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ABSTRACT Electrically conductive protein nanowires appear to be widespread in
the microbial world and are a revolutionary “green” material for the fabrication of
electronic devices. Electrically conductive pili (e-pili) assembled from type IV pilin
monomers have independently evolved multiple times in microbial history as have
electrically conductive archaella (e-archaella) assembled from homologous archaellin
monomers. A role for e-pili in long-range (micrometer) extracellular electron trans-
port has been demonstrated in some microbes. The surprising finding of e-pili in
syntrophic bacteria and the role of e-pili as conduits for direct interspecies electron
transfer have necessitated a reassessment of routes for electron flux in important
methanogenic environments, such as anaerobic digesters and terrestrial wetlands.
Pilin monomers similar to those found in e-pili may also be a major building block
of the conductive “cables” that transport electrons over centimeter distances
through continuous filaments of cable bacteria consisting of a thousand cells or
more. Protein nanowires harvested from microbes have many functional and sustain-
ability advantages over traditional nanowire materials and have already yielded
novel electronic devices for sustainable electricity production, neuromorphic mem-
ory, and sensing. e-pili can be mass produced with an Escherichia coli chassis, pro-
viding a ready source of material for electronics as well as for studies on the basic
mechanisms for long-range electron transport along protein nanowires. Continued
exploration is required to better understand the electrification of microbial commu-
nities with microbial nanowires and to expand the “green toolbox” of sustainable
materials for wiring and powering the emerging “Internet of things.”

KEYWORDS Geobacter, Syntrophus, cable bacteria, e-biologics, electromicrobiology,
nanowire, syntrophy

Electrification (the supply of electricity through a distribution system of conductive
wires) was one of the most important advances in human civilization (1). It is

becoming increasingly apparent that a broad diversity of bacteria and archaea function
as “micro-Edisons” running electrically conductive “wires” and “cables” throughout their
environment to electrify their communities. Although these microbes do not use the
current to power their own lights (at least as far as we know), the electricity conducted
through their electric grid can efficiently provide energy to support microbial metab-
olism and growth. Electric signals transmitted along the wires may also deliver impor-
tant environmental information to cells (2). The most intensively studied of these
“microbial nanowires” are the electrically conductive pili (e-pili) of the Geobacter species
Geobacter sulfurreducens and Geobacter metallireducens (2, 3). The conductivity of
Geobacter e-pili can be quite high (277 S/cm at pH 7 [4]), which is surprising considering
that they are comprised solely of protein. Proteins are typically regarded as an insu-
lating material. Yet, e-pili are conductive even though they lack the metal cofactors that
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are common electron transfer moieties of proteins involved in short-range electron
transfer within a single molecule or between two proteins.

Geobacter e-pili are type IV pili (3) that have only recently evolved the characteristics
that yield high electrical conductivity (5). However, type IV pili are among the most
ancient and widespread outer-surface microbial structures (6), and it is now becoming
apparent that over the course of microbial history, type IV pili and homologous protein
structures have independently evolved into conductive filaments multiple times (7–9).
In one remarkable instance, e-pili may have been modified to produce superstructures,
forming electrically conductive cables (10). Although physiological function has been
confirmed for only a few microbial nanowires, it seems likely that, in general, the
evolved conductivity confers a selective advantage. High conductivity requires an
increased abundance of aromatic amino acids, and synthesizing aromatic amino acids
is metabolically costly (9). In this minireview, we discuss the rapidly expanding catalog
of electrically conductive protein nanowires in the microbial world, their microbiolog-
ical and environmental importance, and emerging practical applications.

