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Abstract

Generative models provide a well-established statistical frame-
work for evaluating uncertainty and deriving conclusions from
large data sets especially in the presence of noise, sparsity, and
bias. Initially developed for computer vision and natural language
processing, these models have been shown to effectively summa-
rize the complexity that underlies many types of data and enable
a range of applications including supervised learning tasks, such as
assigning labels to images; unsupervised learning tasks, such as
dimensionality reduction; and out-of-sample generation, such as
de novo image synthesis. With this early success, the power of
generative models is now being increasingly leveraged in molecu-
lar biology, with applications ranging from designing new mole-
cules with properties of interest to identifying deleterious
mutations in our genomes and to dissecting transcriptional vari-
ability between single cells. In this review, we provide a brief over-
view of the technical notions behind generative models and their
implementation with deep learning techniques. We then describe
several different ways in which these models can be utilized in
practice, using several recent applications in molecular biology as
examples.
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Introduction

The widespread use of information-rich technologies in the life

sciences has spurred a lively crosstalk with research in machine

learning, with the goal of improving how we explore and derive

conclusions from biological data.

The most prevalent use of machine learning in this setting is

supervised learning, where one makes use of any available observa-

tions in order to make inferences about measurable, yet unobserved

quantities of interest. Consider as an example the case of a clinical

study where one is interested to predict the outcome (discrete or

quantitative) of treatments based on input covariates of environ-

mental, genetic, or other molecular origins (Dincer et al, 2018;

Rajkomar et al, 2018). In supervised learning, the input covariates

(normally denoted by x) are usually available for all participants in

the study, while the treatment outcome (i.e., the target, denoted by

y) is only available for a subset of them. A classical approach to

predict y in those missing cases is to learn a conditional distribution

p(y|x)—namely what is the probability for a certain outcome y given

any environmental or molecular information represented by x. Such

an approach is referred to as discriminative learning and includes

methods such as random forests, support vector machines, linear

models, and neural networks (Box 1); we refer the reader to (Ching

et al, 2018; Wainberg et al, 2018; Eraslan et al, 2019a; Zou et al,

2019) for reviews on the use of neural networks for supervised

learning in biological settings.

While discriminative learning is a powerful approach, our focus

in this review is on generative modeling—an alternative approach

that explicitly models the joint distribution p(x,y). Naturally, genera-

tive modeling is attempting to solve a harder statistical problem, as it

seeks to model the uncertainty in the input covariates x as well. Even

though discriminative approaches generally have superior perfor-

mance in the prediction problem, generative models are sometimes

preferred as they can account for domain knowledge about how the

data in x were generated (Ng & Jordan, 2002). For instance, if x

represents an amino acid sequence, then the probability that x

occurs in nature can be better estimated by a generative model that

accounts for interactions between residues (Riesselman et al, 2018).

Explicitly modeling x means that generative models can also be

used to generate new instances of x in silico. This capacity opens

the way for additional applications that can aid with and even go

beyond the prediction problem. Specifically, data generation can be

used for identifying values of x that were not previously observed

but are likely to be associated with a desirable value of y. This was

used, for instance, to propose new chemical compounds (repre-

sented by x) that are likely to have a certain melting temperature

(represented by y) (preprint: Sanchez-Lengeling et al, 2017). Addi-

tion of new, artificial data points to an available set of observations

has also been useful for increasing the performance of classifiers,
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e.g., in the context of predicting drug effects with fluorescence

microscopy (Lafarge et al, 2019).

The use of generative models also extends beyond supervised

learning, i.e., for cases where one does not have a target output to

predict. In this unsupervised regime, we are interested in finding

patterns in x, with common tasks including identifying measure-

ments errors (outlier detection (Ding et al, 2018)), inferring the

values of missing entries in x (imputation (Mattei & Frellsen,

2019)), or otherwise identifying latent sources of variation that give

rise to the data (dimensionality reduction or embedding (Lopez

et al, 2018a)).

Generative modeling has emerged as a powerful paradigm to

address these tasks due to its ability to directly model x. For instance,

in single-cell RNA sequencing (where x corresponds to gene expres-

sion values in each cell), a common practice is to model x by condi-

tioning on a small set of latent variables z that controls the generative

process. Estimating p(x|z) provides a way to impute data entries that

are missing due to low sensitivity. Conversely, estimating p(z|x)

provides a way for embedding the cells in an informative low-dimen-

sional space (represented by z) that facilitates the clustering and iden-

tification of key latent sources of variation. In a different context,

generative models were used to estimate the marginal likelihood p(x)

of protein sequences (represented by x), providing a way to identify

sequences that are not likely to emerge in evolution, and thus of

decreased functionality (Riesselman et al, 2018).

Once the form of the generative model p(x, z) is posed, we aim

to perform inference: fit the model to data. For example, a widely

adopted paradigm is that of Bayesian inference, which consists of

estimating the posterior distribution p(z|x). This posterior can then

be utilized for many downstream tasks. Bayesian inference is often

intractable due to the need to estimate the normalization constant of

the distribution p(x). A recent review describes the main approxi-

mate inference methods (Markov chain Monte Carlo (Andrieu et al,

2003) and variational inference (Jordan et al, 1999)) as well as

applications for high-throughput data in biology (Yau & Campbell,

2019).

