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Abstract

Modern biological experiments are becoming increasingly complex, and designing these 

experiments to yield the greatest possible quantitative insight is an open challenge. Increasingly, 

computational models of complex stochastic biological systems are being used to understand and 

predict biological behaviors or to infer biological parameters. Such quantitative analyses can also 

help to improve experiment designs for particular goals, such as to learn more about specific 

model mechanisms or to reduce prediction errors in certain situations. A classic approach to 

experiment design is to use the Fisher information matrix (FIM), which quantifies the expected 

information a particular experiment will reveal about model parameters. The Finite State 

Projection based FIM (FSP-FIM) was recently developed to compute the FIM for discrete 

stochastic gene regulatory systems, whose complex response distributions do not satisfy standard 

assumptions of Gaussian variations. In this work, we develop the FSP-FIM analysis for a 

stochastic model of stress response genes in S. cerevisae under time-varying MAPK induction. We 

verify this FSP-FIM analysis and use it to optimize the number of cells that should be quantified at 

particular times to learn as much as possible about the model parameters. We then extend the FSP-

FIM approach to explore how different measurement times or genetic modifications help to 
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minimize uncertainty in the sensing of extracellular environments, and we experimentally validate 

the FSP-FIM to rank single-cell experiments for their abilities to minimize estimation uncertainty 

of NaCl concentrations during yeast osmotic shock. This work demonstrates the potential of 

quantitative models to not only make sense of modern biological data sets, but to close the loop 

between quantitative modeling and experimental data collection.

INTRODUCTION

The standard approach to design experiments has been to rely entirely on expert knowledge 

and intuition. However, as experimental investigations become more complex and seek to 

examine systems with more subtle non-linear interactions, it becomes much harder to 

improve experimental designs using intuition alone. This issue has become especially 

relevant in modern single-cell-single-molecule investigations of gene regulatory processes. 

Performing such powerful, yet complicated experiments involves the selection from among a 

large number of possible experimental designs, and it is often not clear which designs will 

provide the most relevant information. A systematic approach to solve this problem is 

model-driven experiment design, in which one combines existing knowledge or experience 

to form an assumed (and partially incorrect) mathematical model of the system to estimate 

and optimize the value of potential experimental settings. In practice, such preliminary 

models would be defined by existing data taken in simpler or more general settings such as 

inexpensive bulk experiments, or would be estimated from literature values conducted on 

similar genes, pathways or organisms. When parameter or model structures are uncertain 

these could be described according to a prior distribution, and experiments would need to be 

selected according to which performs best on average across the many possible model/

parameter combinations.

In recent years, model-driven experiment design has gained traction for biological models of 

gene expression, whether in the Bayesian setting [1] or using Fisher information for 

deterministic models [2], and even in the stochastic, single-cell setting [3–7]. Despite the 

promise and active development of model-driven experiment design from the theoretical 

perspective, more general, yet biologically-inspired approaches are needed to make these 

methods suitable for the experimental community at large. In this work, we apply model-

driven experiment design to an experimentally validated model of stochastic, time-varying 

High Osmolarity Glycerol (HOG) Mitogen Activated Protein Kinase (MAPK) induction of 

transcription during osmotic stress response in yeast [8–10]. To demonstrate a concrete and 

practical application of model-driven experiment design, we find the optimal measurement 
schedule (i.e., when measurements ought to be taken) and the appropriate number of 
individual cells to be measured at each time point.

In our computational analyses, we consider the experimental technique of single-mRNA 

Fluorescence in situ Hybridization (smFISH), where specific fluorescent oligonucleotide 

probes are hybridized to mRNA of interest in fixed cells [11, 12]. Cells are then imaged, and 

the mRNA abundance in each cell are counted, either by hand or using automated software 

such as [13]. Such counting can be a cumbersome process, but little thought has been given 

typically to how many cells should be measured and analyzed at each time. Furthermore, 
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when a dynamic response is under investigation, the specific times at which measurements 

should be taken (i.e., the times after induction at which cells should be fixed and analyzed) is 

also unclear. In this work, we use the newly developed finite state projection based Fisher 

information matrix (FSP-FIM, [6]) to optimize these experimental quantities for osmotic 

stress response genes in yeast.

The first part of our current study introduces a discrete stochastic model to analyze time-

varying MAPK-induced gene expression response in yeast and then demonstrates the use of 

FSP based Fisher information to optimize experiments to minimize the uncertainty in model 

parameters. In the second part of this study, we expand upon this result to find and 

experimentally verify the optimal smFISH measurement times and cell numbers to minimize 

uncertainty about unknown environmental inputs (e.g., salt concentrations) to which the 

cells are subjected. In this way, we are presenting a new methodology by which one can 

optimally examine behaviors of natural cells to obtain accurate estimations of environmental 

changes.

BACKGROUND

Gene regulation is the process by which small molecules, chromatin regulators, and general 

and gene-specific transcription factors interact to regulate the transcription of DNA into 

RNA and the translation of mRNA into proteins. Even within populations of genetically 

identical cells, these single-molecule processes are stochastic and give rise to cell-to-cell 

variability in gene expression levels. Adequate description of such variable responses can 

only be achieved through the use of stochastic computational models [14–17]. In the 

following subsections, we first introduce a non-equilibrium discrete stochastic model of 

HOG1-MAPK-induced gene expression, and we then discuss how this model can be 

analyzed and compared to data using finite state project analyses. All analysis codes are 

available at https://github.com/MunskyGroup/Fox_Complexity_2020.

