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Abstract: The Pythagorean probabilistic hesitant fuzzy set (PyPHFS) is an effective, generalized and
powerful tool for expressing fuzzy information. It can cover more complex and more hesitant fuzzy
evaluation information. Therefore, based on the advantages of PyPHFSs, this paper presents a new
extended fuzzy TOPSIS method for dealing with uncertainty in the form of PyPHFS in real life
problems. The paper is divided into three main parts. Firstly, the novel Pythagorean probabilistic
hesitant fuzzy entropy measure is established using generalized distance measure under PyPHFS
information to find out the unknown weights information of the attributes. The second part consists
of the algorithm sets of the TOPSIS technique under PyPHFS environment, where the weights of
criteria are completely unknown. Finally, in order to verify the efficiency and superiority of the
proposed method, this paper applies some practical examples of the selection of the most critical
fog-haze influence factor and makes a detailed comparison with other existing methods.

Keywords: Pythagorean probabilistic hesitant fuzzy set; extended TOPSIS technique; decision
making problem

1. Introduction

In the 21st century, with the rapid economic and social development and the acceleration of
industrialization, environmental problems, especially air pollution, have become increasingly severe
restricting the economic development of many countries and threatening human health. The continued
rise in fossil fuel consumption and emissions of contaminants releases a large amount of particulate
matter (PM), which raises concentration of PM, reduces visibility and deteriorates air quality [1]. It is
easy to cause fog-haze weather under certain meteorological conditions. Fog-haze is a serious threat to
the health of people’s respiratory systems, and it is reported that more than 3 million people worldwide
die each year from air pollution (mainly from PM) [2]. Hence, studying the issue of the key influence
factor of fog-haze weather is meaningful. However, due to the rapid growth of the social economy
and the limitation of experts’ professional knowledge and cognitive ability, it is somewhat challenging
for a single expert to provide comprehensive evaluation information in the face of complex problems
with fog-haze weather influencing factors. Thus, it is more reasonable that a group of experts use the
comprehensive intelligence, cross-disciplinary knowledge and skills to evaluate the complex influence
factors of fog-haze weather collaboratively.
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Real life decision making problems are too complex and challenging due to the presence of
different kinds of uncertainties and vagueness in the information data. In 1965, Zadeh [3] proposed the
theory of fuzzy sets to model uncertain/vague information effectively. After the pioneering work of
Zadeh [3], many generalizations and extensions of fuzzy sets (FSs) have been proposed by researchers
and applied in a wide range of application areas. Intuitionistic fuzzy set (IFS), introduced by
Atanassov [4], is one of the most significant extensions of the fuzzy set that has been extensively
studied and implemented in different disciplines. Over the past thirty years, intuitionistic fuzzy set
theory has been successfully employed to solve many problems connected to real life situations such
as decision making [5].

Yager [6–8] models Pythagorean fuzzy set (PyFS) as a generalization of IFS, with the constraint
that the square sum of positive and negative membership degrees is less than or equal to one. We can
say that the space of all intuitionistic membership values is also Pythagorean membership values,
but the converse is not true. For example, in an environment where the positive membership value is
0.6 and the negative membership value is 0.5, we cannot use IFSs because the sum of their membership
values exceeds one. So, in this situation we use PyFSs to deal with the decision making problems. As a
result, PyFS is stronger than IFSs to make a pact of ambiguity in daily life problems.

Frequently, hesitancy occurs everywhere in our universe. It is difficult to choose one of the best
alternatives with the same features in real life. Due to vagueness and hesitancy in the data, experts are
having complications in decision making. To overcome the hesitancy, Torra [9] proposed the notion
of hesitant fuzzy set (HFS). After that, the enhanced form of hesitating fuzzy sets, the Pythagorean
hesitant fuzzy set was proposed by Khan et al. [10]. Overhead notions can be used to determine
randomness in an efficient way. Nevertheless, the above frameworks are not capable of dealing with
situations in which the rejection of a specialist plays a crucial role in the decision making process.
For instance, a board of five proficients is considered to choose the best aspirant in the staffing
procedure and three of them rejected to deliver any decision. Although assessing the information
by means of the existing tactics, the number of decision makers is vigilant to be three rather than
five, i.e., the rejected proficients are totally overlooked and the decision is enclosed by means of the
preferences specified by the three proficients only. It causes a significant loss of data and may lead to
insufficient grades. To tackle such cases, Xu and Zhu [11] sustained a new notion named probabilistic
hesitant fuzzy sets (PHFSs). The entropy is a quantitative evaluation of randomness between fuzzy
sets. Termini and Luca [12] first developed the construction properties for entropy of fuzzy sets using
Shannon’s probability entropy. Furthermore, some researchers [13–16] corroborated some generalized
entropy measures for IFSs.

Decision making is a significant part of the real world of human beings. With the unceasing
development of human beings’, real-world decision making challenges are becoming very complicated.
There are often numerous aspects that have an immediate effect on the outcome of decision making
problems. Such dimensions are often limited to each other and sometimes equally connected. As a
consequence, the specialist must understand these things and their relationship in order to solve
these decision making problems. It is a stimulating effort to make a pact with these multiattribute
decision making (MADM) problems and then to make a good deal between attributes. Clearly,
different attributes play an important role in choosing the best alternative between the given
options, so different types of aggregation operators are used to calculate the data to characterize
the DM setting. Xu [17] proposed some weighted averaging Aggregation Operators (AOs) for
IFSs. Wang and Li [18] developed decision making with distance and cosine similarity measures for
intuitionistic hesitant fuzzy sets (IHFSs). For instance, a complete review of the different methodologies
to deal with vagueness in MADM problems is given in [19–25]. Meng and Chen [26] proposed
correlation coefficients of hesitant fuzzy sets and their application based on fuzzy neasures. Garg [27]
developed hesitant Pythagorean fuzzy Maclaurin symmetric mean operators and their applications to
multiattribute decision making process. Zhao et al. [28] presented group decision making with dual
hesitant fuzzy preference relations. Farhadinia and Xu [29] proposed distance and aggregation based
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methodologies for hesitant fuzzy decision making. Arora and Garg [30] presented a robust correlation
coefficient measure of dual hesitant fuzzy soft sets and their application in decision making. In [31–34]
authors proposed some other types of methodologies under the HFSs to resolve the DM problems.
Yue [35] proposed an avoiding information loss approach to group decision making.

