Skip to main content
. 2020 Apr 30;22(5):516. doi: 10.3390/e22050516
Expression Description Units
Variables
x[τ]={x(t):t(0,τ)} Trajectory or path through state space a.u. (m)
ω(τ) Random fluctuations a.u. (m)
x={η,s,a,μ}X Markovian partition into external, sensory, active, and internal states a.u. (m)
x˙=dxdt Time derivative (Newton notation) m/s
α={a,μ}A Autonomous states a.u. (m)
b={s,a}B Blanket states a.u. (m)
π={b,μ}P Particular states a.u. (m)
ηE External states a.u. (m)
Γ=μmkBT Amplitude (i.e., half the variance) of random fluctuations J·s/kg
Q Rate of solenoidal flow J·s/kg
μm=1kBTΓ Mobility coefficient s/kg
T Temperature K (Kelvin)
=d:d2=gijdλjdλi Information length nats
τ:d(ττ)0 Critical time s
gij=EIλiIλj Fisher (information metric) tensor a.u.
Functions, functionals and potentials
f(x) The expected flow of states from any point in state space. This is the expected temporal derivative of x, averaging over random fluctuations in the motion of states.
E[x]=Ep[x]=xpλ(x)dx Expectation or average
pλ(x):Pr[XA]=Apλ(x)dx Probability density function parameterised by sufficient statistics λ
qμ(η) Variational density—an (approximate posterior) density over external states that is parameterised by internal states
A(x[τ])I(x[τ]) Action: the surprisal of a path, i.e., the path integral of the Lagrangian
U(π)=kBTI(π)+lnZ Thermodynamic potential J or kg m2/s2
F(π)I(π) Variational free energy free energy—an upper bound on the surprisal of particular states nats
G(α[τ])A(α[τ]|π0) Expected free energy free energy—an upper bound on the (classical) action of an autonomous path nats
Operators
xI(x)=Ix=Ix1,Ix2, Differential or gradient operator (on a scalar field)
xxI(x)=2Ix2 Curvature operator (on a scalar field)
Entropies and potentials
I(x)=lnp(x) Surprisal or self-information nats
D[q(x)||p(x)]=Eq[lnq(x)lnp(x)] Relative entropy or Kullback–Leibler divergence nats
(arbitrary units (a.u.), e.g., metres (m), radians (rad), etc.).