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A B S T R A C T   

Throughout the covid-19 emergency, health authorities have presented contagion data divided by administrative regions with no reference to the type of landscape, 
environment or development model. This study has been conducted to understand whether there is a correlation between the number of infections and the different 
rural landscapes of the country. Italy’s rural landscape can be classified in four types, according to the intensity of energy inputs used in the agricultural process, 
socioeconomic and environmental features. Type A includes areas of periurban agriculture surrounding the metropolitan cities, type B areas of intensive agriculture 
with high concentration of agroindustry, type C hilly areas with highly diversified agriculture and valuable landscape, and type D high hills and mountains with 
forests and protected areas. Areas A and B are located in the plains, covering 21% of the territory and accounting for 57% of the population. They produce most of the 
added value, consume high levels of energy and represent the main source of pollution. Areas C and D cover 79% of the territory and 43% of the population. We find 
that provinces with 10% more type C and D areas exhibit on average 10% fewer cases of contagion. The result is statistically significant, after controlling for 
demographic, economic and environmental characteristics of the provinces. The pollution produced in more energy-intensive landscape has triggered an intense 
debate of how to ensure the economic competitiveness of Italian agriculture, without compromising environmental integrity or public health. Our findings speak to 
this debate, by suggesting that planning for more rural territory with lower energy inputs may come with the added benefit of new development opportunities and 
decreasing the exposure of the population to covid-19. Cost benefit-analyses should take into account that policies aimed at revitalizing more rural areas may reduce 
the economic impact of covid-19 and of potential future pandemics.  

1. Introduction 

In the 14th century, Giovanni Boccaccio escaped the Great Plague 
that was ravaging Europe by finding shelter in the countryside near 
Florence. Not only did he and his nine companions survive, but he went 
on to write about that experience in The Decameron, widely considered 
the first example of western narrative. This paper confirms that 
Boccaccio chose wisely. People living in more rural areas are less likely 
to contract covid-19. The surprising element of our findings is that they 
are not explained away by the lower population density of these areas, 
or other demographic, economic or environmental characteristics. 

Italy has been one of the worst hit countries by covid-19 and since 
February 2020 has been at the forefront in the fight against the pan
demic. The first cases were found in Rome, on 31 January, when 
tourists returning from China were found positive to the virus. As a first 
measure, Italian authorities suspended all flights to and from China. On 
18 February, an outbreak was identified in Codogno (Lodi), triggering 
wide media reactions and inducing the Italian government to quar
antine the town. The contagion subsequently spread first to the nearby 
municipalities, and eventually to the whole country. Fig. 1 presents a 
timeline of the events, together with the spreading of the contagion. On 
9 March, the country entered the “phase 1”, a partial lockdown of the 

commercial, industrial and entertainment activities. This initially in
volved only the so-called “red areas” (the most afflicted municipalities), 
but as of 11 March, in combination with the peak of the infections, it 
was extended to the entire national territory. After 21 March, these 
restrictions became stricter, by stopping every activity not deemed 
absolutely necessary. The “phase 2”, with a gradual return to normal 
activities, started on 4 May. Since the contagion was not yet eradicated, 
many activities continued to be subject to restrictions (social distan
cing, booking requirements and obligation of wearing masks indoors). 

Official data about contagion have been collected at province level, 
with no consideration about the different typologies of the territory. 
The novel perspective of this study is to link the diffusion of covid-19 to 
the socio-economic and environmental features of the Italian territory. 
We do so by collecting and matching data on rural classification of 
Italian regions, cases of covid-19 infections, as well as demographic, 
economic and health characteristics of the Italian population. We find 
that provinces with a greater share of rural territory tend to have sig
nificantly less exposure to covid-19, controlling for pollution, popula
tion and unemployment. The results are not only statistically sig
nificant, but economically relevant: provinces with 10% more share of 
rural land exhibit on average 10% fewer cases of contagion. This is, to 
the best of our knowledge, the first scientific contribution to consider 
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the problem from this perspective (Torero, 2020). 
Understanding the current composition of the Italian territory re

quires to briefly recalling the changes it went through over the past few 
decades (see Fig. 2). The period after World War II has been char
acterized by an increasing exploitation of plains and abandonment of 
marginal areas (Levers et al., 2018). The abandonment of more than 10 
million hectares of agricultural land has resulted in an increase in for
ests by 8 million approximately (Agnoletti, 2013; ONPR, 2018). The 
labour force in the agricultural sector went from 42% of the total em
ployment in the after-war period to about the current 4%. These de
velopments have been mirrored by a parallel concentration of the po
pulation in urban areas and depopulation of more rural regions (ISTAT, 
2018). This is also demonstrated by the reduction of residents in mu
nicipalities with less than 10.000 inhabitants, dropping from 45% of the 
total population in 1951 to 35% in 1971. This trend continued in the 
following decades, accompanied by a parallel migration from southern 
to northern regions (De Rubertis, 2019; ISTAT, 2014). 

