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Abstract: The second part of this paper develops an approach suggested in Entropy 2020, 22(1), 11;
which relates ordering in physical systems to symmetrizing. Entropy is frequently interpreted as
a quantitative measure of “chaos” or “disorder”. However, the notions of “chaos” and “disorder”
are vague and subjective, to a great extent. This leads to numerous misinterpretations of entropy.
We propose that the disorder is viewed as an absence of symmetry and identify “ordering” with
symmetrizing of a physical system; in other words, introducing the elements of symmetry into an
initially disordered physical system. We explore the initially disordered system of elementary magnets

exerted to the external magnetic field
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which relates ordering in physical systems to symmetrizing. Entropy is frequently interpreted as
a quantitative measure of “chaos” or “disorder”. However, the notions of “chaos” and “disorder”
are vague and subjective, to a great extent. This leads to numerous misinterpretations of entropy.
We propose that the disorder is viewed as an absence of symmetry and identify “ordering” with
symmetrizing of a physical system; in other words, introducing the elements of symmetry into an
initially disordered physical system. We explore the initially disordered system of elementary magnets

exerted to the external magnetic field
→
H. Imposing symmetry restrictions diminishes the entropy

of the system and decreases its temperature. The general case of the system of elementary magnets
demonstrating j-fold symmetry is studied. The T j =

T
j interrelation takes place, where T and T j are the

temperatures of non-symmetrized and j-fold-symmetrized systems of the magnets, correspondingly.
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1. Introduction

Entropy is a key concept in the characterization of ordering in physics [? ? ], chemistry [? ],
biology [? ? ], and engineering [? ]. However, it remains one of the most abstract and least intellectually
transparent quantities in physics [? ? ? ]. The widespread illustrative interpretation of entropy is “the
measure of disorder” in macroscopic systems built from a large number of particles [? ]. However,
researchers recently criticized the equating of entropy with disorder [? ]. In the first part of our
manuscript, we suggested that that “ordering” may be related to symmetry, inherent for the physical
system [? ]. In turn, “chaos” or “disorder” are understood as an absence of symmetry [? ]. We have
already illustrated this suggestion with the simplest binary 1D and 2D systems built using elementary
magnets, which can point only up or down, fixed in a space, and aligned [? ]. They form a binary,
non-interacting system. We demonstrated that introducing elements of symmetry diminishes the
entropy, which is true for 1D and 2D systems built using elementary magnets [? ]. In the present work,
we generalize the approach reported in [? ] for the initially disordered systems of elementary magnets,

embedded into the magnetic field
→
H, and symmetrized by the j-fold symmetrizing procedure.

2. Symmetry and Entropy of Binary Magnetic Systems Embedded into a Magnetic Field

2.1. Symmetrizing and Entropy of 1D Systems Exposed to Magnetic Field
→
H

First, consider a binary 1D system built using non-interacting magnets (spins)
→
µ , illustrated in

Figure ??A. We assume that there are N separate and distinct sites fixed in a space and aligned, as
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in Figure 1A [11]. Attached to each site is an elementary magnet
→
µ , which can point only up or

down. The system using magnets is embedded into magnetic field
→
H , 0, leading to spin orientation.

The potential energy of a single elementary magnet in the magnetic field is given by:

U1 = −→µ ·→H (1)

The magnetic field directs the orientation of the magnets. The configuration of magnets demonstrating
spin excess 2m is defined by Equation (2) (the numbers N and m are supposed to be even):

1
2

N + m−
(1

2
N −m

)
= 2m (2)

corresponding to the configuration where 1
2 N + m of magnets are oriented “up” and 1

2 N −m are
oriented “down”. The total potential energy of the system of magnets characterized by spin excess 2m
is given by [12–14]:

U(2m) = −2mµH (3)

The entropy S of this system is given by [12–14]:

S(N, m) = kBlng(N, m) (4a)

g(N, m) � 2N
( 2
πN

)1/2

exp
(
−2m2

N

)
(4b)

S(N, m) � kB

[
Nln2− 1

2
ln

2
πN
− 2m2

N

]
= S0(N) − kBU2

2Nµ2H2 (4c)

where g(N, m) is the multiplicity function, i.e., the number of states having the same value of m [12–14];
S0(N) = kB

[
Nln2− 1

2 ln 2
πN

]
. Eqs. 4b-c hold for m� 1; N � 1; |m|N � 1.