Discrete stochastic model of HOG1-MAPK-induced gene expression.

To motivate and demonstrate our new approach, we focus our examination on the dynamics 

of the HOG1-MAPK pathway in yeast, which is a model system to study osmotic stress 

driven dynamics of signal transduction and gene regulation in single cells [18–23]. Discrete 

stochastic models of HOG1-MAPK activated transcription have been used successfully to 

predict the variability in adaptive transcription responses across yeast cell populations [9, 10, 

24]. In particular, the authors in [9] used smFISH data to fit and cross-validate a number of 

different potential models with different numbers of gene states and time varying 

parameters. They found that dynamics of two stress response genes, STL1 and CTT1, could 

each be described accurately by the model depicted in Fig. 1a.

In brief, the model [9] consists of transitions between four different gene states (S1, S2, S3, 

and S4). The probability of a transition from the ith to the jth gene state in the infinitesimal 

time dt is given by the propensity function, kijdt. Most of the rates {kij} are constant in time, 

except for the transition from S2 to S1, which is controlled by the time-varying level of the 

HOG1-MAPK signal in the nucleus, f(t). The resulting time-varying rate k21 is defined using 

a linear threshold function,
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k21(t) = max[0, α − βf(t)], (1)

where α and β set the threshold for k21(t) activation/deactivation. The function f(t) was 

calibrated at several NaCl concentrations by fitting the HOG1-MAPK nuclear localization 

signals as measured using a yellow fluorescence protein reporter [10]. Figure 1b (left) shows 

f(t) for osmotic stress responses to 0.2M and 0.4M NaCl, and Fig. 1b (right) shows the 

corresponding values of k21(t). In addition to the state transition rates, each ith state also has 

a corresponding mRNA transcription rate, kri. All mRNA molecules degrade with rate γ, 

independent of gene state. Further descriptions and validations of this model are given in 

Supplementary Note 1 and in [9, 10, 24]. All experimentally determined parameters for the 

STL1 and CTT1 transcription regulation models are provided in Supplemental Table S1, and 

experimentally determined parameters for the HOG1-MAPK Signal Model are listed in 

Supplemental Table S2 [10].

The Finite State Projection analysis of stochastic gene expression

To analyze the model described above, we apply the chemical master equation (CME) 

framework of stochastic chemical kinetics [25]. Combining the time-varying and constant 

state transition rates {kij}, transcription rates {kri}, and degradation rate γ from above, the 

CME can be written in matrix form as a linear ordinary differential equation, dp
dt = A(t)p,

where the time-varying matrix A(t) is known as the infinitesimal generator (See 

Supplementary Note 1). The CME has been the workhorse of stochastic modeling of gene 

expression, and it is usually analyzed using simulated sample paths of its solution via the 

stochastic simulation algorithm [26] or with moment approximations [8, 27]. Alternatively, 

the CME can also be solved with guaranteed errors using the FSP approach [28, 29], which 

reduces the full CME only to describe the flow of probability among the most likely 

observable states of the system. Details of the FSP approach to solving chemical kinetic 

systems are provided in Supplementary Note 1. Application of the FSP analysis to the model 

in Fig. 1a with time varying rates k21 from Fig. 1b predicts time-evolving probability 

distributions as shown in Fig. 1c [10].

Likelihood of smFISH data for FSP models

Recently, it has come to light that for some systems, it is critical to consider the full 

distribution of biomolecules across cellular populations when fitting CME models [6, 10]. 

To match CME model solutions to single-cell smFISH data, one needs to compute and 

maximize the likelihood of the data given the CME model [9, 10, 24, 30]. Fortunately, the 

FSP approach allows for computation of the likelihood with guaranteed accuracy bounds 

[28]. We assume that measurements at each time point t ≡ [t1, t2, …, tNt] are independent, as 

justified by the fact that fixation of cells for measurement precludes temporal cell-to-cell 

correlations. Measurements of Nc cells can be concatenated into a matrix 

Dt ≡ [d1, d2, …, dNc]t of the observable mRNA species at each measurement time t.

The likelihood of making the independent observations for all Nc measured cells is the 

product of the probabilities of observing each cell’s measured state. For most gene 
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expression models, however, states are only partially observable, and we define the observed 

state xiL as the marginalization (or lumping) over all full states {xj}i that are 

indistinguishable from xi based on the observation. For example, the model of STL1 
transcription consists of four gene states (S1-S4, shown in Fig. 1a), which are unobserved, 

and the measured number of mRNA, which is observed. If we let index i denote the number 

of mRNA, then the observed state xiL would lump together the full states (S1, i), (S2, i), (S3, 

i), and (S4, i). We next define yi as the number of experimental cells that match xiL at time t. 

Under these definitions, the likelihood of the observed data (and its logarithm) given the 

model can be written:

l(D; θ) = M ∏
t = t1

tNt
∏

i ∈ JD
p xiL; t, θ

yi

logl(D; θ) = ∑
t = t1

tNt
∑

i ∈ JD
yilog p xiL; t, θ + logM,

(2)

where JD is the set of states observed in the data, M is a combinatorial prefactor (i.e., from 

a multinomial distribution) that comes from the arbitrary reordering of measured data, and 

p xiL; t, θ  is the marginalized probability mass of the observable species,

p(xiL; t, θ) = ∑
xj ∈ xiL

p(xj; t, θ) .