Zhang [36] developed an innovative tactic based on similarity measure for Pythagorean fuzzy
multicriteria group decision making. Ren et al. [37] considered Pythagorean fuzzy TODIM tactic to
multicriteria decision making. Yang et al. [38] developed Pythagorean fuzzy Choquet integral based
MABAC method for multiple attribute group decision making. A hierarchical QUALIFLEX tactic is
given by Zhang [39]. Pythagorean fuzzy environment measures are developed by Peng et al. [40].
Later on, generalized Pythagorean fuzzy Bonferroni mean aggregation operators are developed
by Zhang et al. [41]. Liang et al. [42] generalized TOPSIS to hesitant Pythagorean fuzzy sets.
P´erezDom´ınguez et al. [43] developed MOORA for Pythagorean fuzzy information. Lately,
Xue et al. [44] presented Pythagorean fuzzy LINMAP method based on the entropy for railway
project investment decision making. Later on, Meng et al. [45] developed a tactic to interval-valued
hesitant fuzzy multiattribute group decision making under extended Shapley-Choquet integral.
Guleria et al. [46] presented Pythagorean fuzzy (R, S)-norm environment measure for multicriteria
decision making problem. Moreover, Yang et al. [47] presented distance and similarity measures for
hesitant fuzzy information under Hausdorff metric with applications to multicriteria decision making.
Shannon [48] developed entropy in a mathematical theory of communication to determine weights of
attributes. Entropy for hesitant fuzzy information under Hausdorff metric with structure of hesitant
fuzzy TOPSIS was given by Yang [49].

The TOPSIS is an effective information evaluation tool, which was first given by Hwang and
Yoon [50]; it is known as the approximate ideal solution. It seeks the optimal solution according to
the relative closeness based on their distances from the positive ideal solution (PIS) and the negative
ideal solution (NIS), so as to satisfy the nearest distance from PIS and the farthest distance from NIS.
This evaluation method can effectively avoid the distortion of decision information and ensure the
validity and accuracy of decision results by directly calculating the distance between PIS and NIS and
ranking them accordingly. Compared with ELECTRE method, VIKOR method and other traditional
methods, TOPSIS method is simple, and easy to understand and calculate, so it has been widely studied
and applied by a large number of scholars. With the emergence of the form of fuzzy information,
the TOPSIS method has been widely used in fuzzy environment. TOPSIS firstly prolonged the fuzzy
information for resolving decision making problems by [51]. Chen [51] also presented some extensions
of the TOPSIS for group decision making under a fuzzy environment.

In the recent era, different authors offered TOPSIS in different fuzzy information: like,
Boran et al. [52] find out the best supplier with TOPSIS method by using the intuitionistic
fuzzy information. Chen et al. [53] proposed the TOPSIS technique using interval-valued fuzzy
information and also discussed the experimental analysis of the proposed technique. Li [54] presented
the TOPSIS-based nonlinear-programming methodology for multiattribute decision making with
interval-valued intuitionistic fuzzy sets to deal with the uncertainty in real life decision problems.
Park et al. [55] introduced the TOPSIS model for decision making problems under interval-valued
intuitionistic fuzzy environment. Cables et al. [56] established the TOPSIS decision making approach
for linguistic variables. Xu [57] introduced the TOPSIS technique with incomplete weight information
under hesitant fuzzy environment. Beg and Rashid [58] established the TOPSIS model for hesitant
fuzzy linguistic term sets to deal with the uncertainty in real life complex problems. Khan et al. [59]
proposed the Dombi based aggregation operators for Pythagorean fuzzy information. Biswas and
Sarkar [60] established the Pythagorean fuzzy TOPSIS method with unknown weight information
through entropy measure for Pythagorean fuzzy information. Barukab et al. [61] introduced the
extended fuzzy TOPSIS method based on entropy measure under spherical fuzzy information.

Although there are many research results in applying the fuzzy TOPSIS method to solve MADM
problems, the form of decision information used by these methods is too old and limited and cannot
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effectively handle current complex decision environments. Moreover, no matter what aggregation
technology in fuzzy TOPSIS method we use, it may cause distortion of decision information.
In addition, for decision making problems, sometimes we cannot give the weight of attributes directly
and accurately, and some experts may give a too high or too low attribute evaluation value because of
personal bias. In addition, the relative closeness of the traditional TOPSIS method has the defect that the
nearest ideal solution to PIS is not necessarily the farthest from NIS, which makes the evaluation result
inaccurate. Therefore, based on the above motivations, this paper presents an extended TOPSIS method
with unknown attribute weights information under the novel idea of Pythagorean probabilistic hesitant
fuzzy environment. Meanwhile, this paper proposes a weight calculation model which can effectively
deal with the extreme value given by the bias expert and solve the situation of experts with large
differences of opinion. Besides, using the improved relative closeness formula, the proposed method
will get a more accurate evaluation result. Therefore, the innovations of this paper are mainly the
following aspects: firstly, it introduces a novel concept of the Pythagorean probabilistic hesitant fuzzy
set (PyPHFS). The motivation of the new concept is that in Probabilistic hesitant fuzzy set (PHFS) only
positive membership degree is considered with probabilistic information, but PyPHFS is characterized
by both positive hesitant membership and negative hesitant membership degrees, with the constraint
that the square sum of positive and negative hesitant membership degrees is less than or equal to one.
In PHFS, the DMs are limited to a particular domain and ignore the negative membership degree with
its possible occurrence chances. Every negative hesitant membership degree also has some preference
as compare to others. For instance, the DMs may express their opinion in DM-problems in the form
of several possible values, if one DM gives values 0.3, 0.4, 0.6 for positive membership degree with
their corresponding preference values 0.1 and 0.9, the other one may reject. The possibility of rejection
level with hesitancy is considered under the proposed concept. The information of chances will
decrease in spite of HFSs and PHFSs. The value of the chance of occurrence with positive and negative
membership degrees gives more details on the level of difference of opinion of the DMs. To deal with
the uncertainty in decision making problems, the novel concept of Pythagorean probabilistic hesitant
fuzzy set is proposed. The originality of the paper is given as follows:

(1) The PHFS is generalized by PyPHFS.
(2) The TOPSIS method is generalized by PyPHFS with unidentified weight information.
(3) The PyPHF-TOPSIS method is proposed to solve the PyPHF-MCDM problems with unknown

weight information.
(4) We extend the distance measures and aggregation operators and apply it to the MCDM problem.
(5) A case study for the most crucial fog-haze influence factor is provided to show the effectiveness

and applicability of the proposed approach.

The arrangement of the paper is as follows. Section 2 gives a review of FSs, IFSs, PyFSs, HFSs and
PyHFSs. Section 3 gives some discussion about the algebraic operations of PyPHFSs. In Section 4 we
exhibit distance measure and weighted distance measure, together with its properties. In Section 5,
the novel technique to handle vagueness in DM problems to sort out the finest alternative according
to a list of attributes is proposed. Section 6 explains the application of the proposed MCDM method.
In Section 7, a conclusion and discussion of the manuscript is given.