The causes behind these developments are numerous, but to a large 
extent can be traced to the effects of competition. The need to prosper 
in an increasingly competitive environment led to the adoption of more 
specialized cultures, the development of productivity enhancing 

techniques and the elimination of traditions such as terracings and low- 
density systems which were no longer cost effective (Agnoletti et al., 
2019). The side effect has been an increase in pollution, as these areas 
are the main responsible for the production of nitrates, methane and 
nitrous oxide (Houser et al., 2020). Inverting this trend is part of a 
larger political debate and requires incentives aimed at ensuring the 
sustainability of agriculture, without compromising environmental in
tegrity or public health (Tilman et al., 2002). 

The findings of this paper speak to this debate by suggesting that 
cultivating more rural territory with lower energy inputs may come 
with the added benefit of decreasing the exposure of the population to 
covid-19 disease. The underlying causes remain unclear. Some studies 
suggest a relationship with pollution (Wu et al., 2020) or wildlife used 
as food (Yuan et al., 2020), but more research is needed to confirm our 
findings at international level and to establish a clearer causal link. 
However, given the exorbitant costs covid-19 is imposing on our so
ciety, preparing for future outbreaks calls for policies that would in
crease the overall resilience of our system should a new pandemic strike 
again. Claiming back abandoned land and returning to more landscape 
friendly cultures should be part of this discussion, as well as re-imagine 
and re-work agricultural and food systems, perhaps in line with 
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Fig. 1. Chronology of covid-19 infections in Italy.  

Fig. 2. Population growth and dynamics of the agricultural and forest surfaces in Italy between 1929 and 2015 (Agnoletti, 2013).  
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different values and strategies (Sanderson, 2020). 
The paper is structured as follows. Section 2 describes in greater 

detail the classification of the Italian territory and its socio-economic 
and environmental characteristics. It also presents the statistical fra
mework used to analyse the data. Section 3 discusses the results from 
the regression analysis. Section 4 places our statistical findings into the 
broader policy discussion. Section 5 concludes. 

2. Methods 

2.1. Classification of the Italian rural landscapes 

The Italian Ministry of Food, Agriculture and Forest Policies has 
classified the Italian rural landscape into four distinct types. It is an 
official classification, also adopted by the National Observatory for 
Rural Landscapes, with precise policy objectives and used to allocate 
funds for specific interventions. The identified categories are:  

A. Urban and periurban rural landscapes  
B. High intensity landscape types  
C. Medium intensity landscape types  
D. Low intensity landscape types 

This type of classification is used both in the context of the National 
Strategic Plan for Rural Development 2007–13, when landscape was 
introduced for the first time among the objectives of the plan, and the 
National Strategic Framework of EU Cohesion Policy. These classifica
tions are also relevant in the context of the Common Agricultural Policy 
and the Biodiversity Strategy towards 2030, especially when spatial 
information is required to assess the stated objectives. 

Classifications based on intensity of agricultural activities, en
vironmental features and economic development is supported by a rich 
scientific literature, usually measuring intensity as the anthropogenic 
energy required in the primary crop production (Tieskens et al., 2017; 
Estel et al., 2016). The intensification of agriculture with high-yielding 
crop varieties, fertilization and pesticides led to a substantial increase in 
food production over the past 50 years, but also had damaging en
vironmental consequences. The amount of nitrogen – a major air pol
lutant contributing, among other things, to the formation of ozone and 
acid rains – is a frequently used proxy for agricultural intensity 
(Overmars et al., 2014; Temme and Verburg, 2011; van der Zanden 
et al., 2016). Land conversion and agricultural intensification alter the 
biotic interactions and patterns of resource availability in ecosystems. 
The implications for the local, regional and global environment can be 
serious (Erb et al., 2013; Rega et al., 2020). 

2.1.1. Urban and periurban landscape types 
These landscapes comprise 195 municipalities with high average 

population density (about 1,510 inhabitants per square kilometre), in
cluding regional capitals, large metropolitan cities, as well as those 
areas with high population density and low territorial extension of 
agriculture. They include 30% of the Italian population and cover 4% of 
the territory, representing urban and periurban landscapes in the plains 
of Italy (see light yellow areas in Fig. 3). They are characterized by a 
strong presence of the tertiary sector and a moderate level of manu
facturing activity. Agriculture accounts for 12% of the national added 
value, mostly concentrated in territories around large urban centres. 
These areas provide short-range consumer demand for high-quality 
products, but the quality standards of production are not always up to 
the demand. Immediately adjacent to the urban fabric, there is a strong 
concentration of industrial activities, employing 31% of the agro-in
dustrial workforce. Most of these activities require high external energy 
inputs, putting these areas in the highly energy-intensive category 
(Tello et al., 2016). 

The urban centres are characterized by highly profitable land, with 
over €5,000 of added value per hectare of Utilized Agricultural Area 

(UAA). The high value of the land results in a significant decrease in 
total agricultural area in favour of urban sprawl. Indirect impacts on 
farms of these areas include splitting of cultivation units, constraints on 
agricultural practices due to the proximity of inhabited centres and 
pollution phenomena caused by non-agricultural sources (Houser et al., 
2020). 