GEOBACTER e-PILI

The e-pili of G. sulfurreducens are comprised of the type IV pilin monomer protein,
PilA. This is evident from the following observations. (i) Deleting pilA prevents e-pilus
expression, and complementation by expressing pilA in trans restores nanowire expres-
sion (11). (ii) PilA was the only protein in highly purified e-pili (12, 13). (iii) Introducing
a short peptide “tag” to the carboxyl end of PilA yields e-pili with the peptide tag (14).
(iv) Heterologous expression of PilA in Pseudomonas aeruginosa (15) or Escherichia coli
(16) yields e-pili with the same physical and conductive properties as the e-pili
recovered from G. sulfurreducens. (v) Replacing the native PilA gene with a synthetic
PilA gene with an increased or decreased aromatic amino acid abundance, respectively,
increases or decreases e-pili conductivity (4, 13, 17–21).

The G. sulfurreducens PilA is homologous to the pilin monomers that are assembled
into pili in many bacteria, but it contains only 61 amino acids (11). This is considerably
fewer amino acids than most type IV pilins, which have a longer C-terminal portion that
forms a large globular head group (5, 11). Correspondingly, G. sulfurreducens e-pili are
thinner (3-nm diameter) than most type IV pili. The truncated type IV pilin found in G.
sulfurreducens appears to be a relatively recent evolutionary event, with strong selec-
tion for this feature in Geobacter species and other members of the order Desulfu-
romonadales (5). The few microbes outside the Desulfuromonadales that have a similar
PilA appear to have acquired the gene for a homologous PilA via horizontal gene
transfer (5).

A key feature of G. sulfurreducens e-pili is a higher density of aromatic amino acids
than that found in most type IV pili that exhibit poor conductivity (2). The conductivity
of individual e-pili at pH 7 has been tuned over 6 million-fold (40 �S/cm to 277 S/cm)
simply by modifying the density of aromatic amino acids in the PilA pilin monomer (4,
19, 21). As previously reviewed in detail (2), it is generally agreed that pilins with a
higher density of aromatic amino acids assemble into pili in which the aromatic amino
acids are more tightly packed. Theoretical structural models have suggested that the
aromatic amino acids of multiple pilins align in the assembled e-pili to form a central
conduit of aromatic amino acids that could account for electron transport along the
length of G. sulfurreducens e-pili (22, 23). This is consistent with experimental evidence
for close association of aromatic amino acids and the finding that the increase in e-pili
conductivity following exposure to low pH is associated with closer packing of the
aromatic amino acids (22). A similar core of closely packed aromatic amino acids is
present in the conductive protein nanowires of Methanospirillum hungatei (discussed in
a subsequent section) for which a structure has been experimentally determined (8).

There is debate about whether aromatic amino acids pack sufficiently close to
enable �-� stacking of the aromatic rings to confer a metallic-like conductivity or that
closer packing simply enhances electron hopping between aromatics. Although there
are multiple lines of evidence consistent with the metallic-like conductivity hypothesis
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(22, 24, 25), further research is required (2). Regardless of the fine-scale conduction
mechanisms, the understanding that high aromatic amino acid density can yield highly
conductive e-pili has served as a good empirical tool for identifying pilin gene se-
quences likely to yield e-pili as discussed in a subsequent section.

There is substantial evidence that the e-pili of G. sulfurreducens and the closely
related G. metallireducens confer the capacity for extracellular electron transfer at
distance (up to ca. 20 �m) from the cells to extracellular electron acceptors such as
Fe(III) oxides (11, 26) or electrodes (27, 28) and serve as electrical connections with
other species for direct interspecies electron transfer (DIET) (29–32). Although these
initial conclusions were based on the phenotypes of pilA-deficient mutants, more
convincing is the finding that strains expressing pili with reduced aromatic amino acid
density, and thus lower conductivity, are also defective in these forms of extracellular
electron transfer (17, 18, 33).