The vector of model parameters is denoted by θ = θ1, θ2, … . Neglecting the term log M, 

which is independent of the model, the summation in Eq. 2 can be rewritten as a product y 

log pL, where y ≡ y0, y1, …  is the vector of the binned data, and pL = p x0
L , p x1

L , … T
 is 

the corresponding marginalized probability mass vector. One may then maximize Eq. 2 with 

respect to θ to find the maximum likelihood estimate (MLE) of the parameters, θ, which 

will vary depending on each new set of experimental data. We next demonstrate how this 

likelihood function and the FSP model of the HOG1-MAPK induced gene expression 

system can be used to design optimal smFISH experiments using the FSP-based Fisher 

information matrix [6].

RESULTS

The Finite State Projection based Fisher information for models of signal-activated 
stochastic gene expression.

The Fisher information matrix (FIM), is a common tool in engineering and statistics to 

estimate parameter uncertainties prior to collecting data, and which allows one to find 

experimental settings that can make these uncertainties as small as possible [3, 4, 31–34]. 

Recently, it has been applied to biological systems to estimate kinetic rate parameters in 
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stochastic gene expression systems [3–6, 35]. In general, the FIM for a single measurement 

is defined:

ℐ(θ) = E ∇θlogp(θ) T ∇θlogp(θ) , (3)

where the vector log p(θ) contains the log-probabilities of each potential observation, and 

the expectation is taken over the probability distribution of states p(θ) assuming the specific 

parameter set θ. As the number of measurements, Nc, is increased such that maximum 

likelihood estimates (MLE) of parameters are unbiased, the distribution of MLE estimates is 

known to approach a multivariate Gaussian distribution with a covariance given by the 

inverse of the FIM, i.e.,

Nc(θ − θ*) dist N(0, ℐ(θ*)−1) . (4)

In [6], we developed the FSP-based Fisher information matrix (FSP-FIM), which allows one 

to use the FSP solution p(t), and its sensitivity sθj ≡ dp
dθj

, to find the FIM for stochastic gene 

expression systems. For a general FSP model, the dynamics of the sensitivity to each jth 

kinetic parameter dp
dθj

 can be calculated according to:

d
dt

p
sθj

=
A(t) 0

Aθj(t) A(t)
p

sθj
, (5)

where Aθj = ∂A
∂θj

. Solving Eq. 5 requires integrating a coupled set of ODEs that is twice as 

large as the original FSP system. The FSP-FIM at a single time t is then given by:

F(θ, t)j, k = ∑
i

1
p xi; t, θ sθj

i (t)sθk
i (t), (6)

where the summation is taken over all states {xi} included in the FSP analysis (or over all 

observed states {xiL} in the case of lumped observations). We note that the FSP computation 

of the FIM should be computationally tractable for problems for which the FSP solution 

itself is tractable. However, since the size of the FSP sensitivity matrix (Eq. 5) scales 

exponentially with the number of species, practical applications of the presented formulation 

of the FSP-FIM are currently restricted to models that have, or can be reduced to have, three 

or fewer distinct chemical species.

The FIM for a sequence of measurements taken independently (e.g., for smFISH data) at 

times t = [t1, t2, …, tNt] can be calculated as the sum across the measurement times:

ℐ(θ, t, c) = ∑
l = 1

Nt
clF θ, t = tl , (7)
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where c = [c1, c2, …, cNt] is the number of cells measured at each lth measurement time. For 

smFISH experiments, the vector c plays an important role in the design of the study. By 

optimizing over all vectors c that sum to Ntotal, one can find how many cells should be 

measured at each time point and which time points should be skipped entirely, (i.e., cl = 0).

In the next subsection, we verify the FSP-FIM for this stochastic model with a time-varying 

parameter, and later find the optimal c for STL1 mRNA in yeast cells.

The FSP-FIM can quantify experimental information for stochastic gene expression under 
time-varying inputs

Our work in [6] was limited to models of stochastic gene expression that had piecewise 

constant reaction rates. Here, we extend this to time-varying reaction rates that affect the 

promoter switching in the system and which lead to time-varying A(t) in Eq. 5. For example, 

in the model depicted in Fig. 1a, the temporal addition of osmotic shock causes nuclear 

translocation of HOG1-MAPK, according to the time-varying function in Eq. 1.

Model parameters simultaneously fit to experimentally measured 0.2M and 0.4M STL1 
mRNA were adopted from [10] and used as a reference set of parameters (yellow dots in 

Fig. 2a and S1), which we define as θ*. These reference parameters were used to generate 

50 unique and independent simulated data sets, and each nth simulated data set was fit to 

find the parameter set, θn, that maximizes the likelihood for that simulated data set. This 

process was repeated for two different experiment designs, including the original intuitive 

design from [10] (results shown in Fig. 2) and an optimized design discussed below (results 

shown in Fig. S1). To ease the computational burden of this fitting, the four parameters with 

the smallest sensitivities and largest uncertainties (i.e., those parameters that had the least 

effect on the model predictions and which were most difficult to identify) were fixed at their 

baseline values. The resulting MLE estimates for the remaining five parameters were 

collected into a set of {θn} and are shown as yellow dots in Figs. 2 and S1. Using the 

asymptotic normality of the maximum likelihood estimator and its relationship to the FIM 

(Eq. 4), we then compared the 95% confidence intervals (CIs) of the inverse of the Fisher 

information (i.e., the Cramér Rao bound) to those of the MLE estimates (compare the purple 

and orange ellipses in Figs. 2a and S1a). We also compared the eigenvalues of the inverse of 

the Fisher information, {vi}, to the correspondingly ranked eigenvalues of the covariance 

matrix of MLE estimates, ΣMLE, in Figs. 2b and S1b. For further validation, we noted that 

the principle directions of the ellipses in Figs. 2a and S1a also match for the FIM and MLE 

analyses, as quantified by the angle between the paired FIM and ΣMLE eigenvectors (Figs. 

