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subtype-specific susceptibilities in glioblastoma
Yunpeng Liu1,2,3, Ning Shi4, Aviv Regev1,2,3, Shan He4 & Michael T Hemann1,2,3,*

Abstract

Glioblastoma multiforme (GBM) is a highly malignant form of
cancer that lacks effective treatment options or well-defined
strategies for personalized cancer therapy. The disease has been
stratified into distinct molecular subtypes; however, the underly-
ing regulatory circuitry that gives rise to such heterogeneity and
its implications for therapy remain unclear. We developed a modu-
lar computational pipeline, Integrative Modeling of Transcription
Regulatory Interactions for Systematic Inference of Susceptibility
in Cancer (inTRINSiC), to dissect subtype-specific regulatory
programs and predict genetic dependencies in individual patient
tumors. Using a multilayer network consisting of 518 transcription
factors (TFs), 10,733 target genes, and a signaling layer of 3,132
proteins, we were able to accurately identify differential regula-
tory activity of TFs that shape subtype-specific expression land-
scapes. Our models also allowed inference of mechanisms for
altered TF behavior in different GBM subtypes. Most importantly,
we were able to use the multilayer models to perform an in
silico perturbation analysis to infer differential genetic vulnerabili-
ties across GBM subtypes and pinpoint the MYB family member
MYBL2 as a drug target specific for the Proneural subtype.
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Introduction

Glioblastoma multiforme (GBM) is the most common type of

primary brain tumors, accounting for 80% of primary malignancies

in the brain (Hanif et al, 2017). Despite being a rare disease,

affecting less than 10 in 100,000 adults globally per year (Hanif

et al, 2017), GBM remains one of the most clinically challenging

types of tumor, with a dismal median survival of ~ 15 months after

diagnosis (Koshy & Mccarthy, 2014). Current treatment options

include surgery, radiotherapy, and chemotherapy (temozolomide),

which have been shown to extend patient survival but are not cura-

tive (Weller et al, 2005). Targeted therapies against growth factor

receptors, PI3K/AKT/mTOR and MAPK pathways as well as cell

cycle control are either currently under clinical trials or have shown

little or no efficacy (Li et al, 2016; Zhao et al, 2017). Immunothera-

pies, including engineered chimeric antigen receptor T cells (CAR-T

cells) against tumor antigens (IL-13Ra2, HER2, EGFRvIII etc.), have
shown sporadic successes in animal models (Krenciute et al, 2017)

and recent clinical trials (Rourke et al, 2017; Ahmed et al, 2020),

yet factors including the highly immunosuppressive microenviron-

ment in the brain and target antigen loss have posed significant

obstacles to favorable responses.

Key therapeutic challenges in targeting GBM stem from high

levels of heterogeneity within and across tumors, as well as the

anatomically protected location of the tumors. In a pioneering effort

to understand GBM heterogeneity, Verhaak et al (2010) performed

multi-omics profiling of GBM tumors that uncovered four major

molecular subtypes based on transcriptome signatures, named Clas-

sical, Neural, Proneural, and Mesenchymal. These four subtypes,

which have recently been revised to three due to the Neural subtype

likely arising from normal neuronal tissues in tumor margins (Wang

et al, 2017), display distinct mutational landscapes as well as

responses to radiotherapy. Interestingly, recent work on mapping

the clonal organization of patient tumors (Sottoriva et al, 2013) as

well as single-cell transcriptome profiling of GBM tumor samples

have shown that expression signatures of the Classical, Proneural,

and Mesenchymal subtypes are manifested at the single-cell level

(Patel et al, 2014; Wang et al, 2017), suggesting that individual

tumors fall into each of the three subtypes due to the fact that the

majority of tumor cells within the tumor exhibit the corresponding

subtype’s signature. More recent single-cell studies have revealed

additional layers of intra-tumoral heterogeneity due to the co-exis-

tence of immune cells (Darmanis et al, 2017) as well as plasticity of

transcriptional programs within the same tumor (Neftel et al, 2019).

These observations imply that a key route to dissecting GBM intra-

and intertumoral heterogeneity is understanding the transcription

regulatory networks that give rise to the different molecular

subtypes and cell states. Despite the highly challenging nature of
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such a task, a reasonable starting point is to infer the regulatory

code of subtype-/cell state-specific expression programs. Pinpoint-

ing the transcription factors that are responsible for shaping distinct

GBM transcriptional subtypes would provide a mechanistic view of

the source of heterogeneity and, more importantly, allow systematic

inference of susceptibilities in each subtype of GBM that would in

turn facilitate the design of targeted therapy.

Several computational models have been proposed to under-

stand global transcription regulation in mammalian cells so far.

These models infer genome-wide regulatory links between TFs and

target genes primarily using one or more of the following strate-

gies: (i) expression association methods, (ii) analysis of physical

binding of TF to promoters and enhancers, and (iii) regression

models. Association between the expression of TFs and target

genes are quantified by either co-expression metrics (Stuart et al,

2003; Langfelder & Horvath, 2007; Gaiteri et al, 2014; Liu et al,

2014; Aibar et al, 2017) or mutual information (Margolin et al,

2006; Lachmann et al, 2016) to infer potential regulatory relation-

ships. However, these methods do not allow direct inference of

causal relationships in transcription regulation, and association-

based links usually need to be filtered based on additional

evidence. Moreover, the parameters in these models do not contain

direct information on both the magnitude and directionality of TF

regulation of a given target, despite the fact that some of them can

be interpreted as magnitude in a probabilistic fashion [e.g.,

ARACNe (Margolin et al, 2006; Lachmann et al, 2016)] or using

rank-based scores [e.g., GENIE3 (Huynh-Thu et al, 2010)]. In TF

physical binding-based models, ChIP-seq or chromatin accessibility

datasets are used in combination with TF motif databases to deter-

mine regulatory links (Gerstein et al, 2012; Neph et al, 2012;

Marbach et al, 2016). However, these methods also fail to explic-

itly model the magnitude of regulation. Linear regression models

of transcription regulation assign coefficients that describe both the

directionality in which and the relative extent to which each TF

regulates each target gene (Setty et al, 2012; Li et al, 2014; Pearl

et al, 2019). However, these models do not allow biologically

meaningful interpretations of the inferred regulatory relationships,

as gene expression regulation acts in a nonlinear fashion. Plaisier

et al (2016) proposed an integrated genomic and transcriptomic

model, SYGNAL, for dissecting GBM-related causal regulatory

networks and predicting drug targets. The SYGNAL model utilizes

a combination of somatic mutation profiles, inferred TF physical

binding map and gene co-expression to infer TF and microRNA

(miRNA) regulatory relationships, filters for experimentally

supported edges, and uses network edge orientation to infer

causality in the network. While the SYGNAL pipeline highlights

key regulatory links (e.g., IRF1-IKZF1) in GBM and generates high-

confidence inference on GBM-specific drug-miRNA combinations,

it relies heavily on a thorough compendium of experimental

evidence which may not be readily available for other diseases or

biological processes. In addition, such a largely binary network

model does not allow inference of quantitative changes in tran-

scriptome and cellular phenotype in response to perturbations.

Thus, a common issue insufficiently addressed by current methods

for modeling transcription regulatory networks is the lack of

parameterization that permits functional interpretation of the regu-

latory links and predictive modeling of gene expression and cellu-

lar phenotypes. Such a feature is important for identification of

key regulators that are essential for the survival of cells in a given

state and are thus potential drug targets.

To dissect the TF regulatory circuitry underlying the heterogene-

ity of GBM and construct a model that facilitates generation of

actionable hypotheses for targeting different GBM subtypes, we inte-

grated multiple lines of data and assembled a novel computational

pipeline, Integrative Modeling of Transcription Regulatory Interac-

tions for Systematic Inference of Susceptibility in Cancer

(inTRINSiC). We combined two TF binding networks computation-

ally inferred from tissue-specific chromatin landscape data and TF

binding motifs, and parameterized edges using a nonlinear regres-

sion model built from thermodynamic description of transcription

regulation. Fitting GBM gene expression data from the Cancer

Genome Atlas (TCGA) to our model, we constructed subtype-

specific transcription regulatory networks that explain gene

expression variation and provide a mechanistic view of differential

transcription factor activity. Importantly, we were able to predict

each GBM subtype’s dependency on each transcription factor by

integrating our transcription regulatory model with protein signaling

networks and gene essentiality data in the DepMap project (Meyers

et al, 2017; Tsherniak et al, 2017) and show that perturbing the

expression of a subset of transcription factors may provide subtype-

specific therapeutic benefits.