Our focus for this review is the recent developments of deep

generative models (DGMs) and their applications in molecular biol-

ogy. A DGM is a probabilistic framework that contains both a gener-

ative model and an inference procedure and in which either the

model or the inference makes use of neural networks. In particular,

we elaborate on recent applications of variational autoencoders

(VAEs) (Kingma & Welling, 2014; Rezende et al, 2014) and genera-

tive adversarial networks (GANs) (Goodfellow et al, 2014). The

VAE performs Bayesian inference using a variational approximation

to the posterior p(z|x) parameterized with neural networks. The

GAN performs a distinct type of inference (sometimes referred to as

adversarial learning) and learns a simulator that mimics the data,

also parameterized with neural networks. A DGM, like any other

generative model, can be employed for making statistical inferences

and reasoning about biologically meaningful hypotheses. The use of

deep learning brings important pragmatic advantages: First, neural

networks can be used as part of black-box inference frameworks,

which makes it especially easy for a practitioner to refine their

Box 1: Neural networks as function approximators

A neural network describes a function f that composes simpler functions to learn complex mappings from input to output space. Neural networks are
integral to deep generative models because they are theoretically capable of approximating any given function (Hornik et al, 1989), are efficient to train
through backpropagation, and generalize well to unseen data through their inductive bias (preprint: Battaglia et al, 2018).
The neural network architecture specifies how the simpler functions are composed and how information flows through the network. A prevalent class of
architectures is the so-called feedforward network where computations can be viewed as chain of function compositions f(x) = g3° g

2
° g

1(x). Often these
intermediate functions are non-linear weighted sums (e.g., g(x) = w(∑i wixi), where w represents a non-linear activation function). Many problem-specific
architectures such as recurrent neural networks (RNN) or convolutional neural networks (CNN) have been developed and are reviewed in Zou et al
(2019). Here, we highlight two widely used architectures in deep generative models: the multilayer perceptron and the autoencoder.
The multilayer perceptron (MLP) is one of the most common neural networks. It is characterized by an input layer, hidden layers (only one shown above
with green nodes), and an output layer. The MLP is fully connected in the sense that the value of each node (circle in the figure) is a function of all the
nodes in the previous layer (typically via the non-linear weighted sum).
An autoencoder is defined by three modules: an encoder, bottleneck layer, and decoder. The encoder takes the input and reduces it to a lower dimension
(through the bottleneck layer), and the decoder attempts to reconstruct the original input from the bottleneck. This architecture efficiently compresses
the most salient information for reconstructing the data and serves as the backbone for the variational autoencoder.

Figure: Computational Schematics of the MLP and the autoencoder.

2 of 21 Molecular Systems Biology 16: e9198 | 2020 ª 2020 The Authors

Molecular Systems Biology Romain Lopez et al



modeling hypotheses without designing a whole new algorithm. For

example, Grønbech et al (2020) report goodness of fit for 12 vari-

ants of a novel model for single-cell RNA sequencing data, where

each variant has a different generative model but the inference is

mainly unchanged. Second, due to enormous progress on the neural

network engineering side (Box 2), DGMs can scale up to large data

sets, which have become common in the life sciences, such as tran-

scriptome profiles of millions of single cells (Angerer et al, 2017),

thousands of fluorescence microscopy images (Lafarge et al, 2019),

or large collections of chemical compounds (preprint: Sanchez-

Lengeling et al, 2017; preprint: Guimaraes et al, 2018).

In the following, we provide a brief overview of the notions

behind generative modeling and summarize several popular model

types and their implementations (Fig 1). We then proceed to a more

in-depth description of applications in molecular biology. While our

discussion will span a large set of case studies, we selected three

Box 2: Common implementations of neural networks

The increasingly popular use of generative models in biomedical research is enabled and largely driven by extensive engineering work. The recent devel-
opment of stable deep learning libraries such as Theano (preprint: The Theano Development Team, 2016), TensorFlow (preprint: Abadi et al, 2016),
PyTorch (Paszke et al, 2019), and others saved the end-user from investing in necessary infrastructure work, such as writing code for graphic processing
units (GPUs) or deriving gradients of objective functions. A second crucial line of empirical work established some standard for neural network architec-
tures and training procedures such as dropout (Srivastava et al, 2014), batch normalization (Ioffe & Szegedy, 2015), and non-linearities (Glorot et al,
2011). These standards helped produce state-of-the-art results on computer vision tasks and stabilized the training of neural network-based model. A
third line of work focuses on the important problem of automatic machine learning, which is the problem of architecture and hyperparameter search for
neural networks (Kandasamy et al, 2018). Finally, as uncertainty quantification has become central in machine learning research, an important develop-
ment paired neural networks with statistical inference via the popularization of probabilistic languages such as Stan (Carpenter et al, 2017), Pyro (Bing-
ham et al, 2019), Edward (Tran et al, 2017a), and TensorFlow Probability (preprint: Dillon et al, 2017).
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Figure 1. Overview of the modeling process with DGMs.

Research in molecular biology stems from the formulation of hypotheses. Such questions can be studied through the lens of a wide variety of data forms such as biological
sequences, molecules, gene expression, or imaging data. The broad goal of a DGM is to estimate the distribution that generated the observed data. Constructing a DGM
involves iterating through the steps of Box’s loop. First, a model with domain-specific components or assumptions is designed. Second, an inference procedure learns the
optimal model parameters. Third, the model is criticized. This step consists of benchmarking the model on data sets and evaluating the goodness of fit of the model. Finally,
the model is updated based on the criticism, starting a new iteration of the loop.
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leading examples to be used throughout the manuscript, which we

present next.

Leading examples
To illustrate the use of DGMs for modeling and investigating biologi-

cal data, we focused on three specific case studies. We selected

these cases as they cover a range of data types (single-cell transcrip-

tomics measurements, biological sequences, and three-dimensional

molecular structures), model types (VAE and GAN), and neural

network architectures (fully connected, recurrent, and convolutional

neural networks). These case studies also provide open-source

implementations.

The first selected model is single-cell variational inference (scVI

(Lopez et al, 2018a), Fig 2A), which aims to provide a probabilistic

framework for the analysis of single-cell RNA sequencing data. scVI

takes as input a cells × genes matrix of transcript counts x and

utilizes the VAE framework to infer the underlying data distribution.

The model is generative in that it learns the conditional distribution

p(x|z) where z is a low-dimensional latent representation of the data

(cells × k matrix, where k is usually in the few dozens). The condi-

tional distribution p(x|z) describes the probability to see any given

number of transcripts for each gene in each cell and builds off

advances in the use of count likelihoods for scRNA-seq data (Risso

et al, 2018). This distribution can be used for hypotheses testing,

such as differential expression. The procedure also approximates

the posterior p(z|x), which provides a representation of each cell in

the latent space. These representations capture the most important

characteristics of each cell and thus provide an effective way for

A C

B

Figure 2. Presentation of the selected models which will be studied in depth for this review (A) scVI, (B) DeepSequence, and (C) ORGANIC.
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stratifying cells into biologically meaningful clusters or gradients.