2. Preliminaries

Let us remember the fundamentals of fuzzy sets, intuitionistic fuzzy sets and Pythagorean fuzzy
sets in this section for a moment. Upon review, these notions will be used here.

Definition 1 ([3]). For a fixed set Ĕ. A FS ε in Ĕ is presented as

ε =
{
〈`x, ρε (`x)〉 |`x ∈ Ĕ

}
,



Entropy 2020, 22, 318 5 of 18

for each `x ∈ Ĕ, the positive membership grade ρε : Ĕ→ Θ specifies the degree to which the element `x belongs
to the fuzzy set ε, where Θ = [0, 1] be the unit interval.

Definition 2 ([4]). For a fixed set Ĕ. An IFS ε in Ĕ is presented as

ε =
{
〈`x, ρε (`x) , ñε (`x)〉 |`x ∈ Ĕ

}
,

for each `x ∈ Ĕ, the positive membership grade ρε : Ĕ → Θ and the negative membership grade ñε : Ĕ → Θ
specifies the degree of positive and negative membership of the element `x to the Intuitionistic fuzzy set ε,
respectively, where Θ = [0, 1] is the unit interval. Moreover, it is required that 0 ≤ ρε (`x) + ñε (`x) ≤ 1, for
each `x ∈ Ĕ.

Definition 3 ([5]). For a fixed set Ĕ. A PyFS ε in Ĕ is presented as

ε =
{
〈`x, ρε (`x) , ñε (`x)〉 |`x ∈ Ĕ

}
,

for each `x ∈ Ĕ, the positive membership grade ρε : Ĕ → Θ and the negative membership grade ñε : Ĕ → Θ
specifies the degree of positive and negative membership of the element `x to the Pythagorean fuzzy set ε,
respectively, where Θ = [0, 1] is the unit interval. Furthermore, it is required that 0 ≤ ρ2

ε (`x) + ñ2
ε (`x) ≤ 1,

for each `x ∈ Ĕ.
Conventionally, χκ =

√
1− ρ2

ε (`x)− ñ2
ε (`x) is said to be degree of hesitancy of `x to ε. In what follows,

we symbolize by PyFŜ
(
Ĕ
)

the collection of all Pythagorean fuzzy sets in Ĕ. For ease, we shall symbolize the
Pythagorean fuzzy number (PyFN) by the pair ε = (ρε, ñε) .

Definition 4 ([5]). Let ε1, ε2 ∈ PyFŜ
(
Ĕ
)

. Then
(1) ε1 v ε2 if and only if ρε1 (`x) ≤ ρε2 (`x) and ñε1 (`x) ≥ ñε2 (`x) for each `x ∈ Ĕ. Clearly ε1 = ε2 if
ε1 v ε2 and ε2 v ε1.
(2) ε1 u ε2 =

{
min (ρε1 (`x) , ρε2 (`x)) , max (ñε1 (`x) , ñε2 (`x)) |`x ∈ Ĕ

}
,

(3) ε1 t ε2 =
{

max (ρε1 (`x) , ρε2 (`x)) , min (ñε1 (`x) , ñε2 (`x)) |`x ∈ Ĕ
}

,
(4) εc

1 =
{

ñε1 (`x) , ρε1 (`x) |`x ∈ Ĕ
}

.

Definition 5 ([9]). For a fixed set Ĕ. A Hesitant Fuzzy Set (HFS) ε in Ĕ is presented as

ε =
{
〈`x, hκ (`x)〉 |`x ∈ Ĕ

}
where hκ (`x) is in the form of set which contained some possible values in unit interval, i.e.,[0, 1] which
represent the membership degree of `x ∈ Ĕ in ε.

Definition 6 ([9]). Let ε1, ε2 ∈ HFS
(
Ĕ
)

. Then
(1) εc

1 =
⊔

α∈hε1 (`x) {1− α} ;
(2) ε1 t ε2 = hε1 (`x) Y hε2 (`x) =

⊔
α1∈hε1 (`x),α2∈hε2 (`x) max {α1, α2} ;

(3) ε1 u ε2 = hε1 (`x) Z hε2 (`x) =
⊔

α1∈hε1 (`x),α2∈hε2 (`x) min {α1, α2} ;

Definition 7 ([10]). For a fixed set Ĕ. A PyHFS ε in Ĕ is presented as

ε =
{
〈`x, ρhκ (`x) , ñhκ (`x)〉 |`x ∈ Ĕ

}
,

for each `x ∈ Ĕ, the positive membership grade ρε and the negative membership grade ñκ are sets in some values
in [0, 1] , specifies the possible degree of positive and negative membership of the element `x to the Pythagorean
hesitant fuzzy set ε, respectively. Furthermore, it is required that (max (ρhκ (`x)))

2 + (min (ñhκ (`x)))
2 ≤ 1
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and (min (ρhκ (`x)))
2 + (max (ñhκ (`x)))

2 ≤ 1. For ease, we shall symbolize the Pythagorean Hesitant Fuzzy
Number (PyHFN) by the pair ε = (ρhκ , ñhκ ) .

Definition 8 ([11]). For a fixed set Ĕ. A Probabilistic Hesitant Fuzzy Set (PHFS) ε in Ĕ is presented as

ε =
{
〈`x, hκ (`x) /px〉 |`x ∈ Ĕ

}
where hκ (`x) is subset of [0, 1] and hκ (`x) /px represent the membership degree of `x ∈ Ĕ in ε. Furthermore,
px represent the possibilities of hκ (`x), with condition that ∑x px = 1.

3. Pythagorean Probabilistic Hesitant Fuzzy Sets and Their Operational Laws

In this segment, we develop the novel hybrid notion of Pythagorean Probabilistic Hesitant Fuzzy
Sets (PyPHFSs) to deal with the uncertainty in decision support systems. We also introduce the basic
operational laws for PyPHFSs.

Definition 9. For a fixed set Ĕ. A PyPHFS ε in Ĕ is presented as

ε =
{
〈`x, ρhκ (`x) /px, ñhκ (`x) /qx〉 |`x ∈ Ĕ

}
,

for each `x ∈ Ĕ, ρhκ (`x) and ñhκ (`x) are sets of some values in [0, 1] . Where ρhκ (`x) /px & ñhκ (`x) /qx

specifies the possible degree of positive and negative membership of the element `x to the Pythagorean probabilistic
hesitant fuzzy set ε, respectively. px and qx represent the possibilities of membership grades. In addition, there is
0 ≤ γi, , ηj ≤ 1 and 0 ≤ pi, qj ≤ 1 with ∑L

i=1 pi ≤ 1, ∑L
j=1 qj ≤ 1(L is a positive integer to describe the number

of elements contained in PyPHFS), where γi ∈ ρhκ (`x) , ηj ∈ ñhκ (`x) , pi ∈ px, qj ∈ qx. Furthermore, it is
required that (max (ρhκ (`x)))

2 + (min (ñhκ (`x)))
2 ≤ 1 and (min (ρhκ (`x)))

2 + (max (ñhκ (`x)))
2 ≤ 1.