PROTEIN NANOWIRES COMPRISED OF THE c-TYPE CYTOCHROME OmcS

Another type of G. sulfurreducens protein nanowire, filaments comprised of the
mutiheme c-type cytochrome OmcS, has been detected with cryo-electron microscopy
of outer surface protein preparations (34, 35). However, the available evidence suggests
that, under physiological conditions, OmcS filaments are rare compared to e-pili and
that OmcS filaments are not important conduits for long-range electron transport at a
distance beyond the cell surface. For example, in studies in which the gene for the G.
sulfurreducens PilA pilin monomer was modified to encode short peptide tags (14), all
of the filaments observed emanating from the cells contained the peptide tag. This
demonstrated that e-pili, not OmcS filaments, were the primary nanowire extension. In
accordance with these observations, deleting the gene for OmcS had no impact on the
recovery of conductive filaments from G. sulfurreducens (36, 37). In contrast, the
nanowires of strains of G. sulfurreducens that produce abundant OmcS, but express
pilins expected to yield poorly conductive pili, exhibit low conductivity (7, 17–19).
Studies on G. sulfurreducens conductive nanowires have routinely reported that their
diameter was 3 nm, consistent with the expected diameter of e-pili but too thin to be
OmcS filaments, which have a diameter of 4 nm (3). The finding that nanowire con-
ductivity can be tuned by modifying the aromatic amino acid content of PilA (discussed
in the previous section) clearly demonstrates that the nanowires were e-pili, not OmcS
filaments.

Unlike pilins for e-pili, which appear to be widely distributed throughout the
microbial world (see subsequent sections), OmcS homologs are found in few microbes,
including Geobacter species. For example, G. metallireducens, a close relative of G.
sulfurreducens and highly effective in extracellular electron transfer, lacks OmcS (38).
The role of OmcS in extracellular electron transfer is even limited within the species G.
sulfurreducens. For example, e-pili are essential for long-range electron transfer and
high-density current production by G. sulfurreducens biofilms, but deleting the gene for
OmcS does not inhibit current production and actually increases biofilm conductivity
(17, 18, 20, 28, 39, 40). Deleting the gene for OmcS in the DL-1 strain of G. sulfurreducens
did inhibit Fe(III) oxide reduction and DIET (29, 41), but the same OmcS gene deletion
had no impact on any form of extracellular electron transfer in G. sulfurreducens strain
KN400 (37). As previously reviewed in detail (3, 34), OmcS is found attached to the outer
surface of strain DL-1, possibly as filaments running along the surface, and may also be
associated with e-pili. Therefore, additional studies on OmcS localization and function
are of interest for better understanding extracellular electron transfer in one strain of G.
sulfurreducens (strain DL-1), but the available evidence suggests that an important role
for OmcS filaments as extensions for long-range electron transport at a distance from
the cells is unlikely.

WHEN ARE PILI e-PILI?

There are multiple methods for assessing pili conductivity. The most informative
measurements have been conducted with nanoelectrode arrays (Fig. 1A) that provide
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FIG 1 Methods for assessing the conductivity of microbial nanowires. (A) e-pilus assembled from
G. metallireducens pilin bridging the 500-nm nonconducting gap between two electrodes in a nanoelectrode
array (left) and a current-voltage plot (right) demonstrating ohmic-like conductivity of the pilus (G. met). (B)

(Continued on next page)
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information on conductivity along the length of individual pili (4, 19, 21, 40). This
approach requires advanced skills in nanofabrication and electronics and is very
labor-intensive. The few nanoelectrode array measurements that are available have
yielded rough guidelines on the conductivity required for pili to facilitate long-range
electron transport in G. sulfurreducens. A strain of G. sulfurreducens expressing a
synthetic pilin, known as Aro-5, was unable to reduce Fe(III) oxide and produced current
densities ca. 10-fold lower than G. sulfurreducens expressing wild-type pilin (17). Five of
the aromatic amino acids in the G. sulfurreducens PilA have been replaced with alanine
in the Aro-5 pilin (17). The conductivity of individual pili comprised of the Aro-5 pilin (40
�S/cm, pH 7) is more than 1,000-fold less than the conductivity of e-pili (51 mS/cm, pH
7) comprised of G. sulfurreducens PilA (19).

