Skip to main content
. 2020 Jun 24;22(6):703. doi: 10.3390/e22060703
Algorithm 1 Building of VQ stochastic patterns.
  • 1:

    procedureVector Quatization in X  

  • 2:

        Input: x˜n(τ,M;q),q1,Q  

  • 3:

        Initialize the reduced set X¯n(τ,M), then x¯n(τ,M;1)=x˜n(τ,M;1) 

  • 4:

        for q2,Q do 

  • 5:

            Compute the distance between x˜n(τ,M;q) and X¯n(τ,M). d(x˜n(τ,M;q),X¯n(τ,M))=||x˜n(τ,M;q)x¯n(τ,M;q)||22,q1,Q  

  • 6:

            if ||d(x˜n(τ,M;q),X¯n(τ,M))>ρ||1=Q then 

  • 7:

               X¯n(τ,M)x˜n(τ,M;q) 

  • 8:

               Q=Q+1 

  • 9:

            end if 

  • 10:

        end for 

  • 11:

    end procedure