2b and S1b). For comparison, the angles between rank-matched eigenvectors of the FIM and 

ΣMLE were all less than 12°, whereas non rank-matched eigenvectors were all greater than 

79.9°. With the FSP-FIM verified for the HOG1-MAPK induced gene expression model, we 

next explore how the FSP-FIM can be used to optimally allocate the number of cells to 

measure at each time after osmotic shock.
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Designing optimal measurements for the HOG1-MAPK pathway in S. cerevisae

To explore the use of the FSP-FIM for experiment design in a realistic context of MAPK-

activated gene expression, we again utilize simulated time-course smFISH data for the 

osmotic stress response in yeast.

We start with a known set of underlying model parameters that were taken from 

simultaneous fits to 0.2M and 0.4M data in [10] (non-spatial model) to establish a baseline 

parameter set that is experimentally realistic. These parameters are then used to optimize the 

allocation of measurements at different time points t = [1, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 

40, 45, 50, 55] minutes after NaCl induction. Specifically, we ask what fraction of the total 

number of cells should be measured at each time to maximize the information about a 

specific subset of important model parameters. We use a specific experiment design 

objective criteria referred to as Ds-optimality, which corresponds to minimizing the expected 

volume of the parameter space uncertainty for the specific parameters of interest [35], and 

which is found by maximizing the product of the eigenvalues of the FIM for those same 

parameters.

Mathematically, our goal is to find the optimal cell measurement allocation,

copt = argmax
c

ℐ(c; θ)
Ds

such that ∑
l = 1

Nt
cl = 1, (8)

where cl is the fraction of total measurements to be allocated at t = tl, and the metric 

|ℐ(c; θ)|Ds refers to the product of the eigenvalues for the total FIM (Eq. 7). The fraction of 

cells to be measured at each time point, c, was optimized using a greedy search, in which 

single-cell measurements were chosen one at a time according to which time point predicted 

the greatest improvement in the optimization criteria (see Supplementary Note 3 for more 

information).

To illustrate our approach, we first allocated cell measurements according to Ds-optimality 

as found through this greedy search. Figure 3 shows the optimal fraction of cells to be 

measured at each time following a 0.2M NaCl input and compares these fractions to the 

experimentally measured number of cells from [10]. While each available time point was 

allocated a non-zero fraction of measurements, three time points at t = [10,15, 30] minutes 

were vastly more informative than the other potential time points. To verify this result, we 

simulated 50 data sets of 1,000 cells each and found the MLE estimates for each sub-

sampled data set. We compared the spread of these MLE estimates to the inverse of the 

optimized FIM, shown in Fig. S1.

Comparing Figs. S1 with Fig. 2 illustrates the increase in information of the optimal 0.2M 

experiment compared to the intuitively designed experiment from [10]. In addition to 

providing much higher Fisher information, the optimal experiment requires measurement of 

only three time points compared to the 16 time points that were measured in the original 

experiment. Furthermore, we note that the FIM prediction of the MLE uncertainty is more 

accurate for the simpler optimal design, which is likely related to our observation that MLE 
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estimates converge more easily for the optimized experiment design than they do for the 

original intuitive design.

Figure 4 next compares the Ds-optimality criteria for the optimal (solid horizontal lines) and 

intuitive ([10], dashed horizontal lines) experiment designs to 1,000 randomly designed 

experiments for the 0.2M (black) and 0.4M (gray) conditions. To generate these random 

experiment designs, we selected a random subset of the measurement times, and allocated 

the total 1,000 cells among chosen time points using a multinomial distribution with equal 

probability for each time point. Figure 4a shows that the intuitive experiment is more 

informative than most random experiments, but is still substantially less informative than the 

optimal experiment.

In many practical applications, a scientist would be unlikely to have precise a priori 
knowledge of model parameters prior to conducting experiments. Rather, they would have 

some estimate of these parameters, such as rough knowledge of appropriate time scales or 

existing data from another type of experiment. Such estimates could come from previous 

analyses of the system response to simpler experimental conditions, for measurements taken 

on slightly different cell lines or organisms, or considering results from different genes in 

related regulatory pathways. To explore the importance of knowing the exact process 

parameters or input dynamics prior to designing the experiment, we asked how well an 

experiment design optimized using parameters from one gene at a given level osmotic shock 

(e.g., STL1 at 0.2M NaCl) would do to estimate parameters for another gene in a different 

osmotic shock condition (e.g., CTT1 at 0.4M NaCl). Figure 4b demonstrates the impact of 

such mismatched experiment designs, where each row corresponds to a different intuitive or 

optimized experiment design (i.e., a specific allocation of cells to be measured at each time), 

and each column corresponds to a specific gene and specific osmotic shock condition to 

which that design could be applied. In all cases, the much simpler FIM-based optimal 

experiment designs perform as well or better than the more difficult intuitive designs, even 

when these FIM designs were computed assuming different environmental conditions and 

assuming genes whose parameters differ considerably from one another (see Supplemental 

Tables I and II for parameter sets). In other words, these results suggest that if one can 

compute a simple yet optimal experiment design based on one well-analyzed gene in a 

previously studied environmental condition, then that design may be equally valuable when 

applied to student a new, but related gene in a similar, yet slightly different context.