Proximity to urban centres makes these areas fairly well equipped 
with services for the population and the economy. Although no data is 
available at this level of territorial breakdown, these rural areas are 
those with a greater supply of internet services. The particular oro
graphic and demographic situation leads to the co-habitation of re
sidential and tourist settlements with highly specialized and intensive 
agricultural activities. They represent important economic and em
ployment realities, but, at the same time, have a significant environ
mental impact. 

2.1.2. High intensity landscape types 
This group includes lowland landscapes that are classified as rural, 

significantly rural or even urbanized rural. They are located in plains 
and in the immediately adjacent low altitude hill areas, mainly in the 
northern regions of the country (see green areas in Fig. 2) as the Po 
river valley. The urban footprint represents 10% of the territory, cul
tivated areas 80%, forests 7%. They include over 1,782 municipalities, 
representing over a quarter of the total national population (27%). 
These areas constitute the backbone of the agro-industrial system: while 
they account for 24% of the UAA and 29% of the agricultural workers in 
the country, they produce 38% of the national agricultural added value. 

Type B areas are densely populated (313 inhabitants per square 
kilometre). Its population is relatively younger and growing strongly 
(more than 10% in the last decade) attracting young people from 
marginal rural areas and the south of the country. Agricultural and 
forest areas cover 87% of the territory and there is also a strong spe
cialization in agricultural production and food industry, with a con
centration of agro-industrial chains. 

The strong agricultural specialization and recent migratory phe
nomena have led, in some specific areas, to increase competition in the 
use of primary resources, creating problems of environmental impact 
and sustainability of agricultural activity. These areas have a higher 
concentration of zones vulnerable to nitrates, over 35% of the country’s 
total against an area of about 5%, causing river degradation and 
harming people’s respiratory system (Ladrera et al., 2019; Arauzo et al., 
2011; Burt et al., 2010). Type B zones include also 6% of the national 
protected areas that fall within the Natura 2000 network. They are, 
nevertheless, significantly affected by the strong anthropization of the 
territory and by the commercial and tourist industry. 

2.1.3. Medium intensity landscape types 
This typology includes mostly hills and small parts of mountain 

landscapes, especially in the center of the country, but also in the north 
and south of Italy. They are mainly or significantly rural and have a 
good level of diversification of economic activities (see orange areas in  
Fig. 2). There are 3,084 municipalities, representing about 30% of the 
Italian population and 33% of the territorial surface. The urbanized 
area covers 5% of the total territory, agricultural area 62%, forest area 
29%. The population has grown by 5.7% in the last decade, but is 
characterized by a higher aging index. Agriculture plays a significant 
role, both in terms of surface and employment, even if the intensity of 
production is more modest than in previous areas (about €2,200 per 
hectar). In the last decade, this type of landscape has shown strong signs 
of crisis, significantly losing agricultural area (−12% of UAA and 
−14% of Total Agricultural Area (TAA), with percentages that drop 
respectively to −18% and −20% in the less developed regions) and 
jobs (−27%). The main factors behind these developments are the high 
production costs and lower profitability due to the morphology of the 
territory and the presence of traditional agricultural arrangements, such 
as terraces and polycultures (Barbera and Cullotta, 2016). These 
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problems are compounded by commercial difficulties of promoting the 
rich variety of typical products, abundant in these areas. 

Farmers with alternative income represent 28% of the total also 
because agriculture in these areas is complementary to other activities 
and promotes growth of the local economic system in an integrated 
form. The highly qualified agricultural sector is supported by the pre
sence of highly valued resources such as attractive landscapes, cultural 
and historical landmarks, as well as typical food and wine. This is 
confirmed by the fact that more that 83,9% of agritourism firms is lo
cated on mountain and hilly areas in Italy. Synergies among these 

resources help create an integrated local economic system, with a ba
lanced development of tertiary activities related to tourism, trade and 
specialized services. These areas can be considered as cultural land
scapes, where the term cultural becomes a value-laden concept putting 
a premium on historical agricultural traditions (Agnoletti, 2013; 
Antrop, 1997; Bignal and McCracken, 1996; Fischer et al., 2012; 
Plieninger et al., 2006). 

About 23% of Natura 2000 areas of Italy are concentrated in this 
area, for a total surface of about 10%. The nitrate vulnerable areas 
instead represent 29% of those identified at national level, with an 

Fig. 3. Map of rural landscape types with the distribution of cases of COVID-19.  
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incidence on the total area of only 2.3%. The infrastructure is typically 
rural, limited to roads and railways, with often reduced connections 
and services. The same goes for telematic infrastructures, with broad
band serving only a minority of the population. The reduced speciali
zation of agriculture, less developed infrastructure, the lower urban and 
industrial concentrations, and the good presence of natural and land
scape resources contribute to classify these areas as medium energy- 
intensity (Marull et al., 2016). 