For ease, we shall symbolize the Pythagorean Probabilistic Hesitant Fuzzy Number (PyPHFN) by the pair
ε = (ρhκ/px, ñhκ/qx) .

The collection of all Pythagorean probabilistic hesitant fuzzy sets in Ĕ is symbolized by
PyPHFŜ

(
Ĕ
)

Example 1. For a fixed set Ĕ = {`1, `2} . A ε ∈ PyPHFŜ
(
Ĕ
)

, i.e.,

ε =

{
(`1, (0.2/0.3, 0.5/0.2, 0.9/0.5) , (0.1/0.4, 0.3/0.5)) ,
(`2, (0.4/0.6, 0.7/0.4) , (0.6/0/4, 0.2/0.4, 0.3/0.2))

}
,

where 0 ≤ px ≤ 1 with ∑L
x=1 px ≤ 1. Then

max ρh1 (`1) = max {0.2, 0.5, 0.9}
= 0.9

max ñh1 (`1) = max {0.1, 0.3}
= 0.3

max ρh2 (`2) = max {0.4, 0.7}
= 0.7

max ñh2 (`2) = max {0.6, 0.2, 0.3}
= 0.6

min ρh1 (`1) = min {0.2, 0.5, 0.9}
= 0.2

min ñh1 (`1) = min {0.1, 0.3}
= 0.1

min ρh2 (`2) = min {0.4, 0.7}
= 0.4

min ñh2 (`2) = min {0.6, 0.2, 0.3}
= 0.2

it is clear that (
max

(
ρh1 (`1)

))2
+
(
min

(
ñh1 (`1)

))2
= (0.9)2 + (0.1)2

= 0.82 ≤ 1
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and (
min

(
ρh1 (`1)

))2
+
(
max

(
ñh1 (`1)

))2
= (0.2)2 + (0.3)2

= 0.13 ≤ 1

So,
(
ρh1 (`1) /p, ñh1 (`1) /q

)
is a PyPHFN. Similarly,

(
ρh2 (`2) /p, ñh2 (`2) /q

)
is a PyPHFN. Thus, ε ∈

PyPHzŜĔ.

Definition 10. Let ε1 =
(

ρhx1
/px1

, ñhx1
/qx1

)
and ε2 =

(
ρhx2

/px2 , ñhx2
/qx2

)
be two PyPHFNs. The basic

operational laws defined as

(1) ε1 ∪ ε2 =

{⊔
γ1∈ρhx1

(lx),p1∈px1
(max(γ1/p1, γ2/p2)),

⊔
η1∈ñ

hx1
(lx),q1∈qx2

(min(η1/q1, η2/q2))

}
;

(2) ε1 ∩ ε2 =

{⊔
γ1∈ρhx1

(lx),p1∈px1
(min(γ1/p1, γ2/p2)),

⊔
η1∈ñ

hx1
(lx),q1∈qx2

(max(η1/q1, η2/q2))

}
;

(3) εc
1 = {ñhκ/qx, ρhκ/px}

Definition 11. Let ε1 =
(

ρhx1
/px1

, ñhx1
/qx1

)
and ε2 =

(
ρhx2

/px2 , ñhx2
/qx2

)
be two PyPHFNs and

ζ > 0(∈ R), then their operations are presented as:

(1) ε1 ⊕ ε2 =


⊔

γ1∈ρhx1
(lx) ,γ2∈ρ

hx2
(lx),p1∈px1

,p2∈
px2

(√
γ2

1 + γ2
2 − γ2

1γ2
2/p1 p2

)
,⊔

η1∈ñhx1
(lx),η2∈ñ

hx2
(lx),q1∈qx1

,q2∈qx2
(η1η2/q1q2)

 ;

(2) ε1 ⊗ ε2 =


⊔

γ1∈ρhx1
(lx) ,γ2∈ρ

hx2
(lx),p1∈px1

,p2∈
px2

(γ1γ2/p1 p2) ,

⊔
η1∈ñhx1

,η2∈ñhx2
,q1∈qx1

,q2∈qx2

(√
η2

1 + η2
2 − η2

1η2
2/q1q2

)
 ;

(3) ζε1 =

{⊔
γ1∈ρhx1

(lx),p1∈px1

(√
1− (1− γ2

1)
ζ /p1

)
,
⊔

η1∈ñ
hx1

(lx),q1∈
qx2

(
η

ζ
1 /q1

)}
;

(4) ε
ζ
1 =

{⊔
γ1∈ρhx1

(lx),p1∈px1

(
γ

ζ
1/p1

)
,
⊔

η1∈ñ
hx1

(lx),q1∈
qx2

(√
1− (1− η2

1)
ζ/q1

)}
.

Definition 12. For any PyPHFN ε = (ρhκ/px, ñhκ/qx) , a score function is defined as

s(ε) =
(

1
Mε

∑γi∈ρhx ,pi∈phx
(γi · pi)

)2
−
(

1
Nε

∑ηi∈ñhκ ,qi∈qhx
(ηi · qi)

)2

where Mε denotes the number of elements in ρhκ and Nε denotes the number of elements in ñhκ .

Definition 13. For any PyPHFN ε = (ρhκ/px, ñhκ/qx) , an accuracy function is defined as

h(ε) =
(

1
Mε

∑γi∈ρhx ,pi∈phx
(γi · pi)

)2
+

(
1

Nε
∑ηi∈ñhκ ,qi∈qhx

(ηi · qi)

)2

where Mε denotes the number of elements in ρhκ and Nε denotes the number of elements in ñhκ .

Definition 14. Let ε1 =
(

ρhx1
/px1

, ñhx1
/qx1

)
and ε2 =

(
ρhx2

/px2 , ñhx2
/qx2

)
be two PyPHFNs. Then by

using the above definitions, comparison of PyPHFNs can be described as

(1) If s(ε1) > s(ε2), then ε1 > ε2.
(2) If s(ε1) = s(ε2), and h(ε1) > h(ε2) then ε1 > ε2
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4. Methodological Development of Pythagorean Probabilistic Hesitant Fuzzy Entropy Measure

In this segment, the proposed extended distance measures and the weighted extended distance
measures for PyPHFSs are defined. Then, a proposed entropy measure for PyPHFS is presented for
quantitative evaluation of randomness of a PyPHFS.