Results

Nonlinear regression accurately models subtype-specific gene
expression in glioblastoma multiforme tumor samples

To model transcription regulation in different subtypes of glioblas-

toma multiforme, we first constructed a candidate network of puta-

tive TF-gene regulatory interactions and then parameterized each

interaction by fitting a nonlinear regression model to patient tumor

gene expression profiles (Fig 1A and B). In order to infer a candi-

date set of brain tumor-specific regulatory pairs, we leveraged two

sources of information: (i) DNaseI hypersensitivity profiles of brain

tumor cell lines, which chart open chromatin regions that may be

accessible to transcription factors and (ii) the JASPAR transcription

factor binding motif database (Sandelin et al, 2004). We assigned

each TF to each potential target gene by modeling the probability of

a given TF binding to each open chromatin region using the Protein

Interaction Quantification (PIQ) algorithm (Sherwood et al, 2014).

We then expanded this set of candidate TF-target pairs by including

edges from a previously constructed tissue-specific regulatory

network for the central nervous system (Marbach et al, 2016)—the

organ system giving rise to GBM development. Additional details on

data processing and parameter selection for the network construc-

tion process are provided in Materials and Methods. The above

procedures result in a list of candidate TF-target gene pairs that are

binary and unsigned. Next, we inferred the strength and sign of

regulation for each of these pairs using a nonlinear regression model

that describes each target gene’s expression as a sum of basal levels

and additive regulatory effects (in logarithmic space) from its regu-

lator TFs. Here, individual regulatory effects from TFs are based on

a biophysical model of transcription regulation (Bintu et al, 2005),

and we assume independent and saturable action of each TF. The

parameter for each TF’s regulatory effect on each target gene, F,
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indicates the sign and strength of the regulatory interaction, where

an F value greater than 1 implies that the TF activates the target

gene, an F value between 0 and 1 implies repression of the target’s

expression by the TF, and an F value of 1 denotes the absence of

regulatory interactions between a given TF-target pair.

To infer subtype-specific F values, we first classified TCGA

GBM samples into different subtypes using the nearest centroid

method where the subtype centroids are computed as in Verhaak

et al (2010). To account for the recent discovery that the Neural

subtype may be an artifact of normal tissue “contamination”, we

also used a new classification scheme by Wang et al (2017)

comprised of only the Classical, Proneural and Mesenchymal

subtypes, and compared the assignment of subtype labels. We find

that the identity of over 80% of samples are conserved in each

remaining subtype and that the Neural subtype samples were re-

distributed into the other three subtypes in the new classification

scheme (Fig EV1B). We estimated F values for each TF-gene pair

in each GBM subtype by fitting the regression model to subtype-

specific expression profiles in the TCGA GBM dataset and imposing

an L2-like regularization term that penalizes large absolute values

of parameters and prevents overfitting, and used 5-fold cross-vali-

dation to select the best hyperparameters for regularization

strength (Fig EV1C). After running the regression model on the

original and new classification schemes (omitting the Neural

subtype samples in the original scheme), we compared the F value

profiles for each TF between the old and new labeling schemes

and found that there is significant correlation between the two in

all three subtypes (Fig EV1D). This suggests that the regression

pipeline is robust with respect to the differences in sample

numbers in each subtype. We will hereafter use the samples from

all subtypes, except the spurious Neural subtype samples (likely

representing a mixture of multiple cell states), from the original

TCGA classification system for subsequent analyses.

Our nonlinear regression models are capable of accurately

predicting GBM tumor gene expression with high subtype speci-

ficity, as shown by an inter-subtype expression prediction experi-

ment where a subtype mismatch between the model and the data

would result in a significant loss in accuracy of prediction (Fig 1C).

Additionally, F value profiles estimated from the bulk tumor data

used in this study showed a significant correlation with those

derived from subtype-specific single-cell expression profiles (Patel

et al, 2014) (Fig 1D), indicating that neither the dataset nor our

models were significantly biased by artifacts from bulk cell

mixtures. We therefore performed all of our downstream analysis in

this study using the TCGA bulk expression dataset, based on its high

gene coverage and sample abundance compared with sparse single-

cell data. Additionally, we compared models built from an indepen-

dent RNA-seq set of 172 GBM samples from the Chinese Glioma

Genome Atlas (CGGA) project (Wang et al, 2015; Liu et al, 2018)

that were classified using the same method as we did for TCGA

samples and found that there is a significant overlap between the

regulatory edges inferred by the model on the TCGA and CGGA

data. This overlap occurs despite vastly different sample sizes and

expression profiling platforms (Figs 1E and EV1F), suggesting that

the regression models are also robust with respect to the size and

type of expression data used.

A key artifact that may diminish the power of this regression

model is that its capability of capturing TF-target gene regulatory

parameters may be limited to transcription factors showing high

expression variability. We show that this is not the case by plotting

the mean absolute log2-F values for transcription factors against the

coefficient of variation in their expression values (Fig EV1G), which

revealed a non-monotonic relationship between mean regulatory

strength and expression variability. Additionally, such a pattern is

in agreement with the idea that TFs with extremely high regulatory

potentials (high absolute log2 F values, such as E2F family transcrip-

tion factors E2F2 and E2F8) are normally maintained at stable

expression levels, whereas those with medium regulatory strengths

(such as TWIST1 and, interestingly, several HOX family genes) are

variably expressed—possibly to mediate responses to stimuli and

facilitate cell state changes. Figure 1F–H shows clustered heatmaps

of F value profiles of TFs with top average regulatory strengths as

indicated by absolute log2 F values. Several of these TFs, including

GATA1 and SP1, have been suggested to be involved in the progres-

sion and invasiveness of glioblastoma cells (Guan et al, 2012).

Importantly, the same gene is often co-regulated by a cluster of TFs,

suggesting that our regulatory models may be able to capture inter-

actions among TFs, which we will explore in the following sections

of this paper.

Gene expression modeling captures known interactions among
transcription factors

We next asked whether the F values obtained from our nonlinear

regression models are consistent with known biology of transcrip-

tion regulation. We hypothesize that TFs with correlated regulatory

profiles, i.e., F value vectors, are more likely to be interaction and/

or co-regulatory partners (Fig 2A). To test this, we computed a

robust correlation metric between each pair of regulatory profiles

using Random Sample Consensus (RANSAC) outlier detection

(Fischler & Bolles, 1981) and examined the top correlated pairs. The

RANSAC algorithm is used to efficiently estimate the dominant

correlation structure within each pair of F value vectors, while

guarding against extreme F values that may substantially skew

correlation calculated with canonical Pearson’s correlation coeffi-

cient. Here, we first focused on TF pairs that are consistently corre-

lated across GBM subtypes, which indicate that they may be

instrumental for brain-specific transcription regulation or that they

are part of the core transcription regulation machinery in the cell.

Indeed, several well-characterized universal TF interactions emerge

from the highly correlated pairs, an example of which is MYC and

MAX, a pair of transcription co-activators for a large number of

target genes across multiple tissue types. As shown in Fig 2B, MYC

and MAX show tightly correlated regulatory profiles across all three

GBM subtypes. Interestingly, on target genes where MYC shows

repression (pink points), the correlation of its F values with those of

MAX tends to be diminished. This is in line with the known biology

of MYC where instead of MAX it partners with the transcription

factor MAD (not modeled in this analysis) to repress target gene

expression (Amati, 1994; Grandori et al, 2000). When we set

increasingly stringent cutoffs for correlation coefficients, we found

that the top 1% correlated pairs show a significant enrichment of

annotated interactions in the BIOGRID database (Chatr-aryamontri

et al, 2015; Fig 2C, Fisher’s exact test P-value = 1.655 × 10�12).

Consistently, the observed level of enrichment significantly exceeds

the range of distribution estimated from random sampling of TF-TF
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pairs (1,000 iterations, simulated P-value = 0, Fig 2D). Figure 2E

shows a network of known BIOGRID interactions among the top 1%

correlated TF pairs, where a few well-characterized pairs/hubs,

including CTCF-YY1, HIF1a-Sp1, and the histone acetyltransferase

EP300 that regulate a broad range of target genes, are highlighted in

blue.

As a comparison, we have also constructed GBM subtype-

specific regulatory networks using ARACNe (Margolin et al, 2006;

Lachmann et al, 2016), a mutual information-based method for

inferring regulatory links based on gene expression. We found that

there is minimal correlation between the regulatory parameters

inferred by ARACNe (i.e., estimated mutual information) and F

values from our pipeline (Fig EV2B). This suggests that ARACNe

and inTRINSiC may be exploring vastly different types of regula-

tory interactions. To test if this is the case, we mined for TF-TF

interactions by computing robust correlation coefficients among

the parameters estimated by ARACNe for each pair of TFs. Indeed,

inTRINSiC infers a substantially larger set of TF interactions that

significantly overlap with those inferred by ARACNe (Fig EV2C).