Using the FSP-FIM to design optimal biosensor measurements

Thus far, and throughout our previous work in [6], we have sought to find the optimal set of 

experiments to reduce uncertainty in the estimates of model parameters. In this section, we 

discuss how the FSP-FIM allows for the optimization of experiment designs to address a 

more general problem of inferring environmental variables from cellular responses. Toward 

this end, we assume a known and parametrized model (i.e., the model defined above, which 

was identified previously in [10]), but which is now subject to unknown environmental 

influences. We explore what would be the optimal experimental measurements to take to 

characterize these influences. Specifically, we ask how many cells should be measured using 

smFISH, and at what times, to determine the specific concentration of NaCl to which the 
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cells have been subjected – or, equivalently, we ask what experiments would be best suited 

to measure the effective stress induction level caused by addition of an unknown solution to 

the cells.

Recall from above that in the HOG1-MAPK transcription model, extracellular osmolarity 

ultimately affects stress response gene transcription levels through the time-varying 

parameter k21(t) (Eq. 1) as illustrated in Fig. 1b for 0.2M and 0.4M salt concentrations. 

Higher salt concentrations delay the time at which k21(t) returns to its nonzero value. The 

function in Eq. 1 can be coarsely approximated by the sum of three Heaviside step functions, 

u t − τi  as:

k21(t) = k21
0 u(t) − u t − τ1 + u t − τ2 , (9)

where τ1 is the fixed delay of the time it takes for nuclear kinase levels to reach the k21 

deactivation threshold (about 1 minute or less, [9, 10]), and τ2 is the variable time it takes for 

the nuclear kinase to drop back below that threshold. In practice, the threshold-crossing 

time, τ2, should be directly related to the salt concentration experienced by the cell under 

reasonable salinity levels. This relationship is shown in Fig. 1b and 5b, where a 0.2M NaCl 

input exhibits a shorter τ2 than does a 0.4M input. For our analyses, we assume a prior 

uncertainty such that time τ2 can be any value uniformly distributed between τ2
min = 6 and 

τ2
max = 31 minutes, and our goal is to find the experiment that best reduces the posterior 

uncertainty in τ2 (and therefore could provide an estimate for the concentration of NaCl).

To reformulate the FSP-FIM to estimate uncertainty in τ2 given our model, the first step is to 

compute the sensitivity of the distribution of mRNA abundance to changes in the variable τ2 

using Eq. 5, in which Aθj(t) is replaced with Aτ2(t) = ∂A
∂τ2

 as follows:

d
dt

p
sτ2

=
A(t) 0

Aτ2(t) A(t)
p

sτ2
. (10)

As k21(t) is the only parameter in A that depends explicitly on τ2, all entries of ∂A
∂τ2

 are zero 

except for those which depend on k21(t), and

Aτ2(t) = ∂A
∂k21

∂k21
∂τ2

= Ak21k21
0 δ τ2 , (11)

and therefore Aτ2 = ∂A
∂τ2

 is non-zero only at t = τ2. Using this fact, the equation for the 

sensitivity dynamics is uncoupled from the FSP dynamics for t ≠ τ2, and can be written 

simply as:

d
dtsτ2 =

0 for t < τ2 with s(0) = 0

A(t)sτ2 for t > τ2 with sτ2 τ2 = k21
0 Ak21p τ2

. (12)
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If the Fisher information at each measurement time is written into a vector 

f = [f1, f2, …, fNt] (noting that the Fisher information at any time tl is the scalar quantity, fl), 

and the number of measurements per time point is the vector, c = [c1, c2, …, cNt], then the 

total information for a given value of τ2 can be computed as the dot product of these two 

vectors,

ℐ τ2 = ∑
l = 1

Nt
clfl = cTf . (13)

Our goal is to find an experiment that is optimal to determine the value of τ2, given an 

assumed prior that τ2 is sampled from a uniform distribution between τ2
min and τ2

max . To find 

the experiment copt that will reduce our posterior uncertainty in τ2, we integrate the inverse 

of the FIM in Eq. 13 over the prior uncertainty in τ2,

copt = argmin
c, ∑cl = 1

∫τ2
min
τ2
max 1

τ2
max − τ2

minℐ−1 c; τ2 = τ, θ dτ (14)

= argmin
c, Σcl = 1∫τ2

min
τ2
max

ℐ−1 c; τ2 = τ, θ dτ . (15)

For later convenience, we define the integral in Eq. 14 (i.e., the objective function of the 

minimization) by the symbol J, which corresponds to the expected uncertainty about the 

value of τ2 for a given c.