The model can be used for a range of additional tasks, such as data

denoising and imputation (by generating the full-dimensional data

from the latent space), as well as batch effect correction.

The second model, DeepSequence (Riesselman et al, 2018)

(Fig 2B), aims to identify deleterious mutations in amino acid or

nucleotide sequences with the underlying assumption that func-

tional importance is associated with evolutionary conservation.

DeepSequence takes as input sets of homologous sequences x from

different organisms and fits a VAE to estimate the probability that

any given sequence will occur in evolution. The model was

designed so as to capture some of the evolutionary constraints that

gave rise to the diversity within each set of homologs. It especially

emphasizes interactions between elements (amino acids or nucleo-

tides) along the sequence that are jointly associated with increased

conservation and may thus indicate functionality. DeepSequence

has been applied for predicting whether sequence modifications

(e.g., single-nucleotide mutations) are likely to be chosen by natural

selection. Such predictions are used as a proxy for predicting the

effect of mutations and understanding which ones are more likely to

be deleterious. The estimates from DeepSequence were shown to be

more accurate than likelihood ratios from state-of-the-art pairwise

and site-independent models when using deep mutational scan data

as ground truth. Furthermore, an especially sound modeling aspect

of DeepSequence is to place a group sparsity priors on the weights

of the last layer of the generative neural network, which yield inter-

pretable amino acid modules. Notably, the obtained amino acid

similarity matrix is shown to be correlated with a well-known

substitution matrix BLOSUM62.

Our third leading example is Objective-Reinforced GAN for

Inverse-Design Chemistry (ORGANIC (preprint: Guimaraes et al,

2018; preprint: Sanchez-Lengeling et al, 2017), Fig 2C), whose goal

is to design new chemical compounds with desired properties.

ORGANIC takes as input a data set x of molecular structures (trans-

formed as a string via the simplified molecular input line entry spec-

ification [SMILES] encoding) as well as a black-box “oracle” capable

of predicting y—a chemical property of interest (such as fluores-

cence) for any given molecule. ORGANIC trains a GAN to distin-

guish between molecules that have the property versus molecules

that do not. Notably, it proposes to learn a biased generative distri-

bution so that its output is shifted toward regions in the molecule

space that satisfies or maximizes some chemical quantitative prop-

erties. Using the trained model, ORGANIC generates novel mole-

cules with a distribution skewed toward high scores with respect to

the chemical property of interest y. For example, it has been

employed to generate drug candidate molecules, by maximizing

properties such as melting temperature, chemical beauty, melting

point, or Lipinski’s Rule of 5. ORGANIC and similar algorithms were

shown to generate molecules with significant similarity to existing

drugs.

Brief overview of deep generative models

In the following, we discuss some of the considerations for

designing studies with generative models and provide a brief

overview on the two primary DGM types, namely the VAE and

the GAN.

Designing generative models
The steps to construct a generative model are best described by

Box’s loop (Blei, 2014) (Fig 1). This procedure, originally proposed

by Box (1976) and Box & Hunter (1962), traverses through the main

steps of most applications: choosing a model (e.g., selecting the

model type, the input covariates, and the distributions that describe

these covariates), inferring parameter values (i.e., training), and

criticizing the trained model (e.g., evaluating its accuracy on various

tasks). After criticism, we return to the first step and iterate through

the loop until we are ready to “deploy” our model.

An important consideration during model design is its inter-

pretability—in the sense that its parameters will either be immedi-

ately useful (e.g., quantifying interactions between pairs of amino

acids (Riesselman et al, 2018)) or can be used in downstream anal-

ysis to extract knowledge (e.g., cell-to-cell similarity in Lopez et al

(2018a)). It is often the case that there is a clear trade-off between

model complexity and interpretability. Generative models that

consist solely of linear operations (such as linear discriminant

analysis or factor analysis) are easily interpretable since their

parameters normally pertain directly to the input covariates (e.g.,

one coefficient per gene). This desirable property, however, comes

at the cost of a limited ability to fit the data closely. Alternatively,

models that use non-linear operations in neural networks (as it is

the case for VAEs and GANs) are normally treated as black boxes

whose parameters are not interpretable. These models, however,

usually provide a better fit to the observed data and an increased

capacity to generalize upon it (e.g., Riesselman et al (2018)). The

choice of the right trade-off therefore depends on the prospective

uses of the model.

Next, we perform inference over the parameters (i.e., fit the

model to data). Since exact inference is usually impossible for most

types of generative models, one must rely on approximate inference

schemes. In this review, we focus on specific flavors of approximate

inference methods that rely on neural networks. Our choice is moti-

vated by a slew of theoretical and engineering advances that makes

the task of training generative models significantly more approach-

able than in the past.

The immediate next step following model fitting is model criti-

cism. This is achieved by defining a set of attributes that we would

like our model to have and a set of metrics to evaluate these attri-

butes. A widely used attribute is the capacity to generalize, namely

to properly describe data points that were not available during

training. Relevant metrics include the likelihood of held-out data

points (Wallach et al, 2009) or differences in summary statistics

between observed and generated data (posterior predictive checks,

[PPC] (Rubin, 1984)). In the latter procedure, we sample random

duplicates ~x of a sample x* (often a group of samples) from the

approximate posterior predictive distribution pð~xjx�Þ � Eqðzjx�Þpð~xjzÞ
and compare this to the original data distribution. The comparison

can be made by selecting key statistics for the data under scrutiny

and testing for changes in those statistics (e.g., comparing coeffi-

cient of variation of each gene in single-cell transcriptomics

(Levitin et al, 2019)). These metrics are especially suitable for eval-

uating Bayesian models but may not be defined for other DGMs

(e.g., GANs). Another way to approach this is using a priori

knowledge that is not explicitly available during training, yet

should be captured by any useful model. In the context of scVI,

one can quantify the extent to which known subpopulations of
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cells are grouped together in the inferred latent space. In the

context of DeepSequence, one can quantify the extent to which the

fitted model captures known residue–residue interactions or how

well the model predicts deleterious mutations.

