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ABSTRACT
Although HER2-targeted therapy has been shown to prolong the survival of patients with HER2-positive
breast cancer, most patients eventually progress due to drug resistance. Novel treatment options are
urgently needed to overcome resistance to HER2-targeted therapy. The VEGF/VEGFR (Vascular endothelial
growth factor and its receptors) pathway is essential in tumor angiogenesis, which may be a promising
target in HER2-positive breast cancer providing a rationale for the use of tyrosine kinase inhibitors (TKIs)
targeting VEGFR. Here, we present a case of a heavily pretreated advanced breast cancer patient who did not
respond to HER2-targeted therapy and developed resistance to multiple lines of HER2-targeted treatment.
The patient was treated with apatinib at a dose of 500 mg daily, and obtained partial remission (PR) with
a progression-free-stage (PFS) of 6months. Our case indicates that apatinibmight have anti-tumor activity in
patients with HER2-positive breast cancer with HER2-targeted resistance. This case is of value which may
provide new insights into strategies for HER2-targeted therapy resistance options in the clinic.
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Introduction

Breast cancer is the most common malignancy worldwide, and
the leading cause of cancer-related death amongst females.1

HER2-positive breast cancer accounts for about 15–20% of all
cases, with a more aggressive phenotype and a worse prognosis.2

Despite effective therapy targeting the HER2 pathway, the major-
ity of the patients ultimately progress due to drug resistance and
therapeutic options remain limited.3,4 There is an urgent need to
explore novel treatments to overcome resistance to HER2-
targeted therapies which have potential to translate to the clinic.

Angiogenesis is a crucial hallmark of cancer.5 It is well known
that VEGF and VEGFRs serve as central mediators in neoangio-
genesis of numerous cancer types including breast cancer.6

Tissue VEGF level is negatively correlated with survival of breast
cancer patients.7 Therefore, blocking the VEGF/VEGFR axis
may be a promising therapeutic option in breast cancer.8

Several antiangiogenic monoclonal antibodies, including beva-
cizumab and ramucirumab, have shown anti-tumor activity in
metastatic breast cancer (MBC) when combined with
chemotherapy.9-16 In addition, TKIs targeting VEGFR including
sorafenib, sunitinib and pazopanib in the treatment of MBC
have been investigated.17,18 However, most of these agents only
show moderate efficacy.19,20

Apatinib is a highly selective VEGFR2 TKI which could
inhibit VEGF-stimulated endothelial cell migration and
proliferation.21 Apatinib has been approved as a third-line

treatment for patients with advanced gastric cancer in China
since 2014.22 In breast cancer, two phase II trials have exhibited
encouraging efficacy and manageable toxicity of apatinib mono-
therapy in heavily pretreated, metastatic breast cancer.23,24

However, to the best of our knowledge, few studies have
reported the efficacy of apatinib monotherapy for heavily pre-
treated HER2-positive advanced breast cancer (ABC) who
experienced HER2-targeted therapy resistance.

In the current report, we present a case of a patient with
heavily pretreated HER2-positive ABC, who had significant
response to apatinib monotherapy after failure of multiple
lines of HER2-targeted therapy. This case report will provide
new insights into the strategy of rescuing HER2-targeted
therapy resistance in clinical practice.

Case presentation

The patient management is described in Table 1. A 28-year-
old female patient complaining of a painless mass in right
breast was referred to our hospital in July 2014. The patient
received modified radical mastectomy for right breast cancer
after comprehensive preoperative examinations. The post-
operative stage was T2N0M0, stage IIA. Pathological inspec-
tion revealed invasive ductal breast carcinoma (Grade II) with
immunohistochemistry (IHC) results of ER (-), PR (-), HER2
(3+) and Ki67 (50%+-75%+), VEGF (++), VEGFR2 (++), p-
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VEGFR2 (++) (Figures 1 and 4(a–c)). All the nine dissected
lymph nodes were shown to be negative. Fluorescence in situ
hybridization (FISH) identified HER2 amplification with
a HER2/CEP17 ratio of 8.56. The patient then underwent
adjuvant chemotherapy with cyclophosphamide plus epirubi-
cin for four cycles and sequential four cycles of docetaxel.
Adjuvant HER2-targeted therapy was refused by the patient
due to economic concerns.

In May 2015, follow-up chest computed tomography (CT)
scan demonstratedmultiple nodules in bilateral lungs and a right
chest wall mass. The right chest wall lesion was further categor-
ized as BI-RADS 4C on ultrasound. As the patient refused to
undergo biopsy, recurrence and metastases were clinically diag-
nosed. Since May 13, 2015, this patient received second-line
chemotherapy consisting of vinorelbine, capecitabine (NX) and
trastuzumab, yielding a best response of stable disease (SD).
However, progressive disease (PD) occurred after completion
of five cycles of chemotherapy on September 21, 2015, with
a PFS of 5 months. The patient underwent ultrasound-guided
biopsy in the right chest wall mass and left lower lobe lesion.
Results from pathological inspection and IHC confirmed the
origin from breast cancer for the biopsied tissues and staining
of VEGF (++), VEGFR2 (++), p-VEGFR2 (++) (Figure 4(d-f)).