When we examined the number of known BIOGRID interactions

captured by the two methods, as well as those captured by

GENIE3, another commonly used network inference tool that ranks

TF-target regulatory edges using random forest regression impor-

tance metrics (Huynh-Thu et al, 2010) [utilized as part of the

single-cell regulatory network construction pipeline SCENIC (Aibar

et al, 2017)], we find that interactions inferred from all three meth-

ods show significant enrichment of known interactions at increas-

ingly stringent cutoffs for correlation between regulatory profiles (F

value or mutual information vectors, Fig EV2D). Thus, inTRINSiC

shows comparable detection power for regulatory interactions as

two other state-of-the-art tools for building regulatory models. In

addition, inTRINSiC potentially expands the inferred TF-TF interac-

tion space compared with ARACNe in a manner that warrants

further experimental interrogation. A summarized comparison

between inTRINSiC, ARACNe, and GENIE3 is provided in

Table EV1.

Transcription factor repurposing may be responsible for shaping
subtype-specific transcriptomes

After confirming that our model accurately explains gene expression

variation in GBM and that the regulatory parameter F delineates key

features of transcription regulation, we proceeded to investigate

whether GBM subtypes show distinct regulatory landscapes, and if

so, to what extent altered transcriptional regulation explains dif-

ferential expression profiles across subtypes.

To mine for subtype-specific regulatory profiles, we performed a

permutation experiment where subtype labels were randomly shuf-

fled and new subtype-specific regression models were fitted for each

iteration. We looked for TF-target pairs that showed subtype-specific

regulatory parameters that are unlikely to be observed in permuted

data (see Materials and Methods for details). Such an analysis

revealed many TFs that displayed distinct regulatory parameters in

one GBM subtype compared with the other two for the same set of

target genes. We hereafter term such altered behavior “repurposing”

of transcription factors and deemed TFs with the majority of its

targets showing F values unique to a single subtype the “signature

TF” of that subtype. An example of TF repurposing is shown in

Fig 3A, where MXI1 is a Proneural subtype signature TF as defined

above. It can be seen in the heatmap of log2 F values that MXI1

represses a subset of targets only in the Proneural tumor samples.

Plots of the expression of one of MXI1’s targets, ITGA5, against that

of MXI1 itself are shown in Fig 3A. Consistent with the trends in F

values, there is a negative correlation between the expression of

MXI1 and ITGA5 only in the Proneural subtype. To define a regula-

tory signature for each of the three GBM subtypes, each TF that

showed significant single-cell expression levels was assigned a

signature subtype. Since it is likely that the same TF may contribute

to the signature regulatory profiles of multiple subtypes, we

computed a score quantifying the levels of participation of each

subtype’s signature TFs in that subtype, shown as heatmaps in

Fig 3B. Indeed, despite high exclusivity of a subset of signature TFs

(DDIT3 and ELK4 in the Mesenchymal subtype, for example), many

signature TFs show comparable participation in the signature of at

least one other subtype (STAT5B, MYC, and STAT3, etc.). This is

consistent with the fact that the latter type of TFs regulate a broad

range of cellular functions in a tissue-nonspecific way.

Transcription factor activity could potentially shape the differen-

tial gene expression landscapes observed across GBM subtypes in

one of three ways: (i) through altered TF expression per se, (ii)

through differential regulatory strength and directionality (mani-

fested as altered F values), or (iii) a combination of these two mech-

anisms. Since we observed F value profiles that are unique to each

subtype, we were particularly interested in the second mechanism.

To examine the extent to which GBM subtype-specific transcrip-

tomes are explained by subtype-specific TF regulatory parameters,

we identified genes within each subtype’s expression signature

whose TFs showed concomitant repurposing in that subtype (see

Materials and Methods for details). Interestingly, we found that

expression signature genes are significantly enriched for genes that

underwent differential regulation by TFs in all but one subtype

(Fig 3C). Additionally, when we computed the extent to which

◀ Figure 1. Modeling subtype-specific transcription regulation in glioblastoma tumor samples.

A Schematic of workflow for compiling a candidate network for GBM-specific transcription regulation.
B Nonlinear regression assigns magnitude and directionality of transcription regulation for each transcription factor-target gene pair through a parameter, F value.
C Inter-subtype prediction matrix, where the regression model from each subtype along a column is used to predict gene expression in another subtype along a row,

and scaled average of the median symmetric mean absolute percentage error (sMAPE) values across top variable genes is visualized as heatmap colors.
D Distribution of correlation coefficients between F value profiles obtained from bulk (TCGA) and single-cell datasets.
E Venn diagrams showing overlap of edges between regression models built from TCGA and CGGA where a transcription factor shows up-regulation (upper row) or

down-regulation (lower row) of its target genes. Shown from left to right are Classical (red), Proneural (green), and Mesenchymal (orange) subtypes, respectively,
and corresponding CGGA subtypes are colored in gray. Fisher’s exact test P-values for Venn diagrams are labeled correspondingly.

F–H Heatmaps of representative subsets of F values for the 3 GBM subtypes (Classical, Proneural, and Mesenchymal, respectively). Rows and columns correspond to
transcription factors and target genes with top absolute log2 F values, respectively.
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target gene expression is correlated with that of their regulators, we

found that there is a significant decrease in the mean correlation

coefficient when comparing genes which are differentially regulated

by TFs across subtypes (manifested as subtype-specific F values)

with those which are not (Fig 3D), further supporting the idea that

TF repurposing serves as a significant source of differential gene

A

B

D E

C

Figure 2.
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expression. Note that the Classical subtype is an exception here,

likely due to a significantly lower number of genes involved in the

analysis or the possibility that TFs may change regulatory behavior

across different expression levels due to negative feedback mecha-

nisms (Chalard et al, 2009).

An important feature of our transcription regulatory models is

that they allow prediction of gene expression changes when the

expression levels of TFs are perturbed. To further examine the

roles which signature TFs play in shaping and maintaining

subtype-specific transcription landscapes, we next asked whether

perturbation of certain TFs can shift the transcriptome profiles of

one subtype of GBM to another. Such cell state changes may be

particularly relevant in GBM, as GBM cells have been shown to

display phenotypic plasticity where cells transition from the

Proneural to a Mesenchymal phenotype (Fedele et al, 2019), and

that patient GBM cells from the same genetic origin could give rise

to progeny harboring divergent transcriptional states (Neftel et al,

2019). To see if our models can recapitulate transcriptional plastic-

ity in GBM, we designed a recursive algorithm to simulate the

propagation of changes in regulatory effects throughout the tran-

scription regulatory network upon knocking down a given TF (see

Materials and Methods for further details and pseudocode for the

algorithm). Having applied such a perturbation algorithm to the

transcription factor STAT3 (a Mesenchymal signature TF, see

heatmap in Fig 3B), we compared the transcriptome profiles of

patient samples before and after perturbation in a 2-D embedding

(Fig 3E). STAT3 has been suggested to act as a master regulator of

the Mesenchymal phenotype in GBM (Carro et al, 2010). We

hypothesized that loss of STAT3 expression may induce a shift

away from the Mesenchymal phenotype. Indeed, as shown by

orange arrows in Fig 3E, many Mesenchymal samples shifted

toward the Classical cluster upon perturbation of STAT3 (red

arrows), implying that a subset of Mesenchymal GBM samples lose

their established cell states. Interestingly, a few Proneural samples

were redirected (green arrows) toward the Mesenchymal cluster.

This may be due to the observation that STAT3 showed remark-

able signature participation in both the Mesenchymal and Proneu-

ral subtypes (Fig 3B heatmap). Other examples of transcriptomic

shifts toward another subtype in TCGA patients in response to

perturbation of signature TFs include HOXA1 and NEUROG1

(Fig EV2E and Table EV2). Interestingly, when we inspect the

subtype specificity of top shift-inducing TFs, we observe the

largest transcriptome shifts in Mesenchymal subtype samples

(Fig 3E, right panel), suggesting that the Mesenchymal subtype

may represent a metastable state that is hyper-sensitive to diverse

perturbations. Taken together, our signature and perturbation

analyses further support the idea that signature transcription

factors maintain cell states and subtype identity in GBM.

Subtype-specific regulatory profiles in glioblastoma multiforme
may be explained by altered functional partnering among
transcription factors

How do transcription factors switch regulatory behavior on the

same set of target genes across different cell states? A signature anal-

ysis of correlation among regulatory profiles similar to that of F

values offers mechanistic insight into such alterations. Here, we

transition from regulatory signatures, which describe how each TF

differentially regulates each target gene in each subtype, to co-regu-

latory signatures, which capture the correlation structure among the

regulatory capacities of pairs of TFs at multiple target genes in each

subtype. Specifically, we computed RANSAC correlation coefficients

among F value vectors of transcription factors in each subtype and

looked for correlated TF pairs which are unique to each subtype. An

example of subtype-specific co-regulatory profiles that emerge from

the analysis is shown in Fig 4A, where the F values of the transcrip-

tion factors MYB and MSX2 are only correlated in the Mesenchymal

subtype.

