vs load entropies and MST entropies
during cyclic bending (red points, blue plane) and torsion (purple points, orange plane) of the SS
304 sample. Life trajectories start from lowest corner. (Axes are not to scale and colors are for visual
purposes only).

Recall Equation (48) with t f = w:

t f = BµTtS′µT + BWtS′W . (59)

From orientations of the Figure 10 DEG planes with t f = N f /h, BµTt = 12.31 NK/MPa and
BWt = −99.78 NK/MPa for bending. Equation (59) linearly relates entropy generation to degradation
time, cycle life or time to failure for components under all types of load. Therefore, with a consistent
evolution criterion, entropy generation via the DEG theorem is a linear arrow of time, Equation (59) and
Figure 10. With DEG domains such as Figure 10, all systems undergoing cyclic or time-dependent
loading can be fully and instantaneously characterized based on degradation or failure time t f .
The horizontal axes dimensions of the DEG domain (values of S′W and S′µT at N f ) can be directly
correlated with other existing fatigue analysis methods that use N f like the common σ—N and ε—N
curves. The DEG approach appears universal and can be directly adapted to state of health and
performance monitoring. The results in this article show that the DEG method can anticipate and
potentially monitor and prevent fatigue failures accurately.

7. Summary and Conclusions

Fundamental irreversible thermodynamics and the degradation-entropy generation DEG theorem
were applied to fatigue. The DEG theorem’s fatigue/degradation model, which related a strain
measure of fatigue to the load (boundary work) and MicroStructuroThermal entropies produced, was
formulated and verified. A thermodynamic potential, the Helmholtz free energy, replaced steady
state assumptions of previous DEG applications and employed the instantaneously applicable first
and second laws of thermodynamics. The significance of the MicroStructuroThermal MST entropy
and reversible Helmholtz entropy to total entropy generation and fatigue failure was demonstrated.
Plots—DEG domains, Figures 6, 8 and 10—derived from published experimental data [15,18] showed
the DEG-predicted linearity between fatigue/life measures and entropy generation components with
goodness of fit R2 = 1. Flexibility of fatigue parameter selection was also demonstrated. The DEG
theorem provides a structured approach to component/system fatigue/degradation modeling, removing
the need for many measurements, numerous curve fits and multiple analysis tools.
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Abbreviations

Nomenclature Name Unit
A Helmholtz free energy density J/m3

B DEG coefficient %NK/MPa
C heat capacity J/K
N number of cycles
N, Nk number of moles of substance mol
P dissipative process energy J
P pressure Pa
Q heat J
S entropy density or entropy content J/m3K or MPa/K
S’ entropy generation or production J/m3K or MPa/K
t time s
T temperature degC or K
U internal energy J
V volume m3

w degradation measure
W work, strain energy density J, J/m3

Symbols
α thermal expansion coefficient /K
κT isothermal loadability
µ chemical potential
ρ density Kg/m3

σ stress MPa
ε strain %
ζ phenomenological variable
Subscripts & acronyms
0 initial
e elastic
MST, µT Micro-Structuro-Thermal
p plastic
rev reversible
irr irreversible
phen phenomenological
DEG Degradation-Entropy Generation
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