4.1. Distance Measure for Pyphfss

Definition 15. For any two PyPHFSs ε =
{

ρεi /pεi , ñε j /qε j

}
and ϑ = {ρϑı̃ /pϑı̃ , ñϑ ̂

/qϑ ̂
}, where i =

1, 2, ..., Mε; j = 1, 2, ..., Nε; ı̃ = 1, 2, ..., Mϑ and ̂ = 1, 2, ..., Nϑ. For a real number ζ > 0, we defined distance
measure between ε and ϑ as:

d◦ (ε, ϑ) =

 n

∑
x=1

1
2n


∣∣∣ 1

Mε
∑Mε

i=1 (γεi pεi )
2 − 1

Mϑ
∑Mϑ

ı̃=1
(
γϑı̃ pϑı̃

)2
∣∣∣ζ +∣∣∣∣ 1

Nε
∑Nε

j=1

(
ηε j qε j

)2
− 1

Nϑ
∑Nϑ

̂=1

(
ηϑ ̂

qϑ ̂

)2
∣∣∣∣ζ




1
ζ

,

where γεi ∈ ρεi , γϑı̃ ∈ ρϑı̃ , ηε j ∈ ñε j , ηϑ ̂
∈ ñϑ ̂

.

Definition 16. For any two PyPHFSs ε =
{

ρεi /pεi , ñε j /qε j

}
and ϑ = {ρϑı̃ /pϑı̃ , ñϑ ̂

/qϑ ̂
}, where i =

1, 2, ..., Mε; j = 1, 2, ..., Nε; ı̃ = 1, 2, ..., Mϑ and ̂ = 1, 2, ..., Nϑ. For a real number ζ > 0, we defined weighted
distance measure between ε and ϑ as:

d◦ (ε, ϑ) =

 n

∑
x=1

1
2n

ωx


∣∣∣ 1

Mε
∑Mε

i=1 (γεi pεi )
2 − 1

Mϑ
∑Mϑ

ı̃=1
(
γϑı̃ pϑı̃

)2
∣∣∣ζ +∣∣∣∣ 1

Nε
∑Nε

j=1

(
ηε j qε j

)2
− 1

Nϑ
∑Nϑ

̂=1

(
ηϑ ̂

qϑ ̂

)2
∣∣∣∣ζ




1
ζ

,

where ωx = (ω1, ....., ωn)
T is the weight vector and γεi ∈ ρεi , γϑı̃ ∈ ρϑı̃ , ηε j ∈ ñε j , ηϑ ̂

∈ ñϑ ̂
.

Theorem 1. Let ε and ϑ be two PyPHFSs, then the distance measure has the following constraints:
(P1) 0 ≤ d◦(ε, ϑ) ≤ 1;
(P2) d◦(ε, ϑ) = d◦(ϑ, ε);
(P3) d◦(ε, ϑ) = 0⇐⇒ ε = ϑ;

Proof. Straight forward

4.2. Entropy Measure for Pyphfss

The weight information of attributes/criteria is very important in decision making problems.
Many scholars focus on decision making problems with incomplete or unknown attributes weight
information in different fuzzy environments [62,63]. Entropy [48] is a conventional term from
information theory which is also used to determine weight of attributes. The larger the value of
entropy in a given attribute is, the smaller the differences in the ratings of alternatives with respect
to this attribute. In turn, this means that this kind of attribute supplies less information and has a
smaller weight.

Definition 17. The information of Shannon entropy E (E1, E2, E3, ..., Em) for PyPHFS is defined as

−1
ln (m)

m

∑
i=1

(ρhκ (ln ρhκ )× px + ñhκ (ln ñhκ )× qx)

Properties of Entropy Measure

For any two PyPHFSs ε and ϑ, the entropy measure E (ε) and E (ϑ) fulfill the given axioms:
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(a) E (ε) = 0⇐⇒ ε is a crisp set.
(b) E (ε) = 1⇐⇒ γε j (`x) = ηε j (`x) ∀`x ∈ Ĕ
(c) E (ε) ≤ E (ϑ) if ε �PyPHFS ϑ
(d) E (ε) = E (εc)

5. Pythagorean Probabilistic Hesitant Fuzzy Mcdm Topsis Technique

Let Ā =
{

Ā1, Ā2, ...., Āk
}

be a set of alternatives, Ĉ = {Ĉ1, Ĉ2, ...., Ĉn} be a set of criteria and r be
the number of DMs, DMe (e = 1, 2, ..., r) , to show their perception about k alternatives with respect to
the n criteria by taking ε

(e)
ij =

(
ρ
(e)
ij , ñ(e)

ij

)
. The decision matrix of the eth decision maker is presented as:

ε(e) =
[
ε
(e)
ij

]
k×n

=
[(

ρ
(e)
εij /pεij , ñ(e)

εij /qεij

)]
k×n

where

ε(e) =

Ā1
Ā2

...
Āk

Ĉ1 Ĉ2 ... Ĉn

(
ρ
(e)
ε11 /pε11 , ñ(e)

ε11 /qε11

) (
ρ
(e)
ε12 /pε12 , ñ(e)

ε12 /qε12

)
...

(
ρ
(e)
ε1n /pε1n , ñ(e)

ε1n /qε1n

)(
ρ
(e)
ε21 /pε21 , ñ(e)

ε21 /qε21

) (
ρ
(e)
ε22 /pε22 , ñ(e)

ε22 /qε22

)
...

(
ρ
(e)
ε2n /pε2n , ñ(e)

ε2n /qε2n

)
... ... ... ...(

ρ
(e)
εk1 /pεk1 , ñ(e)

εk1 /qεk1

) (
ρ
(e)
εk2 /pεk2 , ñ(e)

εk2 /qεk2

)
...

(
ρ
(e)
εkn /pεkn , ñ(e)

εkn /qεkn

)



Pyphf-Topsis Method

This method has two main parts. Firstly, a method based on TOPSIS for calculating the weights
of criteria/attributes utilizing the proposed entropy measure for PyPHFNs is presented. In the last
part, we consider a ranking procedure based on degree of similarity to ideal solution. Steps for solving
the PyPHF MCDM problem are presented as follows:

Step 1. Firstly, we collect the information in the form of PyPHFNs given by the decision makers (DMs).
Step 2. In this step, we normalized the data specified by DMs, since the decision matrix may have

some benefit and cost criteria altogether, as follows:

g(e)ij =

 ε
(e)
ij for benefit criteria Cj,(

ε
(e)
ij

)c
for cost criteria Cj,

e = 1, 2, ...., r, i = 1, 2, ..., k, j = 1, 2, ..., n,

where
(

ε
(e)
ij

)c
is complement of ε

(e)
ij ,that is,

(
ε
(e)
ij

)c
=
(

ñ(e)
εij , ρ

(e)
εij

)
.