We defined a set of co-regulatory signature TFs for each subtype

in a similar way to that used to extract regulatory signatures and

again calculated a participation score for each signature TF across

the three subtypes (Fig 4B). Here, the number of signature co-regu-

latory TFs in each subtype does not seem to correlate with that of

signature regulatory TFs as shown in Fig 3B, suggesting that addi-

tional mechanisms apart from changes in co-regulatory partners are

involved in TF repurposing.

For a global view of differential TF-TF partnering, we plotted

circos (Krzywinski et al) diagrams representing top correlations

between the F value profile of each co-regulatory signature TF with

that of other TFs (Fig 4C, upper panel). It seems that the overall

architecture of such a co-regulatory network is largely conserved

across GBM subtypes (Fig 4C, upper panel and Fig EV2A). When

we focused on individual signature TFs, however, local rewiring of

the co-regulatory network emerged, for example in the case of the

Proneural co-regulatory signature TF, MXI1 (Fig 4C, lower panel).

Interestingly, MXI1 is also a regulatory signature TF as determined

in the previous section. In fact, there is a significant overlap

between the regulatory and co-regulatory signature TF sets (hyper-

geometric test P = 0.011, with overlapping TFs shown in Venn

diagram in Fig 4D), suggesting that the altered behavior of several

TFs could be due to differential coordination with other TFs. To see

if this was the case, we examined the correlation of F values across

◀ Figure 2. Nonlinear regression models capture known interactions among transcription factors.

A Schematic of workflow for inferring TF-TF interactions.
B Scatter plot showing consistent correlation between the regulatory profiles (F values) of MYC and MAX across all three subtypes. Pearson correlation coefficient (R2)

values are shown. Regions where MYC shows negative regulation of gene expression (hence likely to be interacting with MAD rather than MAX) and MAX shows no
significant regulation are shaded pink, with threshold for negative regulation shown as dotted horizontal lines.

C TF-TF pairs with top F value correlations are enriched for known interactions in the BIOGRID database. P-value for Fisher’s exact test of proportion of known
interaction pairs among top 1% correlated TFs compared to selecting all possible interaction pairs is shown.

D Distribution of prediction precision of known BIOGRID interactions from 2,000 randomly drawn TF pairs (histogram) compared with those predicted from TF pairs
with top 1% F value correlation (vertical line). Simulated P-value is 0.

E Network representation of captured known BIOGRID interactions from top 1% F value correlation coefficients. A subset of nodes participating in well-characterized
interactions, including CTCF-YY1 and dense interaction subnetwork of EP300, is colored in blue.
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target genes which undergo differential regulation across subtypes.

Indeed, we found that several co-regulatory TFs showed signifi-

cantly different distributions of correlation coefficients with other

TFs at target genes which were differentially regulated (Fig EV6).

Figure 4E shows the example of MXI1 (left panel), where additional

correlations, or partnerships, with other TFs are gained in the

Proneural subtype. This suggests that analyses of F values could

pinpoint changes in the coordinated action of TFs at specific target

genes that, in turn, altered the regulatory strength and/or direction-

ality of particular TFs. For TFs that did not show subtype-specific

co-regulatory partnerships at differentially regulated target genes

(for example the glucocorticoid receptor NR3C1, a Mesenchymal

signature TF, see Fig 4E right panel), possible mechanisms may

include trans-repression, where a TF can achieve indirect repression

of target genes by associating with other activator TFs and prevent

them from binding to their respective regulatory regions, as in the

case of NR3C1(Ray & Prefontaine, 1994).

Integrated transcription regulation-protein signaling network
models enable in silico screening for gene essentiality and infer
new therapeutic targets in glioblastoma multiforme

Having established that our transcription regulatory models could

both accurately capture gene expression variation and provide

mechanistic insights into the mode of action of transcription factors,

we next sought to build a novel, integrated pipeline for predicting

phenotypic output of TF perturbations beyond transcription and

dissecting subtype-specific dependencies in glioblastoma. A sche-

matic of this subroutine and its relationship with other components

of the inTRINSiC pipeline is shown in Figs 5A and EV5. Specifically,

the effects of transcription regulation (i.e., gene expression values)

are overlaid onto a protein signaling network, where a random

walk-based algorithm termed Exponential Ranking (Traag et al,

2010) is employed to estimate the activity level of each protein (see

Materials and Methods for a detailed description of the algorithm).

Our method differs from existing protein activity scoring algorithms

such as VIPER (Alvarez et al, 2016) in that it does not rely on

strengths of transcription regulation as a “readout” for protein activ-

ity, i.e., instead of assessing how much a regulator ultimately

changes the expression of other genes (as in VIPER, which is

coupled to output from ARACNe), we use gene expression values

(computed by the nonlinear regression models of inTRINSiC) and

direct protein–protein signaling interactions to estimate the relative

activity levels of proteins based on the strength and nature of the

interactions. When comparing protein signaling activity estimated

from VIPER and that from our exponential ranking method, we

found that exponential ranking was able to estimate protein activity

changes for all 3,132 proteins covered by our signed, weighted

model whereas VIPER only covered 218 proteins deemed as master

regulators by the algorithm (Fig EV2F). Additionally, among the

covered interactions, VIPER did not capture some of the well-estab-

lished signaling activities, such as the EGFR/STAT3 and EGFR/

KRAS axes, where EGFR is expected to activate these two down-

stream targets (Fig EV2G and H).

Using such a framework for simulating perturbation of TF

expression as well as information flow in the cellular circuitry, we

fitted our regulatory models to 32 brain tumor cell lines (using a

training-validation set split of 24-8 and 4-fold cross-validation) in

the CCLE cell line collection (Barretina et al, 2012), which can each

be assigned an expression subtype based on proximity to centroids

extracted from TCGA tumor data (Fig EV3A and B, see Materials

and Methods for details). We first performed Exponential Ranking

on these 32 cell lines to estimate protein activity levels. To infer

effects of knocking down individual TFs, we then perturbed the

expression of each TF using our recursive algorithm. A new set of

protein scores were then computed based on new expression levels

obtained from the perturbation. Next, we trained an elastic net

regression model for each perturbed TF to find a sparse linear

combination of proteins, the changes in whose activity best predict

the TF’s gene essentiality, as quantified by depletion scores in the

DepMap genetic screen dataset (Materials and Methods).

Our training-validation pipeline identified a set of protein activity

changes, following in silico perturbation of TFs, that could poten-

tially predict TF essentiality in individual cell lines. We tested these

predictions on eight independent CCLE cell lines that were not

included in our initial training-validation set. Our regression models

were able to predict essentiality scores that were highly consistent

with experimentally determined scores for the majority of TFs

examined in this study (Fig 5B showing TFs ranked by the inverse

root mean square error of predicted essentiality scores, and Fig 5C,

with mean correlation deviating significantly from 0, Wilcoxon rank

sum test P-value = 4.99 × 10�29). Figure 5C also shows the four

TFs with lowest prediction error (Fig 5B) and highest correlation

between predicted and DepMap essentiality scores. Additionally,

essentiality scores predicted by our pipeline show consistent

subtype specificity with experimentally determined DepMap essen-

tiality scores (Fig 5D). In other words, TFs that we identified previ-

ously as core contributors to subtype specificity also show subtype

◀ Figure 3. GBM tumor samples exhibit unique transcription factor regulatory profiles that shape subtype-specific gene expression landscapes.

A Left panel: heatmap of signature F values on a log2 scale for MXI1, a Proneural subtype signature transcription factor. Right panel: gene expression plots of ITGA5, a
signature target gene of MXI1 (highlighted in green box in left panel), against that of MXI1, across the three GBM subtypes. Density clouds are overlaid onto scatter
plots, and a dashed linear regression line is shown for each subtype.

B Heatmaps showing participation of each subtype’s signature TFs in the corresponding subtype signature. Color scale corresponds to the proportion of TF-target gene
pairs that show consistent signature behavior with the corresponding subtype signature among all TF-target pairs that show any signature behavior.

C Pie charts showing proportion of target genes that show differential regulation by TFs, comparing all target genes (upper panel) with those that are differentially
expressed among the subtypes (i.e., subtype expression signatures, lower panel). P-values from hypergeometric tests for enrichment of differentially regulated target
genes among expression signatures in each subtype are shown.

D Kernel density estimations of average correlation coefficients between target genes and their corresponding transcription factors. P-values for Mann–Whitney tests
comparing each pair of distributions are shown.

