Skip to main content
. 2020 Apr 23;22(4):484. doi: 10.3390/e22040484
Algorithm 1 Algorithm summary

Require: PSL Image

 

   (a)Preprocessing

  • 1:

    Input: I

  • Apply Gaussian Filter, Equation (2)

  • Apply RGB to CIEL*a*b* Color Transform

  • Separate CIEL*a*b* Image ILab in Image Channels IL,Ia,Ib

  • Calculate Mean value of IL,Ia,Ib, Equations (3)–(5)

  • 2:

    for all (i,y)IL do

  • 3:

        if IL(x,y)IL¯ then

  • 4:

            Assign 1 to IThL(x,y)

  • 5:

        else

  • 6:

            Assign 0 to IThL(x,y)

  • 7:

        end if

  • 8:

    end for

  • 9:

    for all (i,j)Ia do

  • 10:

        if Ia(x,y)Ia¯ then

  • 11:

            Assign 1 to ITha(x,y)

  • 12:

        else

  • 13:

            Assign 0 to ITha(x,y)

  • 14:

        end if

  • 15:

    end for

  • 16:

    for all (i,j)Ib do

  • 17:

        if Ib(x,y)Ib¯ then

  • 18:

            Assign 1 to IThb(x,y)

  • 19:

        else

  • 20:

            Assign 0 to IThb(x,y)

  • 21:

        end if

  • 22:

    end for

  • ComputeIbin(x,y) Applying Equation (9) to IThL,ITha,IThb

  •     Apply Median Filter, size =5×5

  • Compute Bounding Box Algorithm to estimate coordinates of Region Of Interest

  •     Crop Iroi(x,y) from estimated coordinates on I(x,y) & ILab(x,y)

  • 23:

    Output: Region of Interest (ROI) Image Iroi(x,y)

 

    (b)Handcraft Features

  • 24:

    Input: IROI

  •     Compute Area, Perimeter, Circularity, Diameter and Eccentricity from Equations (13)–(17)

  •     Compute Asymetry from Equations (10)–(12)

  •     Compute Color Features from Equations (18)–(21) from Iroi(x,y)

  •     Compute Texture Features from Equations (22)–(43) from Iroi(x,y)

  • 25:

    Concatenate the extracted features H

  • 26:

    Output: H Handcraft features

 

    (c)Deep Learning features

  • 27:

    Input: Iroi

  • 28:

         Load the weights Wi from selected CNN architecture

  • 29:

         Apply the weights Wi to Iroi

  • 30:

         Obtain the D deep learning features

  • 31:

    Output: D deep learning features

  • (D)Wrapping Features

  • 32:

    Input: D,H

  • 33:

    Apply HD to the extracted features

  • 34:

    Output: F Full set of extracted features