Step 3. The weights of the criteria are calculated through proposed entropy measure in the following
way. The entropy measure corresponding to each criterion is:

E
(
ε j
)

= E
(

ε1j, ε2j, ...., εkj

)
, j = 1, 2, ..., n

=
−1

ln (m)

m

∑
i=1

(ρhκ (ln ρhκ )× px + ñhκ (ln ñhκ )× qx)

Then,

W
(
ε j
)
=

1− E
(
ε j
)

∑n
j=1
(
1− E

(
ε j
))

Thus weights of criteria are found as W
(
ε j
)
= [W (ε1) , ...., W (εn)]T .

Step 4. In this step, the TOPSIS method is applied on the calculated criteria weights to rank the
alternatives corresponding to each decision matrix in the following way:
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Step 4a. Determine weighted NÐMe through the evaluated criteria’s weights in the following way:

NÐM(e)
ij = W

(
ε j
)

.ε(e)ij =


∪γi∈ρεij ,pi∈ρεij

√√√√1−Πk
i=1

(
1−

(
γ

ε
(e)
ij

)2
)W(ε j)

/Πk
i=1 p

ε
(e)
ij

,

∪ηi∈ñεij ,qi∈ñεij
Πk

i=1

(
η

ε
(e)
ij

)W(ε j)
/Πk

i=1q
ε
(e)
ij


f or all e = 1, 2, ...., r.

Step 4b. Derive PIS(e)and NIS(e) for all weighted NÐM(e), for all DMe (e = 1, 2, . . . , r) as
follows [30]:

PIS(e) = {PIS(e)
j }r×n = {(NÐM(e)

ij ) : max
i

[s
(

NÐM(e)
ij

)
]}

for j = 1, 2, ..., n

NIS(e) = {NIS(e)
j }r×n = {(NÐM(e)

ij ) : min
i
[s
(

NÐM(e)
ij

)
]}

for j = 1, 2, ..., n

Step 4c. Consider the evaluated criteria weights. Using weighted distance measure of weighted
NÐM(e) from PIS(e) and NIS(e)are denoted by EIS+i and EIS−i , respectively, and are
calculated corresponding to each DMe in the following way:

EIS+(e)
i =


∑n

j=1
1

2n W
(
ε j
)


∣∣∣∣∣∣∣ 1
Mε

∑Mε
i=1

γ
NÐM(e)

ij

p
NÐM(e)

ij

2

− 1
Mϑ

∑Mϑ
ı̃=1

(
γ

PIS(e)
j

p
PIS(e)j

)2
∣∣∣∣∣∣∣
ζ

+

∣∣∣∣∣∣∣ 1
Nε

∑Nε
j=1

η
NÐM(e)

ij

q
NÐM(e)

ij

2

− 1
Nϑ

∑Nϑ
̂=1

(
η

PIS(e)j

q
PIS(e)j

)2
∣∣∣∣∣∣∣
ζ





1
ζ

EIS−(e)i =


∑n

j=1
1

2n W
(
ε j
)


∣∣∣∣∣∣∣ 1
Mε

∑Mε
i=1

γ
NÐM(e)

ij

p
NÐM(e)

ij

2

− 1
Mϑ

∑Mϑ
ı̃=1

(
γ

NIS(e)
j

p
NIS(e)j

)2
∣∣∣∣∣∣∣
ζ

+

∣∣∣∣∣∣∣ 1
Nε

∑Nε
j=1

η
NÐM(e)

ij

q
NÐM(e)

ij

2

− 1
Nϑ

∑Nϑ
̂=1

(
η

NIS(e)j

q
NIS(e)j

)2
∣∣∣∣∣∣∣
ζ





1
ζ

for i = 1, 2, ..., k

Step 4d. The revised closeness indices for all DMe of the alternatives are determined in the
following way:

ŔCIe
i =

EIS−(e)i

EIS−(e)i + EIS+(e)
i

Sep 5. Rank the alternative and choose the most desirable alternative having minimum distance.

The flowchart of the proposed technique is given in Figure 1:
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Figure 1. Flowchart of the proposed TOPSIS technique.

6. Numerical Example

In this section, we apply the developed decision making method to the fog-haze factor assessment
problem to demonstrate the reliability and effectiveness of the proposed approach.

Case Study

The rapid development of the economy and the acceleration of urbanization cause environmental
problems, especially air pollution, which is increasingly prominent in Pakistan. Frequent fog-haze
weather has affected people’s production and life, which attracts the Pakistani government’s great
attention. Prime Minister Imran Khan called for more efforts to effectively deal with heavy pollution
weather and strengthen research on the formation mechanism of fog-haze at Pakistan’s Two Sessions
in 2019. Relevant departments of all provinces attach great importance to the prediction, early warning,
prevention and control of fog-haze. The influence factors of fog-haze weather are complex and finding
the most critical influence factor is important, which requires many experts to participate in the analysis
of fog-haze factor.
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Lahore, as the capital city of Punjab province of Pakistan, is increasingly polluted by fog-haze
weather accompanied by the development of the economy in recent years, which is not conducive to
Lahore’s economic development. In general, the main influence factors of fog-haze weather are PM10
concentration Ā1, PM2.5 concentration Ā2, geographical conditions Ā3, meteorological condition Ā4

and PM1.7 concentration Ā3. To assess the most critical influence factor of fog-haze weather under the
list of criteria are Ĉ1, Ĉ2Ĉ3 and Ĉ4, the city’s environmental protection department invites a group of
related experts in the industry to evaluate the four influence factors. Because there exists too much
uncertainty, the preference information given by the DMs is presented in the form of Pythagorean
Probabilistic hesitant fuzzy information. To solve the MCDM problem by the developed methodology,
the following calculations are achieved:

Step 1. The decision maker information in the form of PyPHFNs is given in Table 1;

Table 1. Collective information of decision makers.