E Left panel: perturbation of STAT3 induces Mesenchymal samples to shift toward the Classical subtype cluster. Each arrow points from the TCGA sample before
perturbation to the same sample after perturbation, projected onto a 2-dimensional Uniform Manifold Approximation and Projection (UMAP) space. Right panel: pie-
chart showing distribution of the subtype showing the largest overall shift among the 50 TFs that induce the largest subtype-specific shift.
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essentiality. Interestingly, patterns in the regression coefficients

(Fig EV4A and B) imply that a subset of TFs share common predic-

tor proteins, suggesting that the effects of perturbing these TFs are

likely to be mediated by common pathways. On the other hand, the

same TF’s knockdown effects may be mediated by a multitude of

proteins, which is consistent with the notion that perturbing a single

TF may result in pleiotropic effects throughout the intracellular

signaling network that collectively reduce fitness of the cell.

Having confirmed that the effect of knocking down at least a

subset of the TFs can be accurately predicted by combinations of

changes in protein scores, we next asked if such a model could

predict the effects of TF knockdown in patient tumor data, where it

A
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D

Figure 4.
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is intractable to perform individual unbiased genetic screens. We

normalized the CCLE and TCGA expression datasets to remove

batch effects and ran the perturbation—regression pipeline

described above on the CCLE subset to obtain regression coefficients

for each protein. Using the same coefficients, we computed the

expected knockout/knockdown depletion score (i.e., gene essential-

ity score) for each TF in individual TCGA GBM tumor samples. We

observed that the knockdown of certain TFs confers significantly

different predicted levels of survival disadvantages across subtypes,

examples of which include MYBL2 (Fig 5D) and NFE2 (Fig EV4C,

see Table EV3 for a full list of predicted subtype-specific survival

disadvantages for each TF). We found six transcription factors with

predicted subtype-specific essentiality scores that also show consis-

tent subtype-specific negative correlation between their expression

levels and tumor patient survival (Fig 5E). Here, we focus on

MYBL2, whose knockdown is significantly more detrimental to the

Proneural subtype than to the other subtypes in silico (one-way

analyses of means P-value 1.51 × 10�61, df = 2.0, df2 = 215.3).

Consistently, we only see a negative correlation between MYBL2

expression and survival in the Proneural subtype samples (Fig 5F).

In addition, log-rank tests of survival of MYBL2-high versus MYBL2-

low patients in the TCGA dataset (as demarcated by median expres-

sion within each subtype) show that MYBL2-low patients show

significantly higher survival rates only in the Proneural subtype

(log-rank test P = 0.035, Figs 5G and EV4D). We observed a simi-

larly significant trend in an independent set of 172 GBM samples

from the Chinese Glioma Genome Atlas (CGGA) project (Wang

et al, 2015; Liu et al, 2018), where low MYBL2 levels correspond to

higher survival only in the Proneural subtype (log-rank test

P = 0.028, Figs 5G and EV4D). Interestingly, our F value correlation

analysis showed that MYBL2 displays high correlation with the

Proneural signature TFs TFCP2 and MXI1, suggesting that subtype-

specific TF interactions may be key to maintaining cell state and

viability in the corresponding subtype. The above analyses demon-

strate that the inTRINSiC pipeline is capable of identifying potential

subtype-specific drug targets for GBM, for example MYBL2 in the

Proneural subtype.

Discussion

We propose a computational framework, inTRINSiC, for integrating

epigenomic, transcriptomic, protein interaction, and genetic pertur-

bation data to dissect tumor heterogeneity in glioblastoma multi-

forme and use this framework to systematically infer subtype-

specific vulnerabilities. inTRINSiC serves as a powerful, tractable

platform for distilling large-scale omics data into candidate genes

that are critical for different cell states and generating actionable

hypotheses for targeting tumors in a subtype- and even patient-

specific way.

We first showed that transcription regulation by TFs can be

quantitatively described using biophysical models, which despite

simplifying assumptions was still able to accurately capture gene

expression variation across GBM subtypes (Figs 1C and EV1C) as

well as TF-TF co-regulatory interactions (Fig 2C and D), which are

not explicitly factored into the model. In addition, bulk tumor

expression data did not seem to significantly confound our analysis

despite cell state mixture effects, as models built from single-cell

expression data showed significant consistency with those from

bulk data (Fig 1D). Note that a small subset of transcription factors

(e.g., FOSB and RXRA in Classical and Proneural subtypes) showed

near-zero or negative correlation between bulk and single-cell F

value profiles, possibly due to immune cell and/or normal brain

tissue infiltration of tumors in bulk samples. However, these incon-

sistencies did not seem to significantly confound our downstream

analyses, since the TFs that showed such behavior did not partici-

pate in the signatures discovered for each subtype or score as top

essential TFs. We were also are able to uncover subtype-specific

regulators, consistent with single-cell expression-based discoveries,

for example DDIT3 in the Mesenchymal subtype (as seen in Neftel

et al, 2019 and Fig 3B). Compared with existing regulatory network

inference methods such as the information theory-based ARACNe

package (Margolin et al, 2006; Lachmann et al, 2016), and the

correlation-based models tailored for single-cell expression data by

SCENIC (Aibar et al, 2017; see Table EV1 for a summarized compar-

ison of methods and Fig EV2D for a comparison of performances), a

distinct feature of the nonlinear regression method used in the

inTRINSiC pipeline is that it explicitly models the quantitative regu-

lation of steady-state gene expression by transcription factors. While

such a model may be oversimplifying the intricate process through

which gene expression is modulated and relies substantially on the

availability of physical binding/chromatin accessibility and TF motif

data, it yields easily interpretable parameters that directly corre-

spond to the maximum fold change (as well as the directionality of

change) a given TF can induce in its target gene expression. These

parameters and their resulting quantitative output are not explicitly

modeled in other pipelines. Additionally, even without direct model-

ing of higher-order interactions between TFs, the inTRINSiC pipeline

is still able to capture TF-TF co-regulatory interactions that are not

as effectively recovered in linear methods (Fig EV1C).

◀ Figure 4. Subtype-specific co-regulatory interactions among TFs may explain differential regulatory behavior.

A Scatter plot showing consistent correlation between F value profiles of MSX2 and MYB across each subtype. Robust regression lines (dashed lines in each panel) as
well as Pearson correlation coefficient (R2) values are shown. Density clouds are overlaid onto scatter plots to highlight trends.

B Heatmaps showing participation of each subtype’s signature TFs in the corresponding subtype TF-TF co-regulatory signature. Note that here instead of F values of
TF-target regulation, signatures are derived from correlation coefficients of F value profiles between pairs of TFs across subtypes. Color scale corresponds to the
proportion of TF-TF co-regulatory pairs that show signature behavior consistent with the corresponding subtype signature among all TF-TF pairs that show any
signature co-regulatory behavior.

C Upper panels: circos diagrams showing all top co-regulatory partners (gray nodes along the outer circle) inferred for subtype signature TFs (colored nodes along the
outer circle). TF pairs with F value correlation coefficients larger than 0.8 are visualized as links. Lower panels: same TFs but only showing links originating from MXI1,
a Proneural subtype signature TF.

D Venn diagram showing overlap between regulatory and co-regulatory signature TFs, colored according to GBM subtypes.
E Kernel density plots of correlation coefficients of signature TFs MXI1 (Proneural) and NR3C1 (Mesenchymal) with other TFs at differentially regulated target genes.
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It is important to note here that regulation by transcription

factors is only one of several mechanisms of gene expression

control, and other factors including miRNAs and long non-coding

RNAs may also play significant roles. However, we did not include

non-coding mRNAs in our current version of inTRINSiC pipeline for

two reasons: (i) the effects of miRNA regulation are estimated to

explain only 7–13% of overall gene expression variation (Vejnar &

Zdobnov, 2012) and (ii) since miRNAs act primarily via repressing

mRNA levels (Guo et al, 2010), regulation by miRNAs may be

absorbed into TF regulation in our model where a subset of TF-

target regulatory parameters may be due to indirect regulation of

the target by TFs through expression of miRNAs (Guo et al, 2010).

This does not preclude that certain miRNAs may represent critical

nodes of regulation or that the inclusion of miRNA data in the future

may refine our analysis. In our current version of inTRINSiC, we

also did not explicitly model the effects of genetic alterations on

transcription regulation. This was due to a lack of systematic cata-

logues documenting how specific mutations affect transcription

factor functions. In addition, the relatively low frequency of muta-

tions and their uneven distribution across subtypes would signifi-

cantly diminish the statistical power in our regression models.