2.1.4. Low intensity landscape types 
These areas include 2,865 municipalities, mostly in the mountains 

and significantly rural high hills in southern Italy, the central and 
northern mountains with a more markedly rural nature, and some areas 
of the southern plains and islands (see blue areas in Fig. 2). The urba
nized area covers 2% of the territory, the agricultural areas 34% and 
forests 54%. They are the least densely populated areas of the country 
(59 inhabitants per square kilometer), characterized by scarce presence 
of local development processes in all sectors and abandonment by the 
population (−0.76% in the last decade). The demographic decline in 
southern regions has been accelerated by migration, particularly from 
mountain areas, consistent with developments in other European 
mountain areas (Macdonald et al., 2000). The aging index is far above 
the national average. Type D areas represent 13% of the population, 
occupy 46% of the country’s territory, 42% of the TAA and 35% of the 
UAA. They represent 20% of the agricultural workers and 18% of the 
national added value. The agricultural workers in these areas are 
around 225,000, the agro-industrial 53,000, the non-agricultural 2.6 
million. 

The presence of widespread extensive agriculture is accompanied by 
the presence of most of the Italian forests (69%) and a great variety of 
natural habitats. These areas are of particular environmental im
portance, with 68% of Italian protected areas and over 62% of Natura 
2000 areas, accounting for more than 2.5 million hectares and an in
cidence on the total area of over 21%. This contrasts sharply with the 
rapid agricultural intensification that occurred in Europe and northern 
Italy after World War II, which sacrificed heterogeneity for more 
homogeneous and commercially profitable landscapes (Agnoletti, 2013; 
Bignal and McCracken, 1996; Isselstein, 2003). Only 16% of the nitrate 
vulnerable areas are located in these areas, with an incidence on the 
total area of 1%. Type D areas can be classified as low energy-intensity, 
given their limited industrial, urban and infrastructural development. 

Farming is characterized by low levels of profitability of the land 
(just over €1,000 per hectare of Utilized Agricultural Area) and a low 
level of production intensification (on an average of 100 ha of Total 
Agricultural Area only 56 are used). Abandonment processes are par
ticularly intense, especially in the inner mountains. Traditional 
Mediterranean crops (olive trees, vines, promiscuous arboriculture with 
arable crops, forest crops) are widespread even if at low productivity 
and characterized by traditional planting schemes and reduced pre
sence of chemical inputs in the land. The chances of survival and 
growth of these realities are connected to the local resources. They 
range from the more effective promotion of typical and quality pro
ducts, to development based on diversification of local economic ac
tivities, and attraction of tourism through environmental resources and 
cultural landscapes, when not affected by intense abandonment and 
inappropriate policies (Agnoletti, 2014). This could help alleviate socio- 
economic problems, such as high unemployment levels, lower dis
posable income, gap in the provision of services compared to other 
areas of the country. 

Overall, type A and B areas account for 21% of the Italian territory 
and 51% of the population. They can be described as high energy-in
tensity areas due to a combination of factors like urban areas, industrial 
facilities and intensive farming. Type C and D areas, on the other hand, 
account for 79% of the Italian territory, 43% of the population. They 
can be classified as low energy-intensity areas. 

2.2. Applied statistical analysis 

The objective of this study is to understand whether there is a 
correlation between the different landscape types and the cases of 
covid-19 contagion. To answer this question, we first match four dif
ferent databases and next discuss the econometric strategy to analyse 
the data. 

The type of data used and related sources are the following.  

i. Administrative borders: the shapefiles available on the website of 
the Italian statistical agency (ISTAT) provide the administrative 
borders for towns, provinces and regions. (https://www.istat.it/it/ 
archivio/222527)  

ii. Covid-19: the website of the Health Ministry provides data on total 
covid-19 cases for each Italian province. The cut-off date for our 
analysis is 30 April 2020. (http://www.salute.gov.it/portale/ 
nuovocoronavirus/dettaglioContenutiNuovoCoronavirus.jsp?area 
= nuovoCoro%20navirus%20&id = 5351&lingua = italiano& 
menu = vuoto, last update 30/04/2020)  

iii. Demographics: data about population is obtained at province level 
by ISTAT, as of 2019. (http://demo.istat.it/index.html, last update 
30/04/2020.)  

iv. Classification of the Italian rural landscape types: This classification 
has been described in the previous section and it is based on data 
provided by the Ministry of Food, Agriculture and Forest Policies. 
(https://www.reterurale.it/psrn) 

A visual representation of the data is presented in Fig. 3. The figure 
maps the Italian territory into its different landscape types and super
imposes the number of covid-19 cases per province. The high correla
tion between high energy-intensity landscape and contagion is self- 
evident. We first complement this graphical analysis with a few sum
mary statistics and next proceed to a more formal econometric analysis. 

Since the data on contagion are provided at province level, we need 
to work at this level of aggregation, even though the classification of 
rural areas is available at a finer degree of precision. 