Next, we apply the greedy search from above to solve the minimization problem in Eq. 15 to 

find the experiment design copt that minimizes the estimation error of τ2. Figure 6 shows 

examples of seven different experiments to accomplish this task, ranked according to the 

FSP-FIM value J from most informative (top left) to least informative (bottom left), but all 

using the same number of measured cells. For each experiment, the FSP-FIM was used to 

estimate the posterior uncertainty (i.e., expected standard deviation) in the estimation of τ2, 

which is shown by the orange bars in Fig. 6. To verify these estimates, we then chose 64 

uniformly spaced values of τ2, which we denote as the set {τ2
true }, and for each τ2

true , we 

simulated 50 random data sets of 1,000 cells distributed according to the specified 

experiment designs. For each of the 64×50 simulated data sets, we then determined the value 

τ2
MLE between τ2

min and τ2
max that maximized the likelihood of the simulated data according 

to Eq. 2. The root mean squared estimate (RMSE) error over all random values of τ2
true  and 

estimates, (τ2
MLE − τ2

true )2 , was then computed for each of the six different experiment 

designs. Figure 6 shows that the FIM-based estimation of uncertainty and the actual MLE-

based uncertainty are in excellent agreement for all experiments (compare purple and orange 

bars). Moreover, it is clear that the optimal design selected by the FIM-analysis performed 
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much better to estimate τ2 than did the uniform or random experimental designs. A slightly 

simplified design, which uses the same time points as the optimal, but with equal numbers of 

measurements at each time, performed nearly as well as the optimal design.

The set of experiment designs shown in Fig. 6 includes the best design that only uses STL1 
(second from top), the best design that uses only CTT1 (fourth from top), and the best 

designs that uses some cells with CTT1 and some with STL1 (top design). To find the best 

experiment design for measurement of two different genes, we assumed that at each time, 

either STL1 mRNA or CTT1 mRNA (but not both) could be measured, corresponding to 

using smFISH oligonucleotides for either STL1 or CTT1. To determine which gene should 

be measured at each time, we compute the Fisher information for CTT1 and STL1 for every 

measurement time and averaged this value over the range of τ2. For each measurement time 

tl, the gene is selected that has the higher average Fisher information for τ2. The number of 

cells per measurement time were then optimized as before, except the choice to measure 

CTT1 or STL1 was based on which mRNA had the larger Fisher information (Eq. 13) at that 

specific point in time. The best STL1-only experiment design was found to yield uncertainty 

of 10.5 seconds (standard deviation); the best CTT1-only experiment was found to yield an 

uncertainty of 15.2 seconds and the best mixed STL1/CTT1 experiment design was found to 

yield an uncertainty of 10.4 seconds. In other words, for this case the STL1 gene was found 

to be much more informative of the environmental condition than was CTT1, and the use of 

both STL1 and CTT1 provides only minimal improvement beyond the use of STL1 alone. 

We note that although measurement times in the optimized experiment design were 

restricted to a resolution of five minutes or more, the value of τ2 could be estimated with an 

error of only 10 seconds, corresponding to a roughly 30-fold improvement of temporal 

resolution beyond the allowable sampling rate.

Experimental validation for FSP-FIM based designs of biosensor measurements.

To experimentally validate our FSP-FIM based approach to design optimal measurement 

times, we next examined experimental smFISH data taken for the STL1 and CTT1 genes at 

different times following yeast osmotic shock [10]. These data include a total of 535–4808 

cells measured at each of 16 time points following osmotic shocks of 0.2M or 0.4M NaCl. 

We asked how well could we identify the concentration of the osmotic shock from the 

experimental data using only 75 individual cells per experiment. We again proposed the six 

different potential experiments depicted in Fig. 6, including: the optimal STL1 and CTT1 
design, the optimal STL1 design, the simplified STL1 design with 15 cells for each of the 

optimal five time points, the optimal CTT1 design, the uniform STL1 design, and the 

random STL1 design. For each design, we created 1,000 different experimental replica 

datasets, each consisting of 100 cells randomly chosen from the original data. For each 

replica data set, we then used the CME model (Supplementary Note 1) with a parametrized 

form of the HOG1-MAPK nuclear localization signal (Supplementary Note 2) to find the 

NaCl concentration that maximizes the likelihood of the data given the model.

Figure 7 shows the resulting histograms for the estimated NaCl concentrations for each of 

the six experiment designs, when the cells were actually subjected to experimental osmotic 

shocks of 0.2M NaCl (Fig. 7a) or 0.4M NaCl (Fig. 7c). From Figures 7a,c, it is clear that the 
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FSP analysis provides an accurate estimate for the level of the osmotic shock input using a 

relatively small number of cells, despite the fact that producing such estimates was not an 

intended use of the model in its original formulation or parameter inference [9, 10]. Figures 

7b,d show the uncertainty (standard deviation) in the experimental estimate of NaCl 

concentration (light bars), when cells are collected according to the six specific experiment 

designs, and compares these results to the FSP-FIM uncertainty estimates (dark bars) using 

the simplified step input function (Eq. 9). With the exception of the sub-optimal CTT1-only 

design, the close matches between the relative trends of the variance in experimental 

estimation of NaCl and the variance predicted by the FSP-FIM analysis with the 

approximated step-function input gives further experimental validation that the FSP-FIM 

approach can be used to choose more informative experiment designs, even in cases where 

the FSP analyses uses inexact assumptions for model kinetics. The single discrepancy in 

trends led us to more closely examine the model and experimental data for CTT1 expression 

at the 35 minute time point that dominates the CTT1-only design. By examining 

Supplemental Figure S7 from [10], we found that this specific combination of CTT1 at 35 

minutes following 0.4M NaCl osmotic shock showed a greater discrepancy between model 

and data than any of the other 63 combinations of 16 times, two genes and two conditions, 

yet it is unclear if that difference was an artifact of the experiment or an actual transient 

effect that only affected that specific combination of gene, time, and environmental 

condition.