The patient then received third-line treatment of gemcita-
bine, cisplatin (GP) and trastuzumab for six cycles, having the
best response of SD. On February 13, 2016, CT scan showed
PD in all the lesions, producing a PFS of 5 months. The
patient was advised to receive lapatinib treatment but she
refused the treatment for economic reasons. Systemic therapy
was then switched to paclitaxel, carboplatin (TC), and trastu-
zumab. The patient experienced grade 2 thrombocytopenia
and grade 3 neutropenia, leading to discontinuation of ther-
apy. As a result, raltitrexed, trastuzumab and lapatinib were
prescribed to the patient as fourth-line therapy. However,
bilateral lung metastases and right chest wall mass progressed
after four cycles of treatment (Figure 3(a,c)).

To clarify the mechanism of multi-line resistance to HER2-
targeted therapy, the biopsy tissues of the postoperative lesion,
left lungmetastasis and chest wall recurrence lesions after failure
of NX plus trastuzumab, and the blood samples after failure of
raltitrexed, trastuzumab and lapatinib, were tested with next-
generation sequencing (NGS) of 425-gene panel. The results
showed persistent existence of HER2 amplification, HER2
V777L mutation and TP53 mutation in all samples (Figure 2,
Table 2). Apatinib, at the dose of 500 mg daily, was then initiated
from July 2016. Surprisingly, the lesions, especially in the right

Table 1. The course of disease in the female patient with HER2-positive breast cancer.

Time frame Line of treatment Therapy regimen Best response PFS (months)

Aug 2014–Jan 2015 Adjuvant Epirubicin, cyclophosphamide (CE)*4, docetaxel (T)*4 NA 9
May 2015–Sept 2015 First-line Vinorelbine, capecitabine (NX) trastuzumab*5 PD 4
Sept 2015–Feb 2016 Second-line Gemcitabine,cisplatin (GP), trastuzumab *6 SD 5
Feb 2016–Apr 2016 Third-line Paclitaxel,carboplatin(TC) trastuzumab *2 NA
Apr 2016.4–July 2016 Fourth-line Lapatinib,raltitrex,trastuzumab*4 PD 3
July 2016.7–Jan 2017 Fifth-line Apatinib PR 6

Figure 1. IHC results of the primary right breast carcinoma (original magnification, 200×). The tumor stained negative for both ER (a) and PR (b) but strongly positive
for HER-2 (c) and showed a Ki-67 proliferation index of 50–75% (d).
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chest wall and the left lung metastasis, exhibited remarkable
shrinkage after 3 months of use (Figure 3(b,d)). The best
response was partial remission (PR) and no apatinib-related
side effects were observed. Specifically, we observed clear cavita-
tion in the above-mentioned lesions, which reflected the
mechanism of action of apatinib (Figure 3(b)).

In January 2017, the patient developed persistent cough,
fever and fatigue. The CT examination indicated that the lung
lesions had progressed and apatinib treatment was ended at this
stage, with a PFS of 6 months. The patient received no further
treatment and died in March 2017. The overall survival (OS) for
the patient was 32 months from the diagnosis of breast cancer
and 22 months from post-operative recurrence and metastases.

Discussion

To the best of our knowledge, this is the first case of successful
salvage treatment in a heavily and refractory HER2-positive
advanced breast cancer patient who was resistant to multiple
lines of anti-HER2 therapy with anti-VEGFR2 TKI.

Previous studies suggested that patients with HER2-positive
breast cancer and concurrent HER2 activating mutations, might
be resistant to trastuzumab treatment.25-27 Similarly, in this case,
the patient with persistent HER2 amplification and HER2
V777 L mutation experienced resistance to multiple lines of
HER2-targeted therapy, including trastuzumab and lapatinib.
In HER2 mutant breast cancer, irreversible inhibitors such as
neratinib are indicated to inhibit kinase activity and survival of
HER2-mutation-driven cancer cells. However, due to the

inaccessibility of neratinib at that time, and no standard-of-
care at later-stage breast cancer, the patient did not receive
neratinib.