It is worth noting the uncertainty of available official data, parti
cularly pertaining to the true baseline number of infected cases, po
tentially leading to ambiguous results and inaccurate forecasts 
(Anastassopoulou et al., 2020). 

We impute the contagion cases to the different rural areas following 
two alternative hypotheses.  

• Proportional to the landscape types – We compute for each province 
the percentage of surface occupied by type A, B, C and D areas and 
allocate the number of contagion available per province according 
to this percentage break down. We further divide by the total sur
face in square kilometres and report the results per 100 km2. 

• Proportional to the rural population – We compute for each pro
vince the percentage of population living in type A, B, C and D areas 
and allocate the number of contagion available per province ac
cording to this percentage break down. We further divide the 
number of inhabitants and report the results per 10.000 people. 

To further simplify, we report the results in two macro-categories:  

• Intensive landscapes: areas A and B  
• Non-intensive landscapes: areas C and D 

The results are reported in Table 1. It shows that intensive landscape 
areas have on average a higher number of infected people. The gap 
between intensive and non-intensive landscapes is more pronounced 
when contagion is computed proportionally to the areas, than when it is 
computed proportionally to the population living in those areas. This is 
not surprising: the population is not homogenously distributed within 
the province according to its rural composition, but tends to be more 
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concentrated in intensive landscape areas. The second classification 
takes this partially into account and shows a much lower gap. These 
descriptive statistics raise three obvious concerns. First, since data on 
covid-19 is available only at province level, the attribution of cases 
within the areas of each province is arbitrary (even though the allo
cation proportional to the population appears to be more plausible). 
Second, the difference between the intensive and non-intensive land
scapes could be entirely explained by the higher population density of 
the intensive areas, as the drop in column B of Table 1 seems to suggest. 
Third, is the difference statistically and economically significant? 

We address each of these issues simultaneously with the help of a 
linear regression analysis. The dependent variable to be explained is the 
number of covid-19 cases per province. The explanatory variables are 
the percentages of type A, B, C and D per province. We compute these 
percentages in the two alternative ways already discussed: first as a 
fraction of the total surface and second as a fraction of the total po
pulation. In the empirical analysis, we focus on this second definition, 
as it provides a more plausible classification and it fits the data better. 
We also use as controls the average age, the density, the percentage of 
population relative to the national total, the level of pollution, the rate 
of unemployment, the percentage of over 65 and the mortality rate. All 
statistics are computed at province level, with the exception of the level 
of pollution which is available only at regional level. We refer to the 
notes at the bottom of Table 2 for a precise definition of each variable. 
All the data comes from the ISTAT database site (http://dati.istat.it). 

The data characteristics are summarised in Table 2. The average 
number of cases is 34 per 10,000 inhabitants, ranging from a minimum 
of 2.6 registered in Sud Sardegna, to a maximum of 168 in Cremona. 
Areas A, B, C and D accommodate about 22%, 23%, 35% and 21% of 
the population, respectively. The average age of the population is 46, 
with a maximum of 49 in Savona and Genoa and a minimum of 41 in 
Naples. The most and least densely populated provinces are Naples and 
Nuoro, respectively. The most and least populous provinces are Rome 

and Isernia, with 7,19% and 0.14% of the Italian population. The 
average unemployment is 10%, Crotone has the highest rate (29%) and 
Bolzano the lowest (3%). The provinces with the highest and lowest 
percentages of over 65 are Savona (29) and Caserta (18). Finally, 
mortality rates are highest in Alessandria (18) and lowest in Bolzano 
(8). 

Since type-D areas tend to be scarcely populated, type-C and type-D 
areas are aggregated into a single category, and we consider in the 
regression analysis only non-intensive landscape areas. All standard 
errors are heteroscedasticity consistent, following White (1980). We 
run regressions at an increasing level of sophistication. 

First, to have an initial confirmation of the validity of the results of  
Table 1, a simple regression is estimated, without controls. These re
sults serve to understand whether the relation between the cases of 
covid-19 and rural areas found before is also statistically significant: 

= + +COVID C DModel1: ( )0 1

Since the sum of the two areas (intensive and non-intensive) is 100 
by construction, intensive areas are omitted from the regression and are 
absorbed by the constant. Estimating Model 1 with +A B( ) as re
gressors instead of +C D( ) gives the same value for the coefficient 1, 
but with opposite sign. 

Second, one obvious concern is that the energy-intensive areas are 
also those more densely populated, and therefore more prone to the 
diffusion of covid-19. To rule this possibility out, we control for a 
number of variables: 

= + + +COVID C D XModel2: ( )0 1 2

where X includes demographic, economic, health and environmental 
variables. 

Third, we relax the assumption of linear relationship, by adding 
quadratic and cubic terms of the control variables. We have also added 
the share of population older than 65, as older people have been dis
proportionally affected by covid-19. The specification takes the fol
lowing form 

= + + + + +COVID C D X X XModel3: ( )0 1 1 1 2 3
2

4
3

where X stands for the control variable whose nonlinearity is being 
tested and we allow for nonlinearity in more control variables. 