Encoding knowledge with likelihood-based generative models
A first strategy for generative modeling consists of explicitly defin-

ing a likelihood function for the observed data. Our goal is to define

a distribution ph(x) from which each observation x has been gener-

ated, where h denotes the parameters of our model. For instance, in

the context of DeepSequence, x represents a sequence of amino

acids and the likelihood of x (parameterized by h) reflects the extent

of co-occurrence in evolution of the amino acids that it contains.

The generative model in DeepSequence is a generalization of the so-

called Ising model, which estimates the likelihood that x has been

selected in evolution by summing over pairs of sites (Hopf et al,

2017).

A common Bayesian approach to defining ph(x) is not to model x

directly, but instead use an unobserved (latent) random variable z

as an intermediary. That is, to generate a new observation x, we

first draw an intermediary value z from a prior distribution ph(z)

and then sample from the conditional distribution ph(x|z) (Wain-

wright & Jordan, 2008). There are two primary reasons for this

modeling strategy. First, conditioning on z allows us to decouple the

contribution of individual entries in x (e.g., genes in scVI or posi-

tions along a sequence in DeepSequence) to the overall likelihood of

x (i.e., a cell in scVI or an entire sequence of amino acids in DeepSe-

quence). Since each entry in x is assumed to be independent of all

other entries when we condition on z, the inference of the parame-

ters h becomes substantially simpler. This simplification, for

instance, aids DeepSequence to model high-order dependencies

between amino acids, going beyond more traditional models (Hopf

et al, 2017) that account only for pairwise interactions. Second, in

many applications, z is of much lower dimension than x and there-

fore provides a concise summary of the data. For instance, in scVI, z

represents the cell state in a low-dimensional space (typically set to

<20 dimensions) and summarizes the high-dimensional observa-

tions of gene expression (usually thousands of genes). Note that

using this property requires a mapping from each observation x

back to its representation z in latent space. We discuss one way to

achieve this in the next section.

With the use of intermediate variable z, the marginal probability

(also termed the evidence) of a given data point can be formally

written by the a combination of the prior ph(z) and likelihood ph(x|z):

log phðxÞ ¼ log

Z Yd
j¼1

ph xjjz� �" #
phðzÞdz

 !
; (1)

where d is the dimension of each observation (e.g., length of

sequence in DeepSequence), and xj denotes the jth entry of obser-

vation x. Notably, if the prior is isotropic Gaussian z�Nð0; IÞ and

the conditional likelihood is Gaussian with a linear link

NðuT
j zþ vj; r2j Þ, then this formulation is a Bayesian version of prin-

cipal component analysis (as we are specifying a prior for each

entry of the principal components), otherwise known as factor

analysis (Jolliffe, 1986).

While many practical applications indeed fix the prior to be

isotropic Gaussian, the conditional distribution ph(x
j|z) usually

comes in other forms that better reflects the nature of the data. For

instance, scVI uses the negative binomial distribution—a choice that

adequately captures technical (Love et al, 2014) and biological

(Grün et al, 2014) noise in the observed transcript counts. It also

includes a possible addition of a zero-inflation component to further

account for sparseness (Clivio et al, 2019). Finally, scVI also

supports the modeling of the conditional distribution ph(x|z,s) where

s denotes the batch information (treated as an observed random

variable). This conditional VAE (Louizos et al, 2016) setting makes

it particularly useful for removing batch effects (preprint: Xu et al,

2020). Apart from scVI, DeepSequence uses a categorical distribu-

tion to model the occurrence of specific amino acids or nucleotides

at each position in the sequence. This distribution also accounts for

correlations between different amino acids, thus providing further

insight from the model.

Fitting a generative model using variational inference with
neural networks
Once we specified the form of the distributions (prior and condi-

tional likelihood) in our generative model, the inference task is

twofold. First, we search a set of parameters h that maximizes

the evidence for the data (equation (1)). In parallel, for a

complete model we infer the posterior distribution ph(z|x) that

provides a way to represent our observations in the low-dimen-

sional latent space. While the optimal parameters h can be

computed precisely for a restricted choice of distributions (e.g., in

factor analysis (Jolliffe, 1986) or other cases where the prior is

conjugate to the likelihood), exact inference is intractable for

most real-world applications. Indeed, evaluating the evidence

requires integration over the latent variable z. Either this quantity

does not have a closed form expression, or it may take exponen-

tial time to compute (Jordan et al, 1999). The same caveat also

applies to evaluating the posterior distribution. To see this, recall

that Bayes rule entails that:

phðzjxÞ ¼ phðxjzÞphðzÞ
phðxÞ : (2)

The numerator in this equation can be readily computed in most

applications since the prior and likelihood come with a prespecified

closed-form density. However, the denominator is the intractable

evidence term.

The main idea behind variational inference is the realization that

the problems of maximizing ph(x) and approximating ph(z|x) are

very much related. As one way to see this, assume that our goal is

to find a distribution q/(zi) (also known as the variational posterior)

that, for a given h, best approximates the posterior. In other words,

for every observation xi, its variational posterior q/(zi) should be as

similar as possible to the actual posterior ph(z|xi). Because the

evidence decomposes across data points, we focus here on the case

of a unique observation. Using Bayes rule, we have for each value

of z:

log phðxÞ ¼ log
phðxjzÞphðzÞ

phðzjxÞ : (3)

We can therefore take the expectation of both sides of equa-

tion (3) with respect to q/(z) to decompose the evidence as follows:

6 of 21 Molecular Systems Biology 16: e9198 | 2020 ª 2020 The Authors

Molecular Systems Biology Romain Lopez et al



logphðxÞ ¼ Eq/ðzÞ log
phðxjzÞphðzÞ

phðzjxÞ
¼ Eq/ðzÞ log

phðxjzÞphðzÞ
q/ðzÞ � q/ðzÞ

phðzjxÞ
� �

¼ EqðzÞlog
phðxjzÞphðzÞ

q/ðzÞ þ Eq/ðzÞ log
q/ðzÞ
phðzjxÞ

¼ Eq/ðzÞ
phðxjzÞphðzÞ

q/ðzÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Evidence lower boundðELBOÞ

þDKL q/ðzÞjjphðzjxÞ
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Variational gap

(4)

where ΔKL denotes the Kullback–Leibler (KL) divergence, a notion

of similarity between probability distributions. In equation (4), the

variational gap quantifies how well q/(z) approximates the poste-

rior and is always positive because that is the KL divergence

between two distributions. Consequently, the ELBO is indeed a

valid lower bound on the evidence.