A more common approach to assessing the capacity of pili for long-range electron
transport (8, 9, 11, 15) is to deposit pili-containing cells, or pili sheared from cells, onto
highly oriented pyrolytic graphite (HOPG). The conductive HOPG serves as one elec-
trode for the analysis (Fig. 1B). The pili are located with atomic force microscopy (AFM)
and then the upper surface of an individual pilus is contacted with a conductive AFM
tip that serves as the other electrode. Conductance between the two electrodes
provides a qualitative indication of pili conductivity, which is suitable for comparing
different pili types. For example, with the AFM-HOPG approach, wild-type G. sulfurre-
ducens e-pili at pH 7 had a conductance (4.5 nS) that was 1,125-fold higher than the
conductance (0.004 nS) of pili comprised of the Aro-5 pilin (8). This compares well with
the 1,276-fold higher conductivity of the wild-type pili when the conductivity along the
length of wild-type and Aro-5 pili was measured with the more technically difficult
nanoelectrode array approach (19).

An even simpler approach (Fig. 1C) is to purify pili and then deposit an aqueous
suspension of pili on microelectrode arrays. The spacing between electrodes is typically
on the order of 10 to 50 �m, and thus, microelectrode arrays are much easier to
fabricate than nanoelectrode arrays (50- to 500-nm spacing between electrodes). Air
drying yields a thin (micrometer) conductive film of e-pili (24). The microelectrode array
approach is more qualitative than measurements on individual pili because the thin-
film measurements include the electrical resistance of electron transfer between pili
within the film. Accordingly, the conductance difference between wild-type and Aro-5
pilin films (34-fold) was much less than the difference found with measurements of
individual pilus conductance (1,125-fold); however, the obvious qualitative difference
between the two types of pili remained clear (7).

A microbiologist-friendly yet empirical approach to assess whether a pilin of interest
can assemble into functional e-pili (Fig. 1D) is to heterologously express the gene for
the pilin of interest in G. sulfurreducens (4, 7, 9, 18, 40). Pilins that yield pili with
conductivities similar to G. sulfurreducens e-pili enable G. sulfurreducens strains to
produce high current densities in bioelectrochemical systems that have a potentiostat-
poised anode and a continuous electron-donor feed (28). As described above for the G.
sulfurreducens strain expressing the Aro-5 pilin gene, strains expressing poorly conduc-
tive pili generate currents that are much lower than those of strains expressing e-pili (7,
9, 18, 40).

FIG 1 Legend (Continued)
Atomic force microscope (AFM) image of pili from Syntrophus aciditrophicus (designated with white arrows) on
a highly oriented pyrolytic graphite (HOPG) surface (left) and conductance measured between a conductive AFM
tip contacting the upper surface of an individual pilus and the HOPG for individual pili from S. aciditrophicus,
wild-type G. sulfurreducens, and the Aro-5 strain of S. aciditrophicus (right). (C) Transmission electron micrograph
of a thin-film of G. sulfurreducens e-pili (left) and conductance across a 15-�m electrode-to-electrode gap of thin
films of pili harvested from strains of G. sulfurreducens heterologously expressing the pilin monomer gene from
the designated microbes (right). (D) Transmission electron micrograph demonstrating heterologous expression
of a synthetic pilin gene in G. sulfurreducens (left). The wild-type pilin was modified with six histidines (His tag)
at the carboxyl end, and the His tag on the pili was visualized with immunogold labeling. Current production
of various strains of G. sulfurreducens heterologously expressing the pilin monomer gene from the designated
microbes (right). The left image in panel C is unpublished data provided by our laboratory colleague Joy Ward. The
remaining images were reproduced from previously published images with permission as follows: panel A, reference
4; panel B, reference 9; panel C, right, reference 7; panel D, left, reference 14; panel D, right, reference 7.
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e-PILI ASSEMBLED FROM TRUNCATED PilAs IN OTHER BACTERIA