DISCUSSION

The methods developed in this work present a principled, model-driven approach to allocate 

how many snapshot single-cell measurements should be taken at each time during analysis 

of a time-varying stochastic gene regulation system. We demonstrate and verify these 

theories on a well-established model of osmotic stress response in yeast cells, which is 

activated upon the nuclear localization of phosphorylated HOG1 [9, 10]. For this system, we 

showed how to optimally allocate the number of cells measured at each time so as to 

maximize the information about a subset of model parameters. We found that the optimal 

experiment design to estimate model parameters for the STL1 gene only required three time 

points. Moreover, these three time points (t = [10, 15, 30] minutes, highlighted by blue in 

Fig. 3b) are at biologically meaningful time points. At t =10 and 15 minutes, the system is 

increasing to maximal expression, and the probability to measure a cell with elevated mRNA 

content is high, which helps reduce uncertainty about the parameters in the model that 

control maximal expression. Similarly, at the final experiment time of t = 30 minutes, the 

system is starting to shut down gene expression, and therefore this time is valuable to learn 

about the time scale of deactivation in the system as well as the mRNA degradation rate. 

These effects are clearly illustrated in Fig. 3a, which shows that times t =10 and t =15 

minutes provide the most information about parameters k12, k23 and k43, whereas 

measurements at t = 30 minutes provide the most information about γ. Because γ is the 

easiest parameter to estimate (e.g., its information is greater), not as many cells are needed at 

t = 30 minutes to constrain that parameter. Similarly, because kr2 is the most difficult 

parameter to estimate (e.g., it has the lowest information across all experiments), and 

because t =10 minutes is one of the few time points to provide information about kr2, the 
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optimal experimental design selects a large number of cells at the time t = 10 minutes. This 

analysis demonstrates that the optimal experiment design can change depending upon which 

parameters are most important to determine (e.g., γ or kr2 in this case), a fact that we expect 

will be important to consider in future experiment designs.

Because we constrained all potential experiment designs to be within the subset of 

experiments performed in our previous work [10], we are able to compare the information of 

optimal experiment designs to intuitive designs that have actually been performed. We found 

that while the intuitive experiments were almost always better than could be expected by 

random chance, they still provided several orders of magnitude lower Fisher information 

than would be possible with optimal experiments (Fig. 4a). Moreover, in our analyses, we 

found that optimal designs could require far fewer time points than those designed by 

intuition (e.g., only three time points were needed in Fig. 3), and therefore these designs can 

be much easier and less expensive to conduct. We also found that utility of optimal 

experiment designs could be relatively insensitive to variation in the experimental conditions 

or the specific model parameters used for the experiment design. For example, we found that 

experiments optimized for one gene at one level of osmotic shock were still at least as good–

and in most cases better–than intuitive designs, even when conducted using different genes 

and at a different level of osmotic shock (Fig. 4b). In practice, this fact would allow for 

effective experiment designs despite inaccurate prior assumptions.

In addition to suggesting optimal experiments to identify model parameters, we showed that 

the FSP approach could be used to infer parameters of fluctuating extracellular environments 

from single-cell data and that the FSP-FIM combined with an existing model could be used 

to design optimal experiments to improve this inference (Figs. 5 and 6). We experimentally 

verified this potential by examining many small sets of single-cell smFISH measurements 

for different genes and different measurement times, and we showed that an FSP-FIM 

analysis could correctly rank which experiment designs would give the best estimates of 

osmotic shock environmental conditions. Along a very similar line of reasoning, one can 

also adapt the FSP-FIM analysis to learn what biological design parameters would be 

optimal to reduce uncertainty in the estimate of important environmental variables. For 

example, Fig. 8 shows the expected uncertainty in τ2 as a function of the degradation rate of 

the STL1 gene assuming that 50 cells could be measured at each experimental measurement 

time t = [1, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55] minutes using the smFISH 

approach. We found that the best choice for STL1 degradation rate to most accurately 

determine the extracellular fluctuations would be 2.4 × 10−3 mRNA/min, which is about half 

of the experimentally determined value of 5.3 × 10−3 ± 5.9 × 10−5 from [10]. This result is 

consistent with our earlier finding that the faster degrading STL1 mRNA is a much better 

determinant of the HOG1 dynamics than is the slower-degrading CTT1 mRNA, and 

suggests that other less stable mRNA could be more effective still. We expect that similar, 

future applications of the FSP-based Fisher information will be valuable in other systems 

and synthetic biology contexts where scientists seek to explore how different cellular 

properties affect the transmission of information between cells or from cells to human 

observers. Indeed, similar ideas have been explored recently using classical information 

theory in [36–39], and recent work in [7, 40] has noted the close relationship between Fisher 

information and the channel capacity of biochemical signaling networks.
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We expect that computing optimal experiment designs for time-varying stochastic gene 

expression will create opportunities that could extend well beyond the examples presented in 

this work. Modern experimental systems are making it much easier for scientists and 

engineers to precisely perturb cellular environments using chemical induction [41–43] or 

optogenetic control [44–46]. Many such experiments involve stochastic bursting behaviors at 

the mRNA or protein level [8–10, 45], and precise optimal experiment design will be crucial 

to understand the properties of stochastic variations in such systems. A related field that is 

also likely to benefit from such approaches is biomolecular image processing and feedback 

control, for which one may need to decide in real time which measurements to make and in 

what conditions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. Stochastic modeling of osmotic stress response genes in yeast.
(a) Four-state model of gene expression, where each state transcribes mRNA at a different 

transcription rate, but each mRNA degrades at a single rate γ. (b) The effect of measured 