Fourth, given that our data is collected with reference to provinces, 
which can be measured as points in space, we consider also spatial 
variables. The concern addressed here is that the relationship between 
covid-19 and the control variables may be entirely explained by the 
proximity with the epicentre of the contagion. For instance in Italy, one 
of the worst hit regions was Lombardy, a region with a high share of 

Table 1 
Summary data of COVID-19 infections in different areas.     

Typology of rural areas A. Proportional to 
areasa 

B. Proportional to 
populationb  

National average 67 34 
Intensive landscape (A + B) 134 37 
Non-intensive landscape  

(C + D) 
49 28 

a Per 100 km2. 
b Per 10.000 inhabitants.  

Table 2 
Summary statistics.                

COVID A B C D AGE DENSITY POP POLLUTION UNEMP OVER_65 MORTALITY  

Mean 34 22% 23% 35% 21% 46 270  0.93% 2% 10% 24% 11 
Median 21 20% 11% 32% 7% 46 176  0.64% 0 8% 24% 11 
Maximum 168 100% 90% 100% 100% 49.4 2617  7.19% 7% 29% 29% 15 
Minimum 2.65 0% 0% 0% 0% 41.8 37  0.14% 0 3% 18% 8 
Std. Dev. 32 20 27 32 29 1.64 382  1.02 3% 6% 2% 1 

Note: the variables are defined as follows:  

• COVID = cases per 10,000 inhabitants by province  

• A, B, C, D = percentage of population in each area according to rural classification  

• AGE = average age of citizens by province  

• DENSITY = inhabitants per square km by province  

• POP = percentage of province population, relative to country population  

• POLLUTION = percentage of population exposed to PM10 concentrations exceeding the daily limit value on more than 35 days in a year (data available only by 
region)  

• UNEMP = percentage of unemployed relative to the population between 15 and 74 years old  

• OVER_65 = percentage of population over 65 years of age  

• MORTALITY = deaths over population times 1,000  
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energy-intensive landscape. It is reasonable to suspect that neigh
bouring provinces may have been more exposed to covid-19 than those 
further away, as our Fig. 1 visually confirms. Spatial information can be 
incorporated in numerous ways. There is a large literature on spatial 
econometrics discussing alternative parsimonious specifications (see Le 
Sage, 1999, for a comprehensive review). Spatial econometrics can be 
quite involved, requiring non-standard estimation techniques, due to 
the endogeneity of the dependent variables (see Le Sage, 2008, for a 
recent review). In this paper, we adopt a simple approach which makes 
direct use of the latitude-longitude coordinates associated with the 
provinces included in our analysis. Denoting with Zm and Zp the spatial 
coordinates of a province (where m stands for meridian and p for par
allel), we compute the Euclidean distance from the province of Ber
gamo as = +D Z Z Z Z( ) ( )m m p p

0 2 0 2 , where Z Z( , )m p
0 0 denote the 

coordinates of Bergamo. We chose Bergamo as reference point, as it was 
the worst hit province of Italy. We then augmented the model with this 
distance as an additional variable: 

= + + + +COVID C D X DModel4: ( )0 1 1 1 2 3

where again X stands for the generic control variable. 
Since the number of possible regressors can be very large and we 

have a relatively small sample of observations, we use the Akaike 
Information Criterion (AIC) and the adjusted R2 for model selection 
purposes. The best model minimises the AIC and maximises the ad
justed R2. 

3. Results 

All the results of our econometric analysis are reported in Table 3, 
which is structured as follows. The dependent variable is always 
COVID, while the control variables used in the analysis are reported in 
the first column on the left. Although many alternative specifications 
have been estimated, we report in this table only six of them, labelled in 
the first row according to the model typology. For each coefficient, we 
report the ordinary least square (OLS) value, with the robust standard 
errors in parenthesis. Statistical significance at 1%, 5% and 10% levels 
is denoted by three, two and one star respectively. Coefficients without 
stars are not statistically significant at conventional confidence levels. 
The last two rows of the table report the AIC and adjusted R2. 

The simplest possible specification is Model 1. The coefficient as
sociated with the non-intensive landscape areas is negative (-0.29) and 
statistically significant at 1%. The interpretation is that provinces with 

a higher share of non-intensive landscape areas tend to have lower 
cases of covid-19. Taken at face value, this result says that if one were 
to increase C and D areas by 10%, one should on average observe 2.9 
less covid-19 cases per 10,000 inhabitants (=0.29*10). Since the 
average number of overall covid-19 cases is 34 per 10,000 inhabitants 
(see Table 1), this corresponds to almost a 10% decrease. The result is 
therefore not only statistically significant, but also economically 
meaningful. 