However, we do expect the effects of mutations to be implicitly

modeled by F values, as transcription factors whose regulatory

activities are affected by mutations are likely to display altered F

value profiles. In fact, our regulatory/co-regulatory signature analy-

ses hint at effects potentially mediated by genetic alterations. For

example, MYC, which shows a Mesenchymal-specific co-regulatory

profile (Fig 4B), has been previously shown to be upregulated by

EGFR signaling and induce transition to a mesenchymal phenotype

(Dong et al, 2018). Interestingly, such a signature is not seen in

other subtypes where the EGFR mutations are enriched (Verhaak

et al, 2010).

An important feature of the regulatory models built from the

inTRINSiC pipeline is that aside from differentiating between dif-

ferent GBM subtypes in terms of the behavior of each TF (Fig 3B),

they also provide clues as to the potential mechanisms of the same

TF switching regulatory behavior on the same set of target genes

(Fig 4). Specifically, we found that despite conservation of the

majority of TF-TF partnering relationships (Fig EV2A), TFs that are

part of a subtype signature tend to display local, differential partner-

ing with other TFs across proximal regulatory regions of target

genes, implying that the regulatory heterogeneity observed across

GBM subtypes may be a result of differential physical clustering of

TFs at promoters/enhancers. Importantly, it has been shown that

the transcription factor STAT3 (a Proneural/Mesenchymal signature

TF inferred by inTRINSiC) and its associated signaling network play

key roles in promoting an immunosuppressive tumor microenviron-

ment that may hinder immunotherapy (See et al, 2012; Jackson

et al, 2011). It would thus be interesting to further investigate the

multitude of co-regulatory relationships predicted by inTRINSiC. We

demonstrated that the combinatorial changes in the action of TFs

could explain a significant proportion of differential expression

observed across GBM subtypes (Fig 3C and D).

Finally, we performed an in silico screen for each subtype’s

dependency on different transcription factors by simulating informa-

tion flow from the transcription regulation layer to the protein

signaling layer and learning combinatorial protein activity that best

predicts known gene essentiality scores (Fig 5), and uncovered TFs

that display GBM subtype-specific essentiality. Such a functionality

is unique to the inTRINSiC pipeline due to predictive models of tran-

scription regulation and is not encompassed by other integrative

pipelines such as SYGNAL (Plaisier et al, 2016; Table EV1). Another

feature of this second part of the inTRINSiC pipeline is that the

method for protein signaling activity inference is uncoupled from

that of transcription activity—we trimmed all edges that only

belongs to the “transcriptional regulation” category in the signaling

networks for this step such that TF regulatory effects are required to

be modeled by the TF-target network construction part of

inTRINSiC, and only signaling/post-translational regulation activi-

ties are explicitly modeled in the downstream protein network. Such

a strategy ensures consistency with known signaling relationships

and achieves a larger coverage of signaling proteins than methods

that infer protein activity based on transcriptional “regulons”, such

as VIPER (Fig EV2F–H). The TFs deemed essential by inTRINSiC

can in turn be prioritized for further experimental validation in rele-

vant cell lines or patient derived xenografts (PDXs). Key advantages

◀ Figure 5. Integrated multilayer regulatory network model enables in silico perturbation and inference of subtype-specific drug targets in GBM.

A Schematic of in silico perturbation through multilayer network information flow simulation. Left: changes in gene expression induced by perturbation of a TF can be
estimated through transcriptional regulatory models, and propagated to the protein signaling network, where a modified random walk algorithm scores signaling
activity. Middle: iteratively perturb each TF and generate a matrix of perturbed signaling scores. Right: optimal “readout” of effects of TF perturbation on fitness can
be learned through known genetic screening data such as DepMap gene essentiality scores.

B Transcription factors ranked by the prediction accuracy in test set cell lines (y axis, plotted are 1 over root mean squared error values) of their essentiality when
compared to DepMap scores.

C Left panel: histogram of correlation between predicted and DepMap TF essentiality scores. Right panel: experimentally determined (DepMap) versus predicted gene
essentiality scores for TFs where a linear combination of protein signaling activity scores could predict TF essentiality with high accuracy. Data points are color-coded
according to subtype labels (red—Classical, green—Proneural and orange—Mesenchymal).

D Upper left panel: subtype specificity of predicted versus DepMap essentiality scores. Three TFs with top consistent specificity values are highlighted in a box region.
Remaining panels: bar plots showing mean � standard error of the mean (SEM) of DepMap (gray) and predicted (color-coded according to subtypes as in (C))
essentiality scores, grouped by subtypes. # of cell lines in each subtype: Classical—11, Proneural—4, Mesenchymal—25. Paired Student’s t-test P-values for each
paired set of DepMap-predicted results are non-significant after Bonferroni correction except for the Proneural subtype in SOX2 perturbations (*P = 0.044).

E Heatmap of correlations between TF expression and TCGA patient survival in each subtype. Shown are the six TFs that are consistent in terms of the most dependent
subtype predicted by inTRINSiC and the subtype showing the most negative correlation between TF expression and patient survival.

F Box and jitter plots of predicted essentiality scores of MYBL2 in TCGA tumor samples grouped by subtype. Box plots show 25th, 50th, and 75th percentiles, and whiskers
extend up to 90th and down to 10th percentiles. # of samples: Mesenchymal—165, Proneural—103, Classical—139.

G Kaplan–Meier survival curves of TCGA and CGGA Proneural GBM samples, grouped by MYBL2 score (high versus low demarcated by median expression). # of patients
in TCGA Proneural subset: MYBL2-high—47, MYBL2-low—48. # of patients in CGGA Proneural subset: MYBL2-high—24, MYBL2-low——25. Log-rank test P-values are
shown. Survival curves for the remaining subtypes are provided in Fig EV4D.
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of such an in silico perturbation system include obviation of in vivo

screens in PDX samples which may not engraft well, and prediction

of tumor susceptibility on an individual sample basis. Indeed, we

describe a work flow by which data from functional studies on

cancer cell lines, like the DepMap, can be readily applied to emerg-

ing patient tumor data from diverse sources to identify subtype-

specific vulnerabilities. While these vulnerabilities are TFs, a set of

proteins that are notoriously difficult to target using small mole-

cules, this approach may also converge upon druggable downstream

targets of TFs. Additionally, there has been significant promise in

the development of new strategies to target transcriptional regula-

tors and TF interactions (Bushweller, 2019).

In this study, we identified MYBL2 as a transcription factor

essential for the Proneural subtype. Interestingly, in a separate anal-

ysis of GBM subtype-specific regulatory programs, MYBL2 was also

identified as a signature regulator of the Proneural subtype (Setty

et al, 2012). MYBL2 is a member of the MYB family of transcription

factors that plays important roles in cell cycle progression and main-

tenance of cells in an undifferentiated state (Musa et al, 2017). Its

functions oppose that of ASCL1—a transcription factor promoting

neuronal differentiation—and putatively crucial to maintaining the

Proneural transcription landscape (Narayanan et al, 2019), which is

consistent with the observation that overexpression of ASCL1

in vitro (Narayanan et al, 2019) and knockdown of MYBL2 in silico

(this paper) are detrimental to Proneural subtype cells. Additionally,

the fact that the subtype-specific essential TF MYBL2 is also implied

to be functional interaction partners with the corresponding

subtype’s signature TFs further supports the idea that our signature

analyses are capable of capturing GBM subtype-specific biology.

The inTRINSiC pipeline extends beyond GBM and serves as a

new paradigm for understanding disease heterogeneity and dif-

ferent cell states through an integrated, multilayer network of

transcription and protein activity regulation (Fig EV5). It is a

flexible platform in that additional layers of regulation, including

chromatin modifications and enhancer regulations, can be readily

factored into the transcription regulation models wherever tissue-

specific data are available. Additionally, with improvements in

the scale and coverage of newer techniques such as Perturb-seq

and single-cell epigenomics, the inTRINSiC pipeline can be

extended to distinguish the source of phenotypic heterogeneity at

the single-cell level through modeling multiple layers of regula-

tion in the same cell (Fig EV6).

