View full-text article in PMC Entropy (Basel). 2020 Jun 24;22(6):703. doi: 10.3390/e22060703 Search in PMC Search in PubMed View in NLM Catalog Add to search Copyright and License information © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). PMC Copyright notice Algorithm 1 Building of VQ stochastic patterns. 1:procedureVector Quatization in X 2: Input: x˜n(τ,M;q),q∈1,Q 3: Initialize the reduced set X¯n(τ,M), then x¯n(τ,M;1)=x˜n(τ,M;1) 4: for q∈2,Q do 5: Compute the distance between x˜n(τ,M;q) and X¯n(τ,M). d(x˜n(τ,M;q),X¯n(τ,M))=||x˜n(τ,M;q)−x¯n(τ,M;q′)||22,q′∈1,Q′ 6: if ||d(x˜n(τ,M;q),X¯n(τ,M))>ρ||1=Q′ then 7: X¯n(τ,M)←x˜n(τ,M;q) 8: Q′=Q′+1 9: end if 10: end for 11:end procedure