Model 2 includes various control variables to provide a first check 
that the negative correlation found so far is not spurious. Adding de
mographic, economic and health data substantially increases the fit of 
the model, as can be seen by the adjusted R2 jumping from 0.08 to 0.50. 
Adding these controls reduces by about a half the coefficient associated 
with the non intensive areas (-0.15), which however remains significant 
at the 10% level. Of the control variables, only the levels of pollution 
and unemployment appear to be statistically significant, implying that 
provinces with higher levels of pollution and lower levels of un
employment tend to be more affected by covid-19. This result is in
tuitive and consistent with the punchline of this paper: more energy 
intensive areas tend to be more polluted and characterised by lower 
levels of unemployment. The result of this regression says that the 
landscape composition of the provinces continues to be negatively 
correlated with covid-19 infection rates over and above their levels of 
pollution and economic activity. Under Model 2A, we have selected the 
variables which minimise the AIC, a standard way to perform model 
selection in econometrics. Although we have not performed a sys
tematic search across all possible model specifications, Model 2A im
proves over Model 2, as can be seen by the lower AIC and higher ad
justed R2. Our coefficient of interest, C + D, remains negative and 
statistically significant at 10%. 

Model 3 considers robustness to non linearities. We have added 
square and quadratic terms of some of the control variables (age, 
density and pollution), as well as the share of inhabitants over 65. The 
coefficient associated with the non intensive areas is still negative and 
with a higher statistical significance (it is now significant at 1%). Model 
3A optimises the non linear variables using the AIC criterion. We notice 
that the fit of this non linear model is not as good as that of Model 2A. 

Finally, Model 4 addresses non linearities by taking into account 
spatial dependence by adding the distance of each provice from 
Bergamo as explanatory variable. The distance is significant and with 
the expected negative sign: provinces further away from Bergamo tend 
to have lower rates of covid-19 infection. Results (not reported here) 

Table 3 
Linear regressions.         

Dependent variable: COVID  

Model 1 Model 2 Model 2A Model 3 Model 3A Model 4  

C + D −0.29 (0.09)*** −0.15 (0.08)* −0.14 (0.07)* −0.31 (0.1)*** −0.27 (0.08)*** −0.14 (0.07)* 
AGE  −0.37 (4.85)  1145 (1925)   
DENSITY  −0.01 (0.01)  −0.01 (0.04)   
POP  −2.36 (1.69) −3.66 (1.74)**   −3.71 (1.67)** 
POLLUTION  5.48 (1.19)*** 5.55 (1.09) *** 3.37 (7.05)  5.31 (1.12)*** 
UNEMP  −2.42 (0.51)*** −2.23 (0.35) ***   −1.74 (0.38)** 
OVER_65  0.76 (4.20)  6.43 (4.06) 3.00 (0.88)***  
MORTALITY  2.87 (3.44)     
AGE2    −24 (42)   
AGE3    0.18 (0.31)   
DENSITY2    −3E-5 (4E-5) −3E-5 (1E-5)**  
DENSITY3    1E-8 (1E-8) 1E-8 (6E-9)**  
POLLUTION2    −3.52 (3.05)   
POLLUTION3    0.59 (0.33)* 0.16 (0.02)***  
DISTANCE      −2.39 (1.01)** 
Obs 107 
AIC 9.71 9.15 9.09 9.32 9.24 9.09 
Adjusted R2 0.08 0.50 0.52 0.43 0.45 0.52 

Note: White (1980) robust standard errors in parenthesis. ** denotes significance at 5% level, *** significance at 1%.  
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are robust to breaking the measure in short and long distances. 
Although statistically significant, adding the distance increases the fit of 
the model only marginally, since the AIC and adjusted R2 are only 
slightly better than those of Model 2A (the numbers are identical, as the 
improvement is at the level of the third decimal). More importantly for 
the discussion of this paper is that the coefficient associated with C + D 
is still negative and still statistically significant. 

Overall, we can conclude that our econometric analysis points to a 
robust relationship between the composition of the Italian rural land
scape and covid-19 infection rates. One important caveat is that cor
relation does not imply causation. Many other factors, not considered in 
our analysis, may be responsible for this correlation. For instance, these 
regions are also characterised by colder temperatures and higher hu
midity levels, which in turn may be correlated with the share of energy- 
intensive areas and exposure to covid-19. More research is needed to 
shed light on the true causal links behind our findings. 

4. Discussion 

The COVID-19 pandemic has led to the publication of numerous 
articles in many fields of study. The most analysed topics are related to 
the economic impact of the pandemic on the agricultural market, both 
from a global point of view (Elleby et al., 2020) or from a local point of 
view (Villulla, 2020; Weersink et al., 2020; Kumar et al., 2020), in
cluding articles considering food production (Torero, 2020). Some 
studies have also linked the expansion of the intensive agriculture to the 
increasing insurgence of the zoonotic infection like the COVID-19, un
derlying the consequence of the deforestation process that reduces the 
distance between the humankind and the wild animals (Baudron and 
Liégeois, 2020). There are studies investigating the spatial and tem
poral distribution of the infection, but without taking into account the 
type of agricultural landscape (Xie et al., 2020; Kuebart and Stabler, 
2020). The attempt of this research is to offer another point of view, 
crossing the spatial distribution of the infection with the type of agri
cultural landscape, in order to find a possible correlation between the 
spread of the virus and the intensity level of the agricultural landscape. 