ε(e) Ĉ1 Ĉ2 Ĉ3 Ĉ4

Ā1
(0.4/0.6, 0.6/0.4)
(0.2/0.6, 0.3/0.4)

(0.1/1)
(0.6/0.6, 0.8/0.4)

(0.1/0.9, 0.3/0.1)
(0.6/0.7, 0.7/0.3)

(0.6/0.4, 0.5/0.6)
(0.1/1)

Ā2
(0.1/0.3, 0.3/0.7)

(0.5/1)
(0.5/0.4, 0.6/0.6)
(0.3/0.7, 0.4/0.3)

(0.4/1)
(0.3/0.6, 0.2/0.4)

(0.3/0.2, 0.2/0.8)
(0.6/0.5, 0.3/0.5)

Ā3
(0.5/0.5, 0.7/0.5)
(0.1/0.5, 0.2/0.5)

(0.1/1)
(0.3/0.4, 0.4/0.6)

(0.5/0.5, 0.6/0.5)
(0.3/0.9, 0.1/0.1)

(0.1/0.1, 0.1/0.9)
(0.7/1)

Ā4
(0.4/0.4, 0.6/0.6)

(0.3/1)
(0.7/0.5, 0.9/0.5)
(0.1/0.5, 0.1/0.5)

(0.2/1)
(0.3/0.2, 0.6/0.8)

(0.4/0.5, 0.6/0.5)
(0.3/0.9, 0.2/0.1)

Ā5
(0.3/0.3, 0.6/0.7)
(0.2/0.6, 0.3/0.4)

(0.3/1)
(0.6/0.8, 0.3/0.2)

(0.7/0.4, 0.6/0.6)
(0.1/0.1, 0.3/0.9)

(0.7/0.3, 0.4/0.7)
(0.2/1)

Step 2. Information given by DMs are benefit criteria, so normalized values are carried out in Table 2,
as follows

Table 2. Normalized collective information of decision makers.

ε(e) Ĉ1 Ĉ2 Ĉ3 Ĉ4

Ā1
(0.4/0.6, 0.6/0.4)
(0.2/0.6, 0.3/0.4)

(0.1/1)
(0.6/0.6, 0.8/0.4)

(0.1/0.9, 0.3/0.1)
(0.6/0.7, 0.7/0.3)

(0.6/0.4, 0.5/0.6)
(0.1/1)

Ā2
(0.1/0.3, 0.3/0.7)

(0.5/1)
(0.5/0.4, 0.6/0.6)
(0.3/0.7, 0.4/0.3)

(0.4/1)
(0.3/0.6, 0.2/0.4)

(0.3/0.2, 0.2/0.8)
(0.6/0.5, 0.3/0.5)

Ā3
(0.5/0.5, 0.7/0.5)
(0.1/0.5, 0.2/0.5)

(0.1/1)
(0.3/0.4, 0.4/0.6)

(0.5/0.5, 0.6/0.5)
(0.3/0.9, 0.1/0.1)

(0.1/0.1, 0.1/0.9)
(0.7/1)

Ā4
(0.4/0.4, 0.6/0.6)

(0.3/1)
(0.7/0.5, 0.9/0.5)
(0.1/0.5, 0.1/0.5)

(0.2/1)
(0.3/0.2, 0.6/0.8)

(0.4/0.5, 0.6/0.5)
(0.3/0.9, 0.2/0.1)

Ā5
(0.3/0.3, 0.6/0.7)
(0.2/0.6, 0.3/0.4)

(0.3/1)
(0.6/0.8, 0.3/0.2)

(0.7/0.4, 0.6/0.6)
(0.1/0.1, 0.3/0.9)

(0.7/0.3, 0.4/0.7)
(0.2/1)

Step 3. Compute the weight information for attributes/criteria using the proposed entropy measure
of PyPHFNs as follows

W = (W1 = 0.110, W2 = 0.387, W3 = 0.207, W4 = 0.296)

Step 4a. Weighted normalized matrix is computed in Table 3, as follows.
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Table 3. (a) Weighted normalized matrix. (b) Weighted normalized matrix.

(a)

ε(e) Ĉ1 Ĉ2

Ā1
(0.137826/0.6, 0.218875/0.4)
(0.837748/0.6, 0.875958/0.4)

(0.062305/1)
(0.820625/0.6, 0.917267/0.4)

Ā2
(0.03324/0.3, 0.10159/0.7)

(0.926588/1)
(0.324591/0.4, 0.398273/0.6)
(0.627547/0.7, 0.701451/0.3)

Ā3
(0.176492/0.5, 0.267192/0.5)
(0.776247/0.5, 0.837748/0.5)

(0.062305/1)
(0.627547/0.4, 0.701451/0.6)

Ā4
(0.137826/0.4, 0.218875/0.6)

(0.875958/1)
(0.478956/0.5, 0.688572/0.5)
(0.410204/0.5, 0.410204/0.5)

Ā5
(0.10159/0.3, 0.218875/0.7)
(0.837748/0.6, 0.875958/0.4)

(0.189315/1)
(0.820625/0.8, 0.627547/0.2)

(b)

ε(e) Ĉ3 Ĉ4

Ā1
(0.045588/0.9, 0.139043/0.1)
(0.899658/0.7, 0.928828/0.3)

(0.351778/0.4, 0.285708/0.6)
(0.505825/1)

Ā2
(0.188275/1)

(0.779407/0.6, 0.71666/0.4)
(0.165921/0.2, 0.109593/0.8)
(0.859672/0.5, 0.700209/0.5)

Ā3
(0.240441/0.5, 0.297057/0.5)
(0.779407/0.9, 0.620869/0.1)

(0.054502/0.1, 0.054502/0.9)
(0.899806/1)

Ā4
(0.091731/1)

(0.779407/0.2, 0.899658/0.8)
(0.224275/0.5, 0.351778/0.5)
(0.700209/0.9, 0.621019/0.1)

Ā5
(0.3607/0.4, 0.297057/0.6)
(0.620869/0.1, 0.72/0.9)

(0.425093/0.3, 0.224275/0.7)
(0.621019/1)

Step 4b. Positive and negative ideal solution are computed in Table 4, as follows

Table 4. (a) Positive ideal solution (PIS). (b) Negative ideal solution (NIS).

(a)

(0.176/0.5,0.267/0.5) (0.479/0.5,0.689/0.5) (0.36/0.4,0.297/0.6) (0.352/0.4,0.286/0.6)
(0.776/0.5,0.837/0.5) (0.41/0.5,0.41/0.5) (0.621/0.1,0.779/0.9) (0.506/1)

(b)

(0.033/0.3,0.102/0.7) (0.062/1) (0.046/0.9,0.139/0.1) (0.055/0.1,0.055/0.9)
(0.927/1) (0.821/0.6,0.917/0.4) (0.899/0.7,0.929/0.3) (0.899/1)

Step 4c. Weighted distance measure of PIS and NIS to weighted normalized matrix are computed as

0.078016 0.045291 0.075142 0.119511 0.045982

and
0.058334 0.067631 0.037303 0.093502 0.066251

Step 5. Ranking of the alternative is

0.427824 0.598916 0.331744 0.438951 0.590297

Hence Ā3 alternative has the minimum distance, so it is the best alternative in the given list of
alternatives.
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7. Comparison Analysis

To verify the effectiveness of our proposed decision making method with intuitionistic hesitant
fuzzy information, we make a comparative analysis between the proposed method and the previous
method [18].