To date, the pili of only a few bacteria have been examined in detail for their
potential to function as e-pili. Notably, a number of Geobacter species and other
microbes within the order Desulfuromonadales have short (ca. 60-amino-acid) pilin
monomers that are homologous to the G. sulfurreducens PilA, with a high abundance
of aromatic amino acids, and thus are expected to be highly conductive (5, 42). Of
these, only the pilin monomer of G. metallireducens has been studied in detail. Expres-
sion of the G. metallireducens pilA in G. sulfurreducens yielded e-pili 5,000-fold more
conductive than G. sulfurreducens wild-type e-pili (4) in accordance with the higher
abundance of aromatic amino acids in the G. metallireducens PilA (15.3%) versus the G.
sulfurreducens PilA (9.8%).

Flexistipes sinusarabici is one of a small number of bacteria outside the Desulfu-
romonadales that possess a truncated pilin monomer homologous to the G. sulfurre-
ducens PilA (5). The pili of F. sinusarabici could not be directly studied because this
microbe grows poorly in pure culture. However, heterologous expression of the F.
sinusarabici pilA in G. sulfurreducens demonstrated that the F. sinusarabici pilin mono-
mer assembles into e-pili (7). Examination of pili from a broader diversity of microbes
with PilAs homologous to G. sulfurreducens is desirable, but from the limited data set
available, it seems likely that microbes with truncated G. sulfurreducens PilA homologs
are likely to have the capacity to produce e-pili.

e-PILI ASSEMBLED FROM LONGER PILIN MONOMERS

It was initially considered that type IV pilin monomers longer than the G. sulfurre-
ducens PilA homologs could not assemble into e-pili because the pili assembled from
longer pilin monomers initially examined (from Shewanella oneidensis and P. aerugi-
nosa) were poorly conductive (11). The aromatic amino acid abundance in S. oneidensis
and P. aeruginosa pilins are less than 6%, which may be too low to establish the
hypothesized requirement for close packing of aromatic amino acids in the pilus
structure (22).

However, aromatic amino acid density cannot be the only consideration, as evi-
denced from studies on the pilin of Geobacter uraniireducens (40). Unlike the pilins of
most Geobacter species, the length the G. uraniireducens pilin is more typical of
canonical type IV pilins (193 amino acids), yet the aromatic amino acid density in the
pilin (9.1%) is close to that of G. sulfurreducens (9.8%) (40). Heterologous expression of
the G. uraniireducens pilin monomer gene in G. sulfurreducens yielded pili that were
much less conductive (300 �S/cm at pH 7) than G. sulfurreducens pili (50 mS/cm). This
lower conductivity is associated with multiple lines of evidence that suggest that G.
uraniireducens has adopted strategies other than e-pili for long-range electron trans-
port (40).

Further consideration suggested that not only aromatic amino acid abundance but
also the position and spacing of aromatic amino acids in the pilin could be important
(7). For example, there is a stretch of 53 amino acids without an aromatic amino acid
within the G. uraniireducens pilin. This aromatic-free gap might prevent close packing
of aromatic amino acids within the assembled pili. Heterologous expression in G.
sulfurreducens of other type IV pilins with high aromatic amino acid abundance and
smaller aromatic-free gaps yielded e-pili that appeared to be as conductive as wild-type
G. sulfurreducens e-pili and functioned well in extracellular electron transfer (7). These
included pilins from Calditerrivibrio nitroreducens (119 amino acids; 13.4% aromatic
amino acid abundance; largest aromatic-free gap, 22 amino acids) and Desulfurivibrio
alkaliphilus (182 aromatic amino acids; 11% aromatic amino acid abundance; largest
aromatic-free gap, 27 amino acids). Other characteristics of these two microbes suggest
that they may be capable of extracellular electron transfer (7).