Variational inference avoids the intractability of the evidence by

maximizing the ELBO, which helps address both of our inference

problems. The ELBO includes two sets of parameters. The first set h
controls the generative model, and the second set / controls the

variational approximation to the posterior. Maximizing the ELBO

with respect to / for a fixed h yields an approximation to the poste-

rior ph(z|x), and the ELBO approaches the marginal probability

ph(x). In practice, however, we do not have h and the optimization

procedure includes assignments of values to both the generative

model parameters h and the variational posterior parameters / so as

to maximize the respective ELBO.

While the ELBO optimization problem is well studied (Blei et al,

2017), recent advances in the field provide an effective way to

address it using stochastic optimization (Hoffman et al, 2013) as well

as neural networks, leading to substantial increase in scalability and

(for large enough data sets) accuracy. A notable way to achieve this

is with VAEs (Box 3) (Kingma & Welling, 2014; Rezende et al, 2014).

VAEs provide a way for explicitly representing and then jointly infer-

ring both the variational posterior and the generative model. A stan-

dard VAE model consists of two components: an encoder neural

network that maps any given point in the observation space (xi) to its

corresponding location in latent space (zi). The mapping is done by

setting the parameters of the variational posterior q/(zi) for any given

observation xi through a function f/ represented by the encoder

network. In this notation, / refers to the weights of the encoder

network. For example, with a Gaussian variational approximation

q/(zi) = Normal(li, diag(vi)), we have (li, vi) = f/(xi). Because we

can compute li and vi with a neural network, we do not need to store

these values in memory (by opposition to classical variational infer-

ence). Notably, because we can obtain the values of the variational

parameters at any observation x (using the encoder network), we

refer to the variational distribution as q/(z|x). The second component

is a decoder neural network that maps any given point in the latent

space (z) to the space of observations (x). The mapping is done by

setting the parameters of the generative model ph(x|z). Notably,

neural networks can be particularly useful in cases where linear

assumptions might seem inappropriate, which is often the case for

biological and medical applications (e.g., statistical relations between

genes or loci in a sequence). For instance, in scVI, the mapping from

gene expression space x to latent space z is done non-linearly by a

neural network. The resulting latent representation of cells therefore

reflects a notion of cell state that may include complex patterns of

gene expression (e.g., a cell state may be defined as the expression of

gene A and gene B but not gene C).

At the end of optimization, we have access to a model that fits

the data well (in terms of evidence), as well as an approximation of

the latent variables’ distribution for each data point. In the example

of scVI, the approximate variational posterior over latent variable z

is used for embedding the cells into the low-dimensional manifold

(e.g., using 10–20 latent dimensions to summarize thousands of

genes). Importantly, the distribution q/(z|x) also measures uncer-

tainty that can be utilized for accounting for measurement uncer-

tainty while performing hypothesis testing (such as differential

expression) (Lopez et al, 2018a).

Likelihood-free generative models
A competing paradigm for designing generative models is to use

implicit modeling. Instead of defining a set of conditional

Box 3: VAEs

A variational autoencoder (VAE) jointly performs learning of parame-
ters for ph(x,z) as well as variational inference, with the autoencoder
neural network architecture. From the neural network perspective, a
VAE contains an encoder network, which maps the observed data
points to the distributional parameters of their latent variables (corre-
sponding to the variational posterior q/(z|x)). It also includes a
decoder network, which maps a sample of the latent variables to the
parameters of the data likelihood distribution (corresponding to the
generative model p/(x|z)). From the probabilistic perspective, a VAE
describes a specific way to perform approximate Bayesian inference.
An inference network (encoder) amortizes the cost of inference over a
shared set of variational parameters, /. Meanwhile, the data likelihood
distribution is parameterized by neural network (decoder) with
parameters h. There are two tasks when training a VAE: (i) learn an
approximate posterior distribution over the latent variables, and (ii)
update the model parameters such that the data have high likelihood.
These two tasks are simultaneously accomplished by optimizing the
ELBO with respect to / and h.
A rich literature surrounds the VAE, both in applications and in
method development. For instance, the VAE has been applied to
image generation (Gregor et al, 2015), object segmentation with
partial observation (Sohn et al, 2015), and astronomy (Ravanbakhsh
et al, 2017). Others have focused on improving parts of the framework
such as a different (possibly tighter) lower bound (Burda et al, 2016;
Li & Turner, 2016), better posterior approximation (Kingma et al,
2016), more flexible choices of distributions (Ruiz et al, 2016), and
richer family of graphical models (Johnson et al, 2016).

Figure: Computational Schematics of the VAE.
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probabilities as before, implicit generative models learn to mimic

(or simulate) the data by transforming a “pure noise” input channel

into outputs that have a similar distribution as the observed data

(Sugiyama et al, 2012). We refer to these models as likelihood-free

since their fitting procedure does not involve explicit optimization

of a likelihood-related objective, as is the case for the ELBO in

VAEs.

Likelihood-free models can be appealing when we can more

readily summarize the knowledge accumulated on some data in the

form of a stochastic algorithm (e.g., a simulator or structural equa-

tion models) rather than a set of conditional likelihoods. For exam-

ple, SymSim (Zhang et al, 2019) is a simulator for scRNA-seq data

that define an implicit likelihood model by explicitly simulating dif-

ferent processes (biological and experimental) that contribute to the

variation in scRNA-seq (e.g., PCR amplification). Conversely, scVI

explicitly defines a set of conditional distributions and is an explicit

likelihood model.