In [18] authors presented the similarity measures based on distance and cosine function;
for comparison, the data set is shown in Table 5, as follows

Table 5. Collective information of decision makers.

ε(e) Ĉ1 Ĉ2 Ĉ3

Ā1 (0.8, 0.6, 0.5) (0.1, 0.2, 0.4) (0.6, 0.4) (0.4, 0.5) (0.9, 0.6, 0.5) (0.1, 0.3, 0.4)

Ā2 (0.7, 0.5, 0.4) (0.3, 0.4, 0.4) (0.6, 0.4, 0.2) (0.3, 0.3, 0.5) (0.8, 0.4) (0.2, 0.3)

Ā3 (0.7, 0.5, 0.3) (0.2, 0.2, 0.6) (0.9, 0.7, 0.5) (0.1, 0.2, 0.4) (0.5, 0.4, 0.3) (0.4, 0.6, 0.6)

Ā4 (0.5, 0.4, 0.3) (0.3, 0.5, 0.6) (0.7, 0.5) (0.2, 0.3) (0.8, 0.7) (0.1, 0.3)

Given weight vector is
W = (W1 = 0.3, W2 = 0.5, W3 = 0.2)

Firstly, we calculate the weighted normalized decision matrix in Table 6, as follows

Table 6. (a) Weighted normalized matrix. (b) Weighted normalized matrix.

(a)

ε(e) Ĉ1 Ĉ2

Ā1 (0.51, 0.35, 0.29) (0.50, 0.61, 0.76) (0.45, 0.29) (0.63, 0.70)
Ā2 (0.43, 0.29, 0.23) (0.70, 0.76, 0.76) (0.45, 0.29, 0.14) (0.55, 0.55, 0.70)
Ā3 (0.43, 0.29, 0.17) (0.62, 0.62, 0.86) (0.75, 0.53, 0.37) (0.32, 0.45, 0.63)
Ā4 (0.29, 0.23, 0.17) (0.70, 0.81, 0.86) (0.53, 0.37) (0.45, 0.55)

(b)

ε(e) Ĉ3

Ā1 (0.53, 0.29, 0.24) (0.63, 0.79, 0.83)

Ā2 (0.43, 0.19) (0.72, 0.79)

Ā3 (0.24, 0.19, 0.14) (0.83, 0.90, 0.90)

Ā4 (0.43, 0.35) (0.63, 0.79)

Positive and the negative ideal is computed in Table 7 as follows

Table 7. (a) PIS; (b) NIS.

(a)

(0.51, 0.35, 0.29) (0.50, 0.61, 0.76) (0.75, 0.53, 0.37) (0.32, 0.45, 0.63) (0.43, 0.35) (0.63, 0.79)

(b)

(0.29, 0.23, 0.17) (0.70, 0.81, 0.86) (0.45, 0.29, 0.14) (0.55, 0.55, 0.70) (0.24, 0.19, 0.14) (0.83, 0.90, 0.90)

Now, we compute the distance measure of PIS and NIS to weighted normalized matrix as follows

Distance of PIS to weighted normalized matrix.
0.39499 0.22358 0.49942 0.23045
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and
Distance of PIS to weighted normalized matrix.

0.20218 0.12156 0.23259 0.20181

Finally, the ranking of the alternative is

0.33856 0.35221 0.31774 0.46686

Hence Ā3 alternative has the minimum distance, so it is the best alternative in the given list
of alternatives. The comparison matrix is given in Table 8.

Table 8. Comparison matrix.

Revised Closeness Indices Ranking

Existing
Technique [18] 0.33856 0.35221 0.31774 0.46686 Ā3 > Ā1 > Ā2 > Ā4

Propose
Technique 0.4278 0.5989 0.3317 0.4389 0.5902 Ā3 > Ā1 > Ā4 > Ā5 > Ā2

Discussion

We use the proposed PyPHF-TOPSIS method to find the best choice among the given alternatives.
According to our proposed method the result is similar and Ā3 is the best alternative. This shows the
proposed method is also applicable to IHFSs and more effective and rational. The proposed method
is an extension of existing methods. The proposed method can be considered as an alternative to
solve more realistic decision making problems. The existing method is different from the proposed
method. It is clear that existing IHF decision making process is not applicable for group decision
making and it does not work if weights are unknown. However, the proposed PyPHF-TOPSIS method
is applicable for group decision making and also when the weights of DMs and criteria are fully
unknown. The proposed method also studies probabilistic information for each hesitant membership
value and nonmembership value so there is no loss of probabilistic information.

Consequently, the proposed procedure is more precise, feasible and active to solve MCDM
problems with fully unidentified information among DMs as well as criteria.

8. Conclusions

In this manuscript, we have proposed a novel hybrid concept of Pythagorean probabilistic hesitant
fuzzy set to tackle the random vagueness, which is an enhanced version of fuzzy set, IFS, PyFS and
PHFS in decision making real life problems. Firstly, we introduced some basic operational laws
to deal with the PyPHFNs. Then, we developed new generalized distance measures for PyPHFSs.
Furthermore, we proposed aggregation operator using PyPHF information. The main benefit of
the proposed operator is that it provides the probabilistic information to all Pythagorean hesitant
positive and negative degrees which provide a good tool for the DM to make a decision efficiently.
This developed operator has been applied to the MCDM problem using extended TOPSIS technique.
To show the effectiveness and applicability of the proposed extended TOPSIS approach under
PyPHF, information is illustrated by numerical example. A comparison analysis is also considered
to authenticate the applicability of our proposed method in practical MADM problems. The main
advantages of this manuscript are as follows:

(1) the TOPSIS method is generalized by PyPHFS with unidentified weight information
(2) the PyPHF-TOPSIS method is proposed to solve the PyPHF-MCGDM problems with entropy

weight
(3) a case study for car allotment site selection is provided to show the proposed approach
(4) our proposed PyPHF-TOPSIS method makes the distance similarity degree from the positive and

negative ideal solution with entropy weight prominent and
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(5) in this study, the TOPSIS method, which may be also a significant MADM or MAGDM method,
has been considered to challenge ambiguous decision making problems.

In future research, considering the superiority of PyPHFSs, we can extend them to other methods,
such as TODIM method, MABAC method, MULTIMOORA method, ORESTE method and so forth.
In addition, we can propose some new weighting models to obtain attribute weights. In order to be
able to apply these new methods better to actual decision making, we can use them to solve some
medical diagnosis and risk investment problems.
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