Entropy 2020, 22, 235 3 of 6 

 

𝑆 − 𝑆ଶ ≅ 𝑘 ቈ𝑁2 𝑙𝑛2 + 2𝑚ଶ𝑁  = 𝑘 ቈ𝑁2 𝑙𝑛2 + 𝑈ଶ2𝑁𝜇ଶ𝐻ଶ > 0 (7) 

 
It is to be noted that introducing symmetry decreases the entropy, irrespective of the values of spin 
excess 2m, energy of the system U, and value of magnetic field 𝐻ሬሬ⃗  (recall that Equation (7) holds for 𝑚 ≫ 1; 𝑁 ≫ 1; ||ே ≪ 1). The larger the spin excess 2m, the stronger a decrease in entropy emerging 
from symmetrizing. Thus, the generalization of the results reported in [11] is achieved.  

On considering the temperatures of the original T and symmetrized T2 systems of magnets, 
Equations. (4c) and 6 yield [12–14]: 1𝑇 = ൬𝜕𝑆𝜕𝑈൰ே = − 𝑘𝑈𝑁𝜇ଶ𝐻ଶ (8a) 1𝑇ଶ = ൬𝜕𝑆ଶ𝜕𝑈 ൰ே = − 2𝑘𝑈𝑁𝜇ଶ𝐻ଶ (8b) 

Recall that 𝑈 < 0 takes place. Interrelation 𝑇ଶ = ଵଶ 𝑇 takes place; in other words, the symmetrized 
system of magnets is “colder” than the non- symmetrized one when spin excess and energy of the 
systems are the same. This result is intuitively expectable.  
 

 

 
 
 
 
          
 
  
 
 
 
 
                           

Figure 1. A. The binary 1D system of N non-interacting elementary magnets is shown, exposed to 
external magnetic field 𝐻ሬሬ⃗ ≠ 0. The spin excess of the system is given by 2𝑚 = ଵଶ 𝑁 + 𝑚 − ቀଵଶ 𝑁 − 𝑚ቁ. 
B. The axis of symmetry shown with a dashed line “arranges” elementary magnets and restricts the 
number of available configurations of magnets. 

2.2. Symmetrizing and Entropy of 2D Systems Possessing Axes of Symmetry of Various Orders (j-fold 
Symmetry)  

Consider the 2D system of elementary magnets possessing axes of symmetry of the j-th order 
(Figure 2 depicts the sample system of spins with 𝑗 = 6). Again, the number of available states for 
the j-fold-symmetrical system is given by 𝑔(ே , 𝑚). Indeed, keeping the j-fold symmetry requires 

simultaneous re-orientation of the j magnets. The entropy of such a j-fold system of magnets is 
supplied, in turn, by: 

A 

B 

N 

N/2 N/2 

𝐻ሬሬ⃗  

Figure 1. (A) The binary 1D system of N non-interacting elementary magnets is shown, exposed to

external magnetic field
→
H , 0. The spin excess of the system is given by 2m = 1

2 N + m −
(

1
2 N −m

)
.

(B) The axis of symmetry shown with a dashed line “arranges” elementary magnets and restricts the
number of available configurations of magnets.

Now, let us restrict the possible configurations of elementary magnets by introducing the
symmetry axis, shown with the dashed line in Figure 1B, keeping the spin excess of the system 2m
and correspondingly its energy U the same. After introducing the symmetry axis, only the symmetric
configurations of the elementary magnets are available, as depicted in Figure 1B; this implies a decrease
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in the number of “states” available for the symmetrized system to g
(

N
2 , m

)
. The multiplicity function

for the symmetrized, ordered, binary, non-interacting system is given by [12–14]:

g
(N

2
, m

)
� 2N/2

 2

π
(

N
2

) 
1/2

exp
(
−4m2

N

)
(5)

Hence, the entropy of the symmetrized, ordered, binary, non-interacting system is given by:

S2(N, m) = kB ln g
(N

2
, m

)
� S02(N) − kBU2

Nµ2H2 (6)

where subscript “2” indicates the presence of the axis of symmetry of the second order, and S02(N) =

kB

[
N
2 ln2− 1

2 ln 2
πN

2

]
takes place. On combining Equations (3)–(6) and with trivial transformations,

the following is obtained:

S− S2 � kB

[
N
2

ln2 +
2m2

N

]
= kB

[
N
2

ln2 +
U2

2Nµ2H2

]
> 0 (7)

It is to be noted that introducing symmetry decreases the entropy, irrespective of the values of spin

excess 2m, energy of the system U, and value of magnetic field
→
H (recall that Equation (7) holds for

m � 1; N � 1; |m|N � 1). The larger the spin excess 2m, the stronger a decrease in entropy emerging
from symmetrizing. Thus, the generalization of the results reported in [11] is achieved.

On considering the temperatures of the original T and symmetrized T2 systems of magnets,
Equations. (4c) and 6 yield [12–14]:

1
T

=

(
∂S
∂U

)
N
= − kBU

Nµ2H2 (8a)

1
T2

=

(
∂S2

∂U

)
N
= − 2kBU

Nµ2H2 (8b)

Recall that U < 0 takes place. Interrelation T2 = 1
2 T takes place; in other words, the symmetrized

system of magnets is “colder” than the non- symmetrized one when spin excess and energy of the
systems are the same. This result is intuitively expectable.