From this point of view, our empirical analysis reveals the presence 
of a strong negative correlation between less energy-intensive land
scapes and covid-19. These results are confirmed by a more formal 
regression analysis and are robust to a variety of controls, such as de
mographic, economic, health and environmental variables, as well as 
potential non linearities and spatial dependence. The results are even 
more striking if one considers that the population of less energy-in
tensive provinces is on average older and according to the most recent 
medical research more vulnerable to the virus (Williamson et al., 2020). 

The ultimate causes behind the strong negative correlation remain 
unknown and more research is needed on an international scale to 
confirm the statistical results of this paper and to find possible scientific 
explanations. What is certain is that energy-intensive areas are also 
more vulnerable to pollution by nitrates, methane and emissions of 
nitrous oxide (Houser et al., 2020) and they are also contributing to 
ecosystem simplification, loss of ecosystem services and species ex
tinctions (Tilman et al., 2001). Independently of whether there is a 
causal link between pollution and covid-19, incentives for a more sus
tainable agriculture are needed to meet the demands of improving 
yields without compromising environmental integrity or public health 
(Tilman et al., 2002). The presence of the strong correlation between 
energy-intensive landscapes and contagion unearthed in this paper 
should provide an additional rationale for the scientific and political 
communities to rethink the relationship between humans and their 
territory. 

From the environmental point of view, the potential of low-energy 
agriculture should be acknowledged by policy-makers and the general 
public, as already suggested in the past (Bignal and McCracken, 1996). 
Protecting European landscapes and biotopes of high natural 

conservation value requires low-intensity farming. Maintaining farmers 
in rural areas would contribute to reducing hydrogeological risk and 
the loss of fertility due to the abandonment of traditional agricultural 
practices (Agnoletti et al., 2019). It would also foster sustainable 
quality food resources, one of the most important assets of the Italian 
rural economy (ISMEA, 2018), and reduce the tendency to import raw 
material from abroad. Most of this farmland has little political clout, 
with decisions often shaped by farm businesses lobbying at European 
and national levels. The positive externalities associated with the con
servation and correct management of the landscape resources should 
weigh in the economic assessment of rural development strategies. 

This discussion is intimately linked to the broader issue of which 
actions are best suited to help the Italian economy emerging from the 
severe recession triggered by the pandemic. Many economists think that 
the most expansionary fiscal policy at the current juncture is investment 
in health research, because until a cure is available, people continue to 
be afraid to resume their normal life. Even if large subsidies are granted 
to sustain their livelihood, chances are that they will go unspent be
cause they are paralyzed with fear (Summers, 2020). From this per
spective, policies aimed at returning people back to rural areas, to the 
extent that they reduce contagion and inject confidence, have a fiscal 
expansionary element which should be taken into account when per
forming a cost-benefit analysis. This holds true not only in the current 
circumstances but especially in the light of future pandemics, sug
gesting different policies for the different parts of the territory. 

People have moved out of rural areas for a variety of reasons. They 
will not go back unless proper incentives are provided. We highlight 
three main avenues. First, the next EU Common Agricultural Policy 
2021–2028 should promote a sustainable development of less energy- 
intensive areas, aimed at reducing or reverting the depopulation of 
these territories. The main objective should be to identify opportunities 
based on the specific unique resources of these areas rather than trying 
to make them function in the same way as “mainstream industrialized 
regions” (ESPON, 2018). Second, larger investments in information and 
communication technology (ICT) are fundamental for these regions. 
The percentage of agricultural firms using ICT stands at only 3.8% and 
is concentrated (54% of the total) in northern Italy (ISTAT, 2014). 
Third, access to healthcare, welfare and education services can be 
drastically improved by more general digitalisation. Faster internet 
connections should be considered as a basic public service. 

5. Conclusions 

Italians living in less energy-intensive landscapes are less exposed to 
covid-19. Less energy-intensive landscapes have an average of 49 in
fected per square kilometre and 28 per 10.000 inhabitants, compared to 
134 per square kilometre and 37 per 10.000 inhabitants in more en
ergy-intensive zones. These results are confirmed by a more formal 
regression analysis and are robust to a variety of controls. 

The payoffs for the country to revitalize rural areas can be large, 
paving the way to a more sustainable development model, valorizing 
landscape and local economic resources (ISTAT, 2016). The findings of 
this paper add another payoff, potentially the largest of all: making the 
population more resilient to the current and future pandemics. Not 
everybody will be inspired as Boccaccio to produce a timeless master
piece, but a more harmonious and balanced relationship with our en
vironment will surely help our society to better cope with the unknown 
ahead of us, including socio-economic and enviromnmental challanges. 
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