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or Source

Software

CRAN R version 3.6.3 or higher https://cran.r-project.org/ (R Core Team, 2013)

RStudio version 1.2.5042 or higher http://www.rstudio.com/ (RStudio Team, 2020)

Python 2.7 or higher http://www.python.org

scikit-learn package version 0.22.1 or higher https://scikit-learn.org/stable/index.html (Pedregosa et al, 2011)

MATLAB r2016a or higher with MATLAB
Compiler (MCC)

https://www.mathworks.com/products/matlab.html

circos version 0.69 or higher https://circos.ca (Krzywinski et al, 2009)

Cytoscape Version 3.7.1 or higher http://www.cytoscape.org (Shannon et al, 2003)

GraphPad Prism version 6 or higher https://www.graphpad.com/scientific-software/prism/

Protein Interaction Quantification (PIQ)
algorithm software package

https://bitbucket.org/thashim/piq/src/master/ (Sherwood et al, 2014)

Resources

TCGA GBM gene expression & survival datasets https://www.cancer.gov/tcga

CGGA GBM gene expression & survival datasets http://www.cgga.org.cn/ (preprint: Zhao et al, 2020)

ENCODE glioma cell line DNaseI-seq datasets https://www.encodeproject.org/
ENCODE Project Consortium (Dunham et al, 2012), ENCODE data portal (Davis et al, 2018)
Accession codes: ENCFF338CJE, ENCFF422GJX, NCFF899YRC, ENCFF175YAU, ENCFF251KOI, ENCFF397OZE,
ENCFF001DWK, ENCFF001CAA, ENCFF001DWM

FANTOM5 CNS-specific regulatory networks https://fantom.gsc.riken.jp/5/ (Lizio et al, 2019, 2015)

JASPAR motif database, fifth expansion http://jaspar.genereg.net/ (Mathelier et al, 2016)

CCLE expression datasets (v2018q2) https://portals.broadinstitute.org/ccle/data (Barretina et al, 2012)

DepMap gene essentiality dataset (v2018q2) https://portals.broadinstitute.org/ccle/data (Tsherniak et al, 2017; Meyers et al, 2017)

STRING human protein interactions network
v11

https://string-db.org/ (Szklarczyk et al, 2019)
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Reagents and Tools table (continued)

Reagent/Resource Reference or Source

BIOGRID human protein interactions network
v3.4.158

https://downloads.thebiogrid.org/BioGRID/Release-Archive/BIOGRID-3.4.158/ (Oughtred et al, 2019)

FunCoup human protein interaction database
v4.1

http://funcoup.sbc.su.se/downloads/ (Ogris et al, 2018)

Methods and Protocols

A combined overview of the steps involved in the inTRINSiC model-

ing framework is shown as a schematic in Fig EV5. Here, we

provide a step-by-step walkthrough of the procedures involved,

from gene expression, epigenomics, motif and previously compiled

tissue-specific network datasets to ultimately predicting transcrip-

tion factor essentiality in different GBM subtypes.

Reconstruction of the GBM transcription regulatory network
To obtain a backbone regulatory model that is specific to the tissue

of origin in glioblastoma multiforme (GBM) and encompasses as

many potential regulatory edges as possible, we assembled a tran-

scription regulatory network model for brain tissue using publicly

available tissue-specific models from the FANTOM5 project (Mar-

bach et al, 2016) and augmented the network with another one

inferred from motif and chromatin landscape information specific to

brain tumor cells. For the FANTOM5 brain network, we used the

union of all networks built from brain tissues covered in the project,

retaining top 10% edges in each network. The cutoff was arbitrarily

selected to control model size and did not significantly reduce cover-

age of expressed genes and transcription factors (see network statis-

tics reported below). We describe details of the procedures for

inferring the latter network in the following.

We first retrieved DNase hypersensitivity sequencing (DHS-seq)

datasets in four human brain tumor cell lines (Daoy, H4, A172, and

M059J) from the ENCODE project (Davis et al, 2018). Analysis of

expression data for these cell lines from the Cancer Cell Line Ency-

clopedia (CCLE) (Barretina et al, 2012) database shows that their

transcriptomes fall close to those of TCGA patient samples and

resemble those of one or more GBM subtypes (Fig EV3A and B),

and are thus phenotypically relevant to our model. Next, combining

DHS-seq data that chart open chromatin landscapes in these cell

lines and position weight matrices (PWMs) from 579 motifs in the

JASPAR motif database (Sandelin et al, 2004), we inferred potential

regulatory edges from 518 transcription factors (TFs) to target genes

using the Protein Interaction Quantitation (PIQ) algorithm (Sher-

wood et al, 2014). Briefly, we applied the algorithm to each cell

line’s DHS-seq data to assign likelihood scores of proteins (TFs)

binding to open chromatin regions, and selected interactions within

the top 10% of all scores to obtain a motif-region map for that cell

line. The percentage cutoff was chosen to roughly match the size of

the brain-specific network and minimize biases introduced by gene

coverage (Fig EV1A). Motif-region maps are then converted to TF-

gene maps using the closest gene method, where a TF is assigned to

the gene(s) closest to its open motif(s) within a � 10,000 bp

window from the transcription start site. Note that this method is

likely to favor selection of promoters and proximal enhancers. The

above pipeline resulted in four separate regulatory networks based

on motif binding likelihood, and the union of three networks was

computed for the final brain tumor-specific DHS network. Here, we

excluded the network built from M059J data due to the significantly

smaller number of edges, probably due to insufficient sequencing

coverage.

Prior to all analyses, we filtered the networks for genes whose

expression data are available. GBM microarray gene expression data

were retrieved from the Cancer Gene Atlas (TCGA) data portal as of

July 2014. The expression dataset has not been significantly revised

since then and we chose microarray expression due to a larger subset

of patients covered. The RMA-normalized expression matrix consists

of 544 patient samples and 12,042 genes. After filtering, the union-

ized DHS network from four brain tumor cell lines consists of

494,860 edges from 424 TFs to 10,388 genes. When we compared the

DHS network with that of the brain-specific FANTOM5 network

constructed by Marbach et al (2016) (containing 201,095 edges from

460 TFs to 10,050 genes after expression filtering), we see that there

is only a small overlap between the two (~ 5% of the DHS network

covered by FANTOM5 network). This does not seem to be due to

systematic biases in the coverage of regulatory edges by the DHS

data, as the DHS-based network showed an enrichment of FANTOM5

edges with increasing binding score cutoffs for controlling network

size (Fig EV1A). The final backbone network we used for regression

is the union of these two filtered networks, containing 653,800 edges

from 518 TFs to 10,733 genes.

GBM subtype-specific parameterization of regulatory interactions
using nonlinear regression
To understand regulatory heterogeneity in GBM, we set out to

assign biologically meaningful parameters to the backbone regula-

tory network and select edges that display strong regulatory capaci-

ties using a nonlinear regression model. Our model is built upon a

thermodynamic description of transcription regulation by Bintu et al

(2005) and assumes the following conditions: (i) each transcription

factor (TF) acts upon each target gene in a nonlinear, saturable

association with its own expression, (ii) effects of transcription regu-

lation of different TFs on the same target gene are independent of

each other and (iii) effects of different transcription factors are

multiplicative (additive in logarithmic space). Denote the expression

vector (comprised of K samples) of a given target gene i and each

TF j (j 2 {ni1, ni2, . . ., nir}) of its r candidate regulatory TFs (as

dictated by the backbone network) as yi
! and xi

!, and let xi0 be the

basal level of gene expression without regulation from any of the

candidate TFs, we have:

log2 yi
!¼ log2 x!io þ

X

j2fni1 ;ni2 ;...;nirg
log2

1þ Fji x
!

j

1þ x!j

(1)

where vector operations are element-wise. The single parameter

for each TF-gene pair Fji can be thought of as the regulatory capac-

ity of TF j for gene i and theoretically determines the maximum
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amount of fold change TF j can induce upon the expression of gene

i. Specifically: (i) if Fji > 1, gene i is activated by TF j, (ii) if Fji < 1

gene i is repressed by TF j, and (iii) if Fji = 1, TF j has no regula-

tory effect on gene i.

The above model is fitted to expression data from all samples

in each GBM subtype using the limited memory-BFGS method

(Liu & Nocedal, 1989) in MATLAB with an L2-like penalty term,

where subtype class labels are assigned to each of the TCGA

GBM samples using the nearest centroid method based on expres-

sion cluster centroids published in the original works of Verhaak

et al (2010). To filter for truly subtype-specific TF-target relation-

ships, we shuffled the subtype labels 30 times and re-computed

the F values using the same number of samples per label group,

and looked at the unshuffled F values showing deviation from the

shuffled F values of at least 5 standard deviations. To classify all

central nervous system (CNS) tumor cell lines in the CCLE

DepMap dataset into relevant GBM subtypes, we first normalized

CCLE cell line expression data against the TCGA GBM expression

dataset using the RemoveBatchEffects function in the R limma

package and standardized all expression data to have a mean of

zero and standard deviation of 1. We observe that the CCLE

samples mix well with TCGA samples after normalization

(Fig EV3A and B). We then used a nearest centroid method to

classify CCLE cell lines using the subtype signature genes and

their reference expression centroids as determined by Verhaak

et al Similarly, for inferring F values from the CGGA dataset, we

first performed batch effect removal using the R limma package

to normalize log2-transformed CGGA RNA-seq expression data to

have similar distribution to that of the TCGA microarray expres-

sion data before assigning subtype labels and inputting subtype-

specific expression to the regression pipeline. We lay out details

of hyperparameter selection for the nonlinear regression in the

following step.