Itwas assumed that the patientmight benefit fromangiogenesis
inhibitors based on the assumption that HER2 amplification may
induce bypass activation of the pro-angiogenic factor VEGF. As
has been demonstrated in previous studies, HER2 overexpression
is associated with elevated VEGF mRNA and protein levels in
breast cancer cells.28 Additionally, a related study indicated that
VEGFR2-positive stromal vessel counts were significantly higher
in HER2-positive primary breast cancer. These data imply that the
effects of HER2 on tumorigenesis are at least partially mediated
by stimulation of angiogenesis, which provides a strong rationale
for targeting the VEGF/VEGFR2 axis in HER2-positive breast
cancer.29

Based on this hypothesis, several clinical trials have been
conducted to explore the potential benefit of anti-HER2 and
anti-angiogenesis combination therapy for HER2-positive breast
cancer. Results from early phase trials have been promising.30-33

However, the phase III AVERAL trial did not meet the primary
endpoint of prolonging investigator-assessed PFS in patients
treated with bevacizumab, docetaxel and trastuzumab.34 In
addition, a higher incidence of cardiovascular toxicity from
the combination therapy was a significant concern. Novel angio-
genesis inhibitors with improved efficacy and manageable toxi-
cities are urgently needed.

Apatinib is a highly selective and potent VEGFR2 TKI.
Compared to other VEGFR TKI such as sorafenib, sunitinib
and pazopanib, apatinib is more potent in inhibiting the activity
of VEGFR2 with IC50 value of 1 nM.35-37 In two phase II trials,

Figure 2. Resistance to trastuzumab and lapatinib induced by the HER2 V777L mutation. Representative image of read alignments visualized with IGV. HER2 V777L
mutation and TP53 Q52fs shifting mutation were detected in the different tissues. The tissues 1/2/3 refer to the paraffined tissues of postoperative right breast lesion
(July 2014), left lung metastasis and right chest wall recurrence lesions (September 2015). The arrow shows the position of the variant.
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apatinib monotherapy demonstrated a promising median PFS of
3.8 and 4.0 months, respectively, with manageable toxicity pro-
files for patients havingmetastatic breast cancer.23,24 Exploratory
analysis combined data from the two trials suggested that tumor
p-VEGFR2 expression (adjusted HR, 0.40; P = .013) is an inde-
pendent predictor of both PFS and clinical benefit rate.38

Similarly, IHC of postoperative and biopsy tissues in the current
patient showed moderate expressions of VEGFR2, VEGF and p-

VEGFR2 (Figure 4). Based on these lines of evidence and clinical
experience, the patient was treated with apatinib monotherapy.
Surprisingly, the patient obtained PR after 3 months of treat-
ment, and a PFS of 6 months despite resistance to multiple lines
of anti-HER2 treatment.23

VEGFR2 is the canonical member of the VEGFR family in
angiogenic signaling.39,40 Theoretically, cells with high VEGFR2
expression could be stimulated using VEGF, and the

Figure 3. PR response to apatinib monotherapy treatment. (a) Chest CT scans before apatinib treatment (July 2016). (b) Chest CT scans after apatinib treatment
(October 2016), the lesions especially in the right chest wall and the left lung metastasis demonstrated clear cavitation. (c) The expression of chest wall focus before
apatinib treatment (July 2016). (d) The expression of chest wall focus after apatinib treatment (October 2016).

Figure 4. IHC of tumor tissue using anti-VEGF, VEGFR2 and p-VEGFR2 antibodies (original magnification, 200×). The tissues with medium positive staining for VEGF, VEGFR2
and p-VEGFR2 of postoperative breast tissue (a–c). The tissues with medium positive staining for VEGF, VEGFR2 and p-VEGFR2 of left lung biopsy tissue (d–f).
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proliferation of these stimulated cells could be inhibited by anti-
VEGF antibody.41 Therefore, both the high expressions of
VEGF and VEGFR2 are necessary for activation of the VEGF/
VEGFR2 pathway. VEGFR2 is phosphorylated upon VEGF/
VEGFR2 engagement which is essential to tumor growth and
survival.42 Hence, p-VEGFR2 levels may predict the efficacy of
anti-angiogenic therapy in patients with advanced breast
cancer.38

We speculated that the high VEGF expression in this case
stemmed from HER2 amplification and mutation. The high
expression of VEGFR2may be a result of the TP53(Q52fs) trunca-
tion mutation, which probably binds near the VEGFR2 promoter
initiation site which has been reported previously.43 Considering
the consistent high mutation abundance in the breast, lung, chest
wall and serum of this patient, we postulate that the TP53 trunca-
tion frameshift mutation (Q52fs) may synergistically promote
expression of VEGFR2 which is highly pre-stimulated by VEGF.
The highly activating p-VEGFR2 may then sensitize the
inhibitory effect of apatinib and so apatinib rescues the refractory
ABC patient.

Conclusions

In conclusion, we present a case of apatinib monotherapy for
a patient with HER2-positive breast cancer who developed resis-
tance to multiple lines of anti-HER2 therapy. Apatinib obtained
PR with a PFS of 6 months. We hypothesized that HER-2
amplification and concurrent HER2 activating mutation might
promote tumor angiogenesis and subsequent resistance of
HER2-targeted therapies. In the future, further large-scale clin-
ical trials are required to clarify the role of apatinib in refractory
HER2-targeted resistant breast cancer.
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