A notable example of this family of models is the GAN (Box 4)

(Goodfellow et al, 2014), in which two competing modules (imple-

mented as neural networks) are jointly optimized. The generator

module G learns how to transform an input noise distribution p(z)

(e.g., an isotropic Gaussian) into the underlying data distribution

pdata (x) (namely, the empirical distribution defined by the space of

all observations). The discriminator module D learns to distinguish

between the empirical data x and the data that were artificially

generated G(z). G and D play a game—namely the two weights in

the two networks are optimized in parallel, such that G aims to

minimize and D aims to maximize the following objective:

min
G

max
D

Ex�pdataðxÞ logDðxÞ½ � þ Ez� pðzÞ log 1� D � GðzÞð Þ½ �; (5)

where the output of the discriminator network D(x) 2 (0,1) esti-

mates the probability that the provided input x resembles a true

observation. The notation D � GðzÞ refers to composition of the two

neural networks (i.e., G takes z as an input, and the output serves

as an input for D). The optimization of the objective above

involves finding an equilibrium instead of a simple extremum. For

this reason, a number of contributions focused on stabilizing the

training procedure by, for example, changing the objective function

(e.g., Wasserstein GANs (Arjovsky et al, 2017)).

Since their inception in 2014, GANs have been remarkably

successful, especially in the domains of robotics (Kurutach et al,

2018) and computer vision (Ledig et al, 2018). For instance, using

large databases of pictures, GANs can be trained to generate new

images that are much clearer than those generated by VAEs (Rad-

ford et al, 2016). This may be attributable to the adversarial loss

(equation (4)) that makes GANs more prone to memorizing the

training data. Recent work now aims to rectify this, in cases where

generalizability is preferable to the production of clear images (Wu

et al, 2019).

In biological research, GANs have fewer significant contributions

compared to VAEs. There are several possible reasons for this. One

disadvantage of GANs compared to VAEs is that they do not provide

an immediate way of tracing back the representation of each observa-

tion in the latent (input noise) space z. We note, however, that recent

work now aims to address this problem, such as the bidirectional

GAN (Donahue et al, 2017). Additionally, it may be harder to incor-

porate our knowledge on the noise structure in the case of GANs, by

opposition to VAEs (e.g., enforcing sparsity motifs in the likelihood

function p(x|z) for better interpretability of DeepSequence). Conse-

quently, GANs cannot be readily used for dimensionality reduction or

for estimating the uncertainty around the observed values. Finally,

except in the case of images (at which GANs excel), it may be more

difficult to provide clear metrics of how “realistic” a generated data

point is. Therefore, it might be harder to justify the use of GANs in

many other biological applications.

One notable use of GANs in molecular biology is the ORGANIC

method for molecule design (preprint: Sanchez-Lengeling et al,

2017; preprint: Guimaraes et al, 2018). The generator network of

ORGANIC takes as input random noise (in this case a uniform

distribution on the unit hypercube) and maps it to a SMILES

encoding of a molecule via a recurrent neural network G. The

discriminator D is a convolutional neural network that takes as

input a SMILES encoding and outputs a prediction for whether it

represents an observed molecule (available as a part of a training

set) or an artificial one (generated by G). During the training

procedure, the generator network gains the capacity to simulate

molecules that are similar to the ones included in the observed

training set. To make this property particularly useful, ORGANIC

adjusts the standard GAN so as to generate molecules that have

certain chemical properties of interest (such as melting point). This

is accomplished by adding another part to the objective that

Box 4: GANs

A generative adversarial network places two neural networks in a
competitive game. A generator network G maps random noise to the
space of observations (i.e., trying to generate a “realistic looking” data
point). In parallel, a discriminator network D aims to estimate the
probability that an imputed data point was an actual observation
rather than being artificially generated by G. The game is structured
such that D’s goal is to accurately predict the generating source of a
data point, while G’s goal is to output realistic data points and “trick”
D. This is formalized in equation (4).

Figure: Computational Schematics of the GAN.
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rewards the generation of such samples. The balance between the

penalty incurred from the discriminator (penalizing unrealistic

molecules) and the reinforcement part (penalizing molecules that

do not have the desired property) is controlled by a hyperparame-

ter, set before training.

For the sake of completeness, we remark that the boundary

between implicit and explicit likelihood models can be blurry.

Recent research work shows formal connections between implicit

and explicit generative models (Hu et al, 2018). For example, some

variational inference approaches have been developed for likeli-

hood-free models (Tran et al, 2017b), and conversely, VAEs have

been formulated in an adversarial learning context (Mescheder et al,

2017). Furthermore, certain types of autoencoders can be trained

via adversarial mechanisms such as the adversarial autoencoder

(AAE, (Makhzani et al, 2016)). Finally, we note that another type of

generative model often used in practice is the denoising autoencoder

(Vincent et al, 2010) (DAE), which can be connected to the VAE

(Bengio et al, 2013).

Applications to molecular biology and biomedical research

In the following, we discuss the use of DGMs in various areas of

research in molecular biology and biomedicine. We highlight appli-

cations to high-throughput molecular data (e.g., using DNA

sequencing to study DNA or RNA, or structural information for

proteins) and biomedical imaging. First, we return to our three lead-

ing examples and describe how they use DGMs for practical analy-

sis. Then, we group the remaining methods by the tasks they

accomplish using DGMs. These tasks include pattern recognition

procedures (e.g., learning metrics of similarity between data points)

as well as decision-making procedures that evaluate and then incor-

porate uncertainties in the observations (e.g., detecting genes with

significantly different expression levels across cell types). We

describe how these methods are promising for learning new biology

as well as how they may improve over simpler baselines.