Prospecting through the microbial world for additional e-pili will be laborious with
the methods currently available. A potential strategy for narrowing the search is to
extrapolate from previous results on the abundance and placement of aromatic amino
acids in previously described e-pilins (i.e., pilins that yield e-pili). For example, such
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criteria revealed a broad phylogenetic diversity of bacteria with genes for e-pilins in
environmental samples and enrichment cultures in which reduction of Fe(III) or Mn(III)
was expected (42). This included marine zetaproteobacteria, Nitrospinae, betaproteo-
bacteria, and Firmicutes. Further analysis of available genomes of putative electroactive
microorganisms (see Table S1 in the supplemental material) identified e-pili in an even
wider diversity of bacteria (Fig. 2), including additional genera in the Proteobacteria as
well as Actinobacteria, Bacteroidetes, Synergistetes, Aquificae, Caldiserica, Thermodesulfo-
bacteria, and Thermotogae. Additional investigation into the possibility of e-pili in these
microbes may lead to newly discovered capabilities.
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An example of the potential fruits of such labors is the study of the pili of Syntrophus
aciditrophicus (9). S. aciditrophicus has been intensively studied as a model microbe for
syntrophic bacteria that function as the electron-donating partner in H2/formate inter-
species transfer (HFIT) to methanogens (43, 44). Although the original descriptions of S.
aciditrophicus suggested that it did not produce pili and lacked genes for pilus
expression, further examination revealed genes likely to be responsible for pilus
formation as well as pili emanating from cells (9). Furthermore, the PilA sequence of S.
aciditrophicus fit the empirical criteria for e-pili (7), with aromatic amino acids in the
expected key positions as well as a high abundance of aromatic amino acids (10.9%)
and a relatively short maximum aromatic-free gap (22 amino acids). S. aciditrophicus pili
have a somewhat greater diameter (4 nm) than G. sulfurreducens pili (3 nm) but a similar
conductance (9). Heterologous expression of the S. aciditrophicus pilA in G. sulfurredu-
cens yielded e-pili with a diameter and conductance comparable to those of S.
aciditrophicus e-pili and enabled effective long-range electron transport in G. sulfurre-
ducens. The presence of e-pili suggested that DIET might be an alternative possibility
for syntrophic growth of S. aciditrophicus. DIET was experimentally confirmed (9). Many
other bacteria known to grow via HFIT also have pilin sequences that fit the criteria for
assembly into e-pili (9). This is significant because previous studies on H2 fluxes in
methanogenic environments have routinely been interpreted with the HFIT paradigm
but actually are more readily interpretable if DIET predominates (9). Thus, a complete
reevaluation of electron flux in diverse methanogenic environments seems warranted.

At one time, S. oneidensis, a microbe well-known for extracellular electron transfer,
was thought to produce conductive protein nanowires (45). However, subsequent
studies demonstrated that the proposed S. oneidensis wires were, in fact, extensions of
the outer membrane and periplasm (46). This complex mixture of lipids, cytochromes,
and other proteins forms conductive filaments when dried (47). There is no evidence
that the membrane extensions confer long-range conduction under physiological,
hydrated conditions. Furthermore, the membrane extensions cannot possibly extend
electron transport beyond the outer surface of the cell because the membrane exten-
sions are the outer cell surface. The available evidence suggests that S. oneidensis excels
at extracellular electron transfer through the release of soluble flavin electron shuttles
(48). This appears to be a common strategy for microbes that lack e-pili, including some
Geobacter species (40, 49). It is still a common mistake in the literature to suggest that
S. oneidensis produces nanowires that have functions similar to Geobacter protein
nanowires, such as mediating long-range electron transport to other microbial cells.
There is no evidence that S. oneidensis is capable of interspecies electron transfer.

e-ARCHAELLA

The archaella of archaea are homologous to the type IV pili of bacteria (6, 50), and
many archaea are capable of electron exchange with their extracellular environment.
For example, the capacity for Fe(III) oxide reduction is one of the most highly conserved
physiological characteristics of hyperthermophilic archaea (51–54), many of which
display abundant filaments. Diverse methanogens are known to reduce extracellular
electron acceptors (see references 55 and 56 for recent examples and a literature
review) or establish electrical connections with bacteria for DIET (30, 31, 57, 58). It has
been proposed that the archaella of anaerobic methanotrophic archaea (ANME) may be
electrical conduits for electron transfer to sulfate-reducing partners (59). Therefore, it
may not be surprising if highly conductive archaella (e-archaella) have evolved one or
more times.