2.2. Symmetrizing and Entropy of 2D Systems Possessing Axes of Symmetry of Various Orders (j-Fold Symmetry)

Consider the 2D system of elementary magnets possessing axes of symmetry of the j-th order
(Figure 2 depicts the sample system of spins with j = 6). Again, the number of available states for
the j-fold-symmetrical system is given by g

(
N
j , m

)
. Indeed, keeping the j-fold symmetry requires

simultaneous re-orientation of the j magnets. The entropy of such a j-fold system of magnets is
supplied, in turn, by:

S j = kBlng
(

N
j , m

)
� kB ln

{
2

N
j
( 2 j
πN

)1/2
exp

(
− 2 jm2

N

)}
= S0 j(N, j) − 2kB jm2

N

= S0 j(N, j) − kB jU2

2Nµ2H2

(9a)

S0 j(N, j) = kB

[
N
j

ln2 +
1
2

ln
(

2 j
πN

)]
(9b)
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The initial entropy of the 2D non-symmetrical binary system of magnets is given in Equation
(4) (2D location of the elementary magnets does not matter; the spin excess of the system 2m and its
energy U are fixed). Combining Equations (9) and (4) yields:

S− S j � kB( j− 1)
[

N
j

ln2 +
2m2

N

]
= kB( j− 1)

[
N
J

ln2 +
U2

2Nµ2H2

]
> 0 (10)
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Figure 2. Schematic representation of a system of elementary magnets possessing axis of symmetry to

the order of six, embedded into magnetic field
→
H. Magnetic moments and magnetic field

→
H are normal

to the image plane. Maintaining 6-fold symmetry requires simultaneous re-orientation of six magnets
(for example, re-orientation of the magnets, marked in Figure 2 with blue color).

Again, introducing symmetry decreases the entropy, irrespective of the order of the symmetry

axis j, spin excess 2m, energy of the system U, and value of the magnetic field
→
H (recall that Equations

(3), (9a)–(10) hold for m� 1; N � 1; |m|N � 1). It is easily seen that:

∂S
∂ j

= −kB

(
Nln2

j2
− 1

2 j
+

2m2

N

)
� −kB

(
Nln2

j
+

2m2

N

)
< 0 (11)

Equation (11) holds when the condition N
j � 1 takes place—this means that increase to the order

of symmetry axis j decreases the entropy of the system. It is also seen from Equation (9a) that Equation
(12) is true:

1
T j

=

(
∂S j

∂U

)
N, j

= − kB jU
Nµ2H2 (12)

where T j is the temperature of the system of magnets, possessing axis of symmetry to the order of j,
i.e., j-fold symmetry. Comparing Equations (12) and (8a) results in:

T j =
T
j

(13)

Further symmetrizing of the system of magnets “cools” it; moreover, the larger the value of j, the cooler
the system is. The presented results support the idea that ordering (understood as symmetrizing)
decreases the multiplicity of the system and consequently decreases the entropy.

The obtained results are valid when the condition µH
kBT � 1 holds, as discussed in detail in [14].

The exact expressions should be derived by analysis of the partition function of the system of elementary
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magnets embedded into the magnetic field. However, the reported considerations qualitatively illustrate
the suggested idea: the ordering (“arranging”) may be related to the symmetrizing of a physical system,
decreasing its entropy. We already mentioned in the first part of the paper that it is possible that there
are other pathways of ordering (“arrangement”) of physical systems, in addition to imposing elements
of symmetry; these alternative pathways call for additional physical insights.

3. Conclusions

We conclude that the introduction of elements of symmetry orders (arranges) the system of
elementary magnets exposed to the external magnetic field and consequently diminishes its multiplicity,
entropy, and temperature. The idea is illustrated with a binary system built from elementary

non-interacting magnets
→
µ embedded into magnetic field

→
H. Symmetrizing of the initially disordered

system of N magnets diminishes the multiplicity function g(N, m), where 2m is the spin excess,
and consequently decreases the entropy S(N, m). The simplest 1D exemplification of the binary
systems is studied. Introducing two-fold symmetry decreases the entropy, irrespective of spin excess

2m, energy of the system U, and value of the magnetic field
→
H. The paper also addresses the system of

elementary magnets demonstrating j-fold symmetry and exposed to magnetic field
→
H. Symmetrizing

decreases the multiplicity and entropy of the system, irrespective of the value of j; the condition
∂S( j)
∂ j < 0 was found to be true. The T j = T

j interrelation takes place, where T and T j are the
temperatures of non-symmetrized and j-fold-symmetrized systems of the magnets, correspondingly.
Thus, symmetrizing necessarily “cools” the system.
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