Table 3.
Age prediction performances of the different statistical models on an independent validation set.
Model | Number of CpGs | CpGs | Estimators | Training set (n = 1,028) | Testing set 1 (n = 385) | Independent testing set 2 (n = 100) | ||||
---|---|---|---|---|---|---|---|---|---|---|
1 PCR and 1 PSQ/PCR (1 replicate) | 1 PCR and 2 PSQ/PCR (2 replicates) | 2 PCR and 1 PSQ/PCR (2 replicates) | 3 PCR and 1 PSQ/PCR (3 replicates) | 3 PCR and 2 PSQ/PCR (6 replicates) | ||||||
Zbiec-Pierkarska 1 | 2 | CpG5,7 | R | 0.918 | 0.932 | 0.880 | 0.893 | 0.902 | 0.909 | 0.914 |
MAD | 6.885 | 6.397 | 5.445 | 5.319 | 5.147 | 5.050 | 5.011 | |||
RMSE | 9.127 | 8.803 | 6.870 | 6.624 | 6.440 | 6.290 | 6.201 | |||
MQR | 4 | CpG6 & CpG42,62–72 | R | 0.934 | 0.945 | 0.904 | 0.911 | 0.919 | 0.924 | 0.927 |
MAD | 5.521 | 4.910 | 4.786 | 4.619 | 4.425 | 4.266 | 4.232 | |||
RMSE | 7.574 | 7.057 | 6.225 | 5.996 | 5.765 | 5.598 | 5.504 | |||
SVMr | 2 | CpG6,7 | R | 0.947 | 0.948 | 0.902 | 0.906 | 0.917 | 0.923 | 0.925 |
MAD | 5.051 | 4.701 | 4.784 | 4.668 | 4.388 | 4.211 | 4.174 | |||
RMSE | 6.843 | 6.833 | 6.287 | 6.140 | 5.771 | 5.581 | 5.515 | |||
SVMl | 2 | CpG6,7 | R | 0.905 | 0.927 | 0.902 | 0.905 | 0.917 | 0.922 | 0.923 |
MAD | 6.246 | 6.036 | 5.536 | 5.484 | 5.289 | 5.211 | 5.197 | |||
RMSE | 9.078 | 8.095 | 6.874 | 6.796 | 6.525 | 6.404 | 6.375 | |||
BGR | 2 | CpG6,7 | R | 0.976 | 0.947 | 0.900 | 0.904 | 0.913 | 0.919 | 0.920 |
MAD | 3.471 | 4.772 | 4.892 | 4.842 | 4.577 | 4.436 | 4.469 | |||
RMSE | 4.660 | 6.931 | 6.397 | 6.314 | 5.973 | 5.803 | 5.741 | |||
mMDA | 1 | CpG6 | R | 0.906 | 0.927 | 0.902 | 0.905 | 0.917 | 0.922 | 0.923 |
MAD | 6.291 | 6.079 | 5.926 | 5.875 | 5.736 | 5.673 | 5.598 | |||
RMSE | 9.008 | 8.104 | 7.234 | 7.158 | 6.932 | 6.826 | 6.772 |