Investigating hidden structure
Biological data are often high-dimensional. Consequently, statisti-

cal models that operate directly on the observed data may suffer

from reduced ability to extract clear patterns. This phenomenon

may be attributed to the so-called curse of dimensionality, accord-

ing to which data points are expected to become more equidistant

from each other as the dimension grows (Bellman, 1966). In this

context, DGMs provide an attractive framework since they can

effectively project the data onto a low-dimensional space. The

resulting latent representation or data embedding provides a

simpler, yet often cleaner perspective of the data, preserving

important sources of variation, while excluding artifacts. In the

following, we describe how this salient information extracted by

DGMs may be useful for both unsupervised and supervised learn-

ing tasks (Fig 3A).

Embeddings in unsupervised tasks

Applications of DGMs to scRNA-seq data emerged as a useful way

to embed and analyze cells in a low-dimensional space that summa-

rizes their transcriptomes. Here, the distances between cells in the

embedding space can be used to identify phenotypically coherent

groups of cells, reflecting either discrete cell types (e.g., T cells, B

cells), hierarchies of types (e.g., subtypes of T cells), or variation

along some continuum (e.g., progression along the cell cycle) (Ding

et al, 2018; Lopez et al, 2018a; Wang & Gu, 2018; Amodio et al,

2019; Eraslan et al, 2019b; Rashid et al, 2019; Grønbech et al,

2020). For example, scvis (Ding et al, 2018) employs a VAE to learn

a biologically meaningful two-dimensional representation of single

cells from oligodendroglioma samples. Groups of cells that appear

as clusters in these two dimensions represent different cell types

that are present in the tumor, and characterize its microenviron-

ment. Two-dimensional projections with scvis were also shown to

preserve the structure of high-dimensional synthetic data better than

the popular method t-SNE (Van Der Maaten & Hinton, 2008) (evalu-

ated by preservation of nearest-neighbor relationships).

While the layout of cells in the two-dimensional latent space of

oligodendrogliomas reflected the presence of different cell types, the

general question of interpreting the meaning of any given low-

dimensional embedding of single-cell transcriptomes remains chal-

lenging. Specific questions include: what does the proximity of cells

in latent space mean? Are there areas of the latent space that contain

cells with some joint phenotype? And if so, where are these areas

and what are these joint phenotypes? One way to approach these

questions is relying on gene signatures (DeTomaso et al, 2019;

preprint: Simon et al, 2019) to guide the biological interpretation of

any given latent space. These methods first characterize cells based

on the expression of gene signatures (e.g., expression changes

indicative of stimulation of a T cell) and then look for local neigh-

borhoods in latent space with a higher or lower than expected

values of these signatures (using an autocorrelation statistic). A

closely related subject is that of ascribing meaning separately to

each component of the embedding, which we discuss in the

section Disentangling factors of variation.

In the example of DeepSequence (Riesselman et al, 2018), the

embedding has a phylogenetically coherent structure. For example,

the b-lactamase family is mostly organized by bacterial species

(e.g., acidobacteria and actinobacteria). Because this information is

included in the deep mutational scans studied in Riesselman et al

(2018), these embeddings do not provide much supplementary

information. However, they indicate that the model indeed learned

something biologically meaningful from the data.

With DGMs, it is also possible to control the geometry of the

latent space (two-dimensional in the case of scvis) through the form

of the prior distribution p(z). Consequently, different choices of the

prior could in principle yield different visualizations. In scvis, p(z)

is set to isotropic Gaussian, while in Grønbech et al (2020);

preprint: Xu et al (2020), the prior is a mixture of Gaussians in order

to explicitly model discrete cell types. Beyond those simple yet prac-

tical distributions, more recent work (preprint: Ding & Regev, 2019)

used probability distributions on hyperspheres and hyperbolic

spaces as the prior to provide a more efficient and interpretable cell

representation. In the future, Bayesian non-parametric priors, such

as the time-marginalized coalescent (Vikram et al, 2019), may be of

interest to analyze single-cell dynamic lineage tracing data

(McKenna & Gagnon, 2019).

Embeddings in supervised tasks

Embeddings may additionally be used in supervised tasks (e.g., for

predicting the drug response of a patient’s tumor based on gene
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expression data). A natural approach is to use some form of regres-

sion model trained on the raw data, after adequate normalization.

Alternatively, one can work on a low-dimensional representation of

the data, thus avoiding the curse of dimensionality.

This approach was taken by the authors of DeepProfile (Dincer

et al, 2018) who used a VAE to predict response to treatment among

patients with acute myeloid leukemia. Here, gene expression levels

were measured, transcriptome-wide, for each of thousands of

patients. These high-dimensional gene expression vectors x were

then mapped to an 8-dimensional latent variable z using the

estimated variational posterior q/(z|x). The embeddings z of patients

not included during model training were then used as covariates

in a penalized regression framework that predicted response to

160 types of chemotherapies. The use of DeepProfile embeddings

led to higher accuracy of prediction, compared to regression with

principal components, regression with the raw expression data, or

k-means.

The efficiency of this approach may depend on the difficulty of the

problem at hand. For example, non-linear embedding-based classifiers

were shown to be outperformed by simpler regression schemes for
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Figure 3. Overview of selected applications of DGMs.

A Learning meaningful low-dimensional representations (embeddings) from high-dimensional data to aid both supervised and unsupervised downstream tasks.
B Generation of novel samples that either (i) satisfy some interesting property, (ii) are mimicking the input data-generating process, or (iii) are out of sample.
C Enforcing structure in low-dimensional representations such as invariance to observed nuisance factors (e.g., batch effects in scRNA-seq data) or disentanglement. In

a disentangled representation, each dimension in a represents variation due to one notable underlying source of variation (e.g., cell cycle).
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predicting broad cell types in scRNA-seq (preprint: Köhler et al, 2019).

However, it is expected that embeddings are more powerful than clas-

sical methods in more complex classification scenarios.

In silico generation of biomedical data
Generation of biological data often requires substantial resources in

terms of both labor and cost. The ability of DGMs to mimic the

data-generating process and simulate novel out-of-sample data has

yielded promising results, especially in the field of computer vision

(Ledig et al, 2018). This has subsequently led to applications to

biomedical data. For example, we may want to generate protein

sequences that maximize some desired property (e.g., fluorescence).