Hyperparameter selection for parameterized GBM subtype-specific
regulatory network
To prevent overfitting the nonlinear regression, we imposed an

L2-like penalty term that results in the following objective

function:

arg min EðF~iÞ ¼
P

k¼1;2;...;K

P
j2 ni1 ;ni2 ;...;nirf g

ðlog2 yik � log2 yik;obsÞ2

þk
P

j2 ni1 ;ni2 ;...;nirf g
ðlog2 FjiÞ2;

where the expression estimate of gene i in sample k, yik, is

computed using equation 1 in the Materials and Methods section

of this paper, and logarithm values are used for numerical stability.

The hyperparameter lambda determines the strength of the penalty

on large F values that may dominate the regulatory profile of a

given transcription factor (TF). We chose a final lambda value of

0.1 which achieved a low gene expression value prediction error in

5-fold cross-validation as well as the highest area under curve of a

precision-recall curve constructed by computing the amount of

known TF-TF interactions captured by each model (Fig EV1C, see

the next section for details of TF-TF interaction prediction). As a

comparison, we computed the same metrics for a simple linear

model (trained using L2-regularized regression) for predicting gene

expression, and Fig EV1C (black curve) shows that the nonlinear

model is superior to the linear model across a broad range of regu-

larization strengths.

Extraction of correlated regulatory profiles
As previously mentioned, our regression model for parameterizing

transcription regulation does not explicitly model interactions, i.e.,

effect of each TF on the target gene is independent of one another.

Nonetheless, we anticipated correlation structures to emerge from

the F value profiles of TFs since we fit a regression model to the

expression of each gene independently. To compute a robust corre-

lation strength for each pair of F value vectors (each corresponding

to the regulatory profile of a TF across all target genes), we first

eliminated target genes that were not regulated by either one of the

TFs to reduce zero inflation. We then eliminated potential “outliers”

by using the Random Sample Consensus (RANSAC) regression algo-

rithm implemented in the scikit-learn Python package (Pedregosa

et al, 2011), using a minimum of 80% of samples to determine

outliers. As discussed in the main text, the RANSAC method helps

capture the core correlation structure and prevents large biases orig-

inating from a small subset of extreme F values. Correlation was

then computed as the Pearson correlation coefficient between the

trimmed F value vectors if their lengths are greater than 3, and set

to 0 otherwise.

Inferring protein activity from an integrated transcription
regulation-signaling network
We first constructed a protein signaling network containing edges

between protein pairs with annotated activating or inhibitory inter-

actions in two databases: STRING (Szklarczyk et al, 2015) and

FunCoup (Schmitt et al, 2014). The former database provides

signed, unweighted links, and the latter provides likelihood scores

for interaction between each protein pair, inferred through Bayesian

integration of multiple lines of evidence. The final signaling network

consists of 20,473 signed and directed links among 3,132 proteins in

the STRING network that have been assigned a likelihood score by

the FunCoup network. To infer protein signaling activity, we used a

node ranking method, termed Exponential Ranking (Traag et al,

2010), similar to the PageRank algorithm (Page et al, 1998). Specifi-

cally, the algorithm assigns a rank score to each node (representing

a protein) in a network (in our case a protein signaling network)

with both positively (activating) and negatively (inhibitory)

weighted links by modeling the flow of “trust” across the network

using discrete choice theory. The algorithm works by iteratively

updating the “trust” scores (in this case protein activity scores)

using the following equation:

pðt þ 1Þ ¼ exp 1
lA

TpðtÞ
jj exp 1

lA
TpðtÞjj

1

where p is the vector of protein rank scores that will eventually

converge to estimated protein activity scores, A is the transition

matrix, and l is the sole parameter in the algorithm. In our imple-

mentation of the algorithm, we used the difference between the

maximum and minimum of the transition matrix, maxijAij–minijAij,

for parameter l, which is within the recommended range that
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guarantees convergence. To initialize the iterative procedure

outlined above, we scaled expression data predicted by the regres-

sion models to have a sum of 1 as the initial p(0) and augmented

the transition matrix using expression values of pairs of interactors,

i.e., A = xxTB where x is a column vector of expression values

and B is the weighted adjacency matrix of likelihood scores

described above. The p vector is updated using the above equa-

tion until changes between two consecutive updates (in the form

of Frobenius norm) are within a small tolerance (1 × 10�6). In all

downstream applications, we transformed the final protein activity

scores by taking the logarithm of all positive scores or that of the

absolute values for negative scores.

For a fair comparison with VIPER, we used the above signaling

network as the interactome, together with subtype-specific expres-

sion matrices, as input for the VIPER algorithm. We ran both expo-

nential ranking and VIPER on unperturbed expression profiles as

well as expression profiles where the expression of a (non-transcrip-

tional) regulator in known signaling pathways (e.g., EGFR) was

decreased, and compared the estimated protein activity of down-

stream signaling targets to inspect the performance of the two

models on capturing post-translational activity.

Modeling effects of gene expression perturbation in silico
To compute the effects of gene expression perturbation, in particular

that of transcription factors, we developed a recursive algorithm to

account for the hierarchical and feedback properties of transcription

regulation, i.e., the downstream targets of a perturbed TF may regu-

late another layer of TFs and/or regulate said TF itself. Since our

thermodynamics-based model of transcription regulation essential-

ity models steady-state expression levels, we use a recursive frame-

work where we traverse and update the network of transcription

regulation with a modified breadth-first search strategy that detects

feedback loops and ensures that each TF’s expression is updated

only once. A key advantage of such an algorithm is that it takes into

consideration that a target gene may also be a TF, and that a partic-

ular target gene can be regulated by multiple regulator TFs that may

also be perturbed due to a cascade of upstream perturbations. Our

algorithm is designed such that each TF can at most be perturbed

once, i.e., any given TF will not be perturbed again if it has already

been perturbed and there exists a path between that TF and its regu-

lator (i.e., a feedback loop). This ensures maximal propagation of

TF regulatory effects without creating infinite loops. The pseu-

docode for such an algorithm, implemented in the “hPerturb” func-

tion, is as follows:

function hPerturb(TFToPerturb) {

Find all targets of TFToPerturb;

if (targets of TFToPerturb contain other TFs) {

Flag the TFs within the target set that should not be

perturbed using the subroutine doNotPerturb()

outlined below;

Flag all target genes that are not in the above list and

recalculate their expression with updated TF

expression values using the nonlinear regression

model;

If there are no target TFs that are perturbed in the

previous step, return; otherwise flag these TFs as

already perturbed and recursively perturb the

downstream targets of these TFs by calling the hPerturb

() function on each of them.

} else {

Recalculate all target gene expression with updated TF

expression values using the nonlinear regression model

and return.

}

Subroutine for determining TFs that should not be perturbed:

function doNotPerturb(topmostPerturbedTF,

TFToPerturb) {

Find the target TFs which have already been perturbed

and show feedback regulation of TFToPerturb;

Find the target TFs whose regulators that reside on the

path from the topmost perturbed TF

(topmostPerturbedTF, i.e. the argument in the very

first call to the hPerturb() function) have not all

been perturbed yet;

Return the union of the above two sets.

}

Using models built from brain tumor cell line expression data in

the CCLE collection (Barretina et al, 2012), we predicted new target

gene expression profiles after simulating knockdown for each of the

518 TFs considered in our models and used the new gene expression

estimates for computing updated protein activity scores as described

in the previous section. We then built an elastic net regression

model to predict essentiality scores for each of the perturbed TFs

based on changes in protein activity upon perturbation. Specifically,

we model the TF-gene essentiality scores as determined by genetic

screens in the DepMap project (Tsherniak et al, 2017; Meyers et al,

2017) as a linear combination of changes in protein activity scores

and fitted the model using L1 and L2 regularization terms to

decrease overfitting and ensure sparsity. Hyperparameters in the

elastic net regression, i.e., strengths of L1 and L2 regularization,

were determined for each TF using 4-fold cross-validation with 80%

of available CCLE lines (for a total of 32).

To ensure that CCLE and TCGA expression profiles are comparable

and that models trained using CCLE datasets can be applied to predict-

ing gene essentiality in individual TCGA patient tumors, we performed

batch effect correction using the RemoveBatchEffects functionality in

the limma package in R (Ritchie et al, 2015). All perturbations are

performed on normalized, batch effect-corrected data.

Data availability

All code associated with the inTRINSiC pipeline and analyses in this

paper, as well as instructions on how key pipeline procedures

should be called, can be accessed from the following GitHub reposi-

tory: https://github.com/yunpengl9071/inTRINSiC.

Expanded View for this article is available online.
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