MAPK nuclear localization (depicted as red dots in the cell) (left) on the the rate of 

switching from gene activation state S2 to S1 (right) under 0.2M or 0.4M NaCl osmotic 

stress. The time at which k21 turns off is denoted with τ1 and is independent of the NaCl 

level. The time at which k23 turns back on is given by τ2
NaCl depending on the level of NaCl. 

(c) Time evolution of the STL1 mRNA in response to the 0.2M and 0.4M NaCl stress. 

Model and parameters from [10] and summarized in Supplementary Notes I and II and 

Supplementary Tables I and II.
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FIG. 2. Verification of the FSP-FIM for the time-varying HOG1-MAPK model.
(a) Marginal parameter histograms (top panels) and joint scatter plots (gray dots) for the 

MLE parameter estimates from 50 simulated data sets and for a subset of model parameters. 

All parameters are shown in logarithmic scale. The ellipses show the 95% CI for the inverse 

of the FIM (purple) and gaussian approximation of MLE scatter plot (orange). The yellow 

dots indicate the “true” parameters at which the FIM and simulated data sets were generated. 

(b) Rank-paired eigenvalues (vi) for the covariance of MLE estimates (orange) and inverse 

of the FIM (blue). The angles between corresponding rank-paired eigenvectors (ϕi) are 

shown in degrees.
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FIG. 3. Optimizing the allocation of cell measurements at different time points.
(a) Diagonal entries of the Fisher information at different measurement times. The optimal 

measurement times t = [10,15,30] minutes are highlighted in orange. (b) Comparison of 

optimal fractions of cells to measure (blue) at different time points determined by the FSP-

FIM compared to experimentally measured numbers of cells at 0.2M NaCl (purple) from our 

work in [10]. (c) Probability distributions of STL1 mRNA at several of measurement times. 

The blue boxes denote the time points of optimal measurements.
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FIG. 4. Information gained by performing optimal experiments compared to actual experiments
(a) Ds-optimality for optimal design using three time points compared to the intuitive 

experiment designs made using 16 time points are shown with horizontal lines (purple, 0.2M 

and blue, 0.4M). Solid horizontal lines denote the optimal designs and dashed lines represent 

intuitive experiment designs. Randomly designed experiments with 0.2M and 0.4M NaCl 

are shown in black and orange. For the random experiments, the time points were selected 

by sampling them from the experimental measurement times, and then a random number of 

measurements were assigned to each selected time point. The inset shows the first 50 

randomly designed experiments. (b) The Ds-metric for different experiment designs 

(different rows) when applied to different genes or different experimental levels of osmotic 

shock (different columns). Lighter shades (higher Ds-metrics) indicate experimental designs 

that are more suitable to identify parameters.

Fox et al. Page 21

Complexity. Author manuscript; available in PMC 2020 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 5. Overview of optimal design for biosensing experiments for the osmotic stress response in 
yeast.
(a) Unknown salt concentrations (purple dots) in the environment give rise to different 

reactivation times, τ2, which affect the gene expression in the model through the rate k21. 

These different reactivation times cause downstream STL1 expression dynamics to behave 

differently as shown in panel (b). (c) Different responses can be used to resolve experiments 

that reduce the uncertainty in τ2.
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FIG. 6. Verification of the uncertainty in τ2 for different experiment designs.
The left panel shows various experiment designs, where the sum of the bars (i.e., the total 

number of measurements) is 1,000. Gray bars represent the measurements of CTT1 and 

black bars STL1. The right panel shows the value of the objective function in Eq. 14 for 

each experiment design in orange, and the RMSE values for verification are shown in 

purple.
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FIG. 7. Experimental validation of FSP-FIM based design for optimal biosensor measurements.
(a) Distribution of FSP-based MLE estimates for NaCl concentration using the six 

experimental designs from Fig 6. Each distribution comes from 1,000 replicas of 75 cells per 

replica spread out over the possible 16 time points. Replica data were sampled randomly 

from published experimental data [10] that contain two or three biological replicas and 535–

4808 cells per time point. The true experimentally applied level of osmotic shock was 0.2M 

NaCl. (b) The MLE estimation standard deviation for each experiment design applied to a 

data set taken at 0.2M NaCl (blue). These deviations are compared to FSP-FIM deviation 

predictions using a piecewise constant model for HOG1 nuclear localization (purple). (c,d) 

Same as (a,b) but for a true NaCl concentration of 0.4M.
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FIG. 8. Optimal mRNA degradation rates to reduce uncertainty about the extracellular 
environment.
Uncertainty in the time at which the STL1 gene turns off, τ2, as a function of mRNA 

degradation rate (purple). The black dot corresponds to the degradation rate that was 

quantified from experimental data.
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