We may also want to augment our data set with more (artificial)

observations to improve statistical power of other downstream

methods, like differential expression. In this section, we cover vari-

ous applications of DGMs to generating new data (Fig 3B).

Simulating from data-generating distributions to enhance performance

of downstream analysis

One application of simulating new data is to generate, for each data

point, a set of similar pseudo-observations, thus artificially inflating

the number of observations, which can be useful for a range of

applications (Shrivastava et al, 2017; preprint: Ghahramani et al,

2018; Marouf et al, 2020). A closely related notion dates to early

applications of deep learning in computer vision, where a common

practice was to feed neural networks with the same image, shifted

and rotated several times. This practice artificially increases the size

of the data set and ensures that neural networks can effectively

learn properties of the data that are invariant to nuisance factors

such as the angle of the picture. For instance, for the now classical

task of detecting the presence of a cat in an image, this augmenta-

tion was helpful since the rotation of an image does not alter the

presence of a cat in this same image.

A recent application of data augmentation in biology was

suggested for analyzing scRNA-seq data (preprint: Ghahramani et al,

2018; Marouf et al, 2020). For example, Marouf et al (2020) down-

sampled a particular cluster of 15,000 cells in a data set of 68 thou-

sand peripheral blood mononuclear cells. They selected only 0.5% of

this cluster so as to simulate a rare subpopulation. In this setting,

Marouf et al use a GAN to learn the conditional distribution ph(x|c)

where c denotes the cell type information. Such a model is called a

conditional GAN (preprint: Mirza & Osindero, 2014). Once trained,

the conditional GAN may simulate a large amount of artificial cells

that augments the subsampled data set. The authors then performed

rare cell type classification on the augmented data using a random

forest classifier. When compared to naive upsampling methods, the

GAN upsampling procedure yields higher accuracy on a test set.

Consequently, they demonstrated that augmentation increased their

ability to identify rare cell types. It is reasonable to assume that this

type of data augmentation may also improve other downstream

scRNA-seq tasks like differential expression or clustering.

Generative models have also been successful at simulating

images, either from electronic microscopy (Han et al, 2018b), fluo-

rescence microscopy (Goldsborough et al, 2017; Osokin et al, 2017;

Lafarge et al, 2019), or brain magnetic resonance (Han et al,

2018a). Lafarge et al (2019) developed VAE+, a deep generative

model for fluorescence microscopy cell images based on a VAE

learned with an adversarial mechanism. The proposed model shows

competitive generative capacities and highly discriminative power

for classifying compounds. More importantly, VAE+ generates real-

istic cell images from and in between different treatment conditions,

which makes it a particularly powerful tool to visualize how a

compound affects cellular structure. In the case of magnetic reso-

nance imaging, Han et al (2018a) proposed a GAN architecture that

simulates realistic brain images (as measured by the visual Turing

test) with the goal of improving the training of image segmentation

models as large training data sets can be expensive to obtain.

Finally, instead of simply simulating more data from the same

distribution, a sometimes more useful application is super-resolu-

tion, that is the simulation of higher resolution data. For example,

Chen et al (2018) used a conditional GAN to learn the relationship

between low-resolution Hi-C data and high-resolution Hi-C data. In

this setting, both low-resolution and high-resolution samples are

available in finite quantity. However, acquiring high-resolution Hi-C

data is often too costly experimentally because increasing the reso-

lution by a linear factor requires a quadratic increase in the number

of reads (Chen et al, 2018). Therefore, the authors sought to approx-

imate high-resolution data from low-resolution data in silico with a

GAN. The GAN framework of Chen et al also generalizes well

across domains, meaning that it can be trained on one cell type and

applied to others with high accuracy.

Generation of synthetic observations can improve downstream

analysis of molecular data in many cases, as can be seen in the exam-

ples listed above. However, it is important to keep in mind that DGMs

require a large amount of data in order to learn an accurate distribu-

tion for the data-generating process (refer to Box 5 for further details

about this practical concern). Additionally, the learned model might be

biased, even with large amounts of data. A solution to alleviate this

concern consists of correcting the model’s distribution based on impor-

tance weighting (Grover et al, 2019). This may be useful for more

systematic use of generative models for synthetic data generation.

Generating samples that satisfy or maximize a property of interest

A more complex scenario of generating data in silico is to simulate

samples that satisfy a given set of constraints or that maximize an

objective of interest, such as specific chemical properties of candi-

date drug molecules. The latter problem has been approached in a

number of ways. First, CbAS (Brookes et al, 2019) uses a VAE to

generate molecules conditioned on a constraint on the property of

interest (e.g., proteins with a fluorescence greater than a threshold).

More precisely, S denotes the property of interest (e.g., a certain

range of fluorescence), and the objective is to sample molecules x

from the conditional distribution p(x|S) (approximated with the

VAE). The main difference between CbAS and a simple VAE model-

ing the conditional distribution p(x|S) is that the event S can be

extremely rare since not many proteins from the training set will

have high fluorescence. For this reason, CbAS develops a specific

iterative method for generating those “rare” molecules.

As an alternative to sampling from a distribution that is condi-

tioned on a property of interest, one can try to generate samples that

maximize it. For example, ReLeaSE (Popova et al, 2018) enforces a

recurrent neural network to sample molecules that maximize inhibi-

tory activity against Janus protein kinase 2. ORGANIC utilizes a

GAN that is penalized for simulating molecules with low values of

chemical properties of interest. Overall, such methods might be criti-

cal in future developments in drug discovery. For example, in
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Kadurin et al (2017a,b), an adversarial autoencoder (AAE) is trained

on a collection of chemical compounds which includes, for every

compound, its molecular fingerprint and the response (growth inhi-

bition) of a cancer cell line to treatment at various concentrations.

The AAE generates molecular fingerprints with high response with

the AAE, which can then be employed for screening a repository of

72 million compounds, for the majority of which the cancer

response assay was not conducted. Using molecular fingerprints,

the model identified new molecules that can have anticancer capac-

ity. As evidence for the accuracy of this approach, the authors

demonstrated that the method was able to re-discover known anti-

cancer agents that were not included in the training