The archaellum of Methanospirillum hungatei is the only archaellum for which
conductivity has been examined in detail (8). It was chosen for study because it is one
of the few archaella for which a structure is known (60). The conductance of individual
M. hungatei archaella emanating from cells is more than 3-fold higher than the
conductance of G. sulfurreducens e-pili (8). A tightly packed core of phenylalanines is a
likely route for conductance (8).

Analysis of the aromatic amino acids in archaellin sequences (see Table S1 in the
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supplemental material) suggests that e-archaella may be found in a broad diversity
of electroactive archaea (Fig. 2). Putative e-archaellins are present in the euryar-
chaotal orders Methanosarcinales, Thermococcales, Thermoplasmatales, Methanomicro-
biales, Methanococcales, Haloferacales, and Archaeoglobales as well as the crenarchaotal
orders Thermoproteales, Sulfolobales, and Desulfurococcales. The study of e-archaella
could be accelerated with the identification of a robust, easily grown host for heter-
ologous expression of candidate e-archaellin genes to provide a ready supply of
archaella for conductivity measurements and to enable archaellin gene modifications
to study factors conferring conductivity.

e-CABLES

The micrometer distances that electrons can be transported over e-pili and
e-archaella are remarkable compared to typical electron transport proteins, but cable
bacteria have taken long-range electron transport to a completely new dimension.
Thousands of cable bacteria can connect end-to-end to form filaments that transport
electrons over distances up to 7 cm (61–63). Cells at one end of the filament accept
electrons from sulfide found in the anaerobic zones of sediments, and the electrons are
transported through the multicellular filaments to cells in the overlying aerobic zone
that dump the electrons onto oxygen (61). The conduit for the electron transport is an
electrically conductive cable (e-cable) comprised of ca. 60 radially arranged parallel
periplasmic fibers, each with a diameter of ca. 50 nm (64). At the cell-to-cell junctions,
cartwheel-shaped structures electrically connect the individual fibers (65) to form the
e-cable.

The key conductive material in e-cables may be protein similar to the pilin mono-
mers that assemble into e-pili (10). The possibility that e-cable fibers are comprised of
cytochromes has been eliminated (64). Cable bacteria appear to lack pili on the outer
cell surface, yet the most abundant protein expressed by cable bacteria was an
aromatic-rich PilA (10). e-cable fibers may be bundles of e-pili or composites of e-pili
and carbohydrate (10). Cellular assembly of relatively thin e-pili into 60-nm-diameter
conductive fibers is conceivable based on in vitro studies that demonstrated the
potential for bundling G. sulfurreducens e-pili (3-nm diameter) into fibers with diameters
of ca. 100 nm and the fabrication of conductive composite materials from a combina-
tion of e-pili and a nonconducting polymer (66; Y.-L. Sun, B. Montz, R. Selhorst, H.-Y.
Tang, J.-X. Zhu, K. P. Nevin, T. P. Russell, S. Nonnenmann, T. Emrick, and D. R. Lovley,
submitted for publication).

Another notable connection between e-pili and cable bacteria is the microbe
Desulfurivibrio alkaliphilus. Studies on the physiology of cable bacteria are challenging
because they are not available in pure culture. D. alkaliphilus has been proposed as a
model microbe to infer cable bacteria physiology because of its close phylogenetic
relationship and metabolic similarities with cable bacteria (67). As noted in a previous
section, the pilin monomer of D. alkaliphilus assembles into e-pili when heterologously
expressed in G. sulfurreducens (7). It is likely that D. alkaliphilus employs e-pili for
extracellular electron transfer (7). As more information becomes available, it will be
interesting to determine whether there is evidence for relatives common to D. alka-
liphilus and cable bacteria evolving a strategy for bundling e-pili first into fibers and
then eventually into the sophisticated structure of intracellular e-cables.

The conductivity of individual fibers, estimated from measurements on e-cables,
was most commonly 1 to 10 S/cm, with estimates as high as 20 S/cm (64). These
conductivity values fall between the conductivities of individual G. sulfurreducens
(50 mS/cm) and G. metallireducens (277 S/cm) e-pili at pH 7. Unlike that of e-pili, the
conductivity of e-cable fibers rapidly deteriorates in air (64), limiting their useful-
ness as the conductive component for most electronic devices. However, in vivo
e-cables are an extraordinarily effective conduit for rapid microbial electron trans-
port over centimeter distances (64).
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ELECTRIFYING THE INTERNET OF THINGS WITH PROTEIN NANOWIRES

The emerging concept of ubiquitous interconnected monitoring of human health,
the environment, and mechanical/electronic devices, known as the “Internet of things,”
will be unsustainable with current electronic materials (68). Fabrication of the necessary
nanoelectronic materials typically requires energy-intensive mining and/or processing
and/or harsh chemicals. Electronic devices and the batteries that power them are often
considered disposable but are not recyclable and are often filled with toxic materials,
contributing to the mounting problem of electronic waste (68).

Microbially produced protein nanowires, sheared from cells, offer a potential “green”
solution as electronic conductors, sensing materials, and a sustainable power source.
For example, protein nanowires have many advantages over traditional nanowire
materials, such as silicon nanowires, carbon nanotubes, and conducting polymers.
Microbial fabrication of protein nanowires with inexpensive, renewable organic feed-
stocks requires 100-fold less energy than producing silicon nanowires or carbon
nanotubes (68). No toxic chemicals are required for wire production, and the final
product is biocompatible, environmentally benign, and recyclable (68). The flexibility in
modifying protein nanowire properties is unrivaled among nanowire materials. With
the simple design of new synthetic pilin genes, it has been possible to tune the
conductivity of protein nanowires by over 1 million-fold (3) and to modify protein
nanowire binding properties by decorating the outer wire surface with peptide ligands
(14). Yet, protein nanowires are remarkably robust, maintaining function even under
harsh complementary metal oxide semiconductor (CMOS)-compatible fabrication con-
ditions (66), and they are stable in bodily fluids, unlike silicon nanowires. They can be
processed into thin-film electronics (69–72), nanocables (Sun et al., submitted), and
flexible conductive composites (66). The construction of a strain of E. coli that can mass
produce protein nanowires from pilin monomers has overcome limitations associated
with the growth and genetic manipulation of G. sulfurreducens and other native strains
(16). The unique properties of microbially produced nanowires have already led to the
development of novel electronic devices with unrivaled capabilities in electronic mem-
ory (69) and sensing (70, 72) as well as a strategy for sustainably powering electronics
(71).

FUTURE MICROBIOLOGICAL DIRECTIONS

Technical challenges in growing anaerobes that express protein nanowires, coupled
with laborious nanowire purification procedures, have greatly limited progress in
developing a basic understanding of the properties of microbially produced protein
nanowires as well as the innovation of applications. However, the ease of producing
protein nanowires with an E. coli chassis that can be aerobically mass cultured and a
simplified nanowire purification procedure have overcome these limitations (16). Thus,
it can be expected that, in the near future, we will see an enhanced understanding of
electron transport mechanisms in protein nanowires as well as the design of an array
of novel synthetic pilins tailored for unique nanowire functionalization and new and
improved applications.

The study of the diversity of conductive protein filaments and their function in the
microbial world is clearly in its infancy. There are a substantial number of microbial
filaments that appear to be electrically conductive but whose composition is unknown
(73, 74). Not only is there still a poor understanding of the portion of the microbial
world that is wired together for sharing energy, but other potential functions of
conductive wires, such as signaling environmental information to microbes about
contacted surfaces, have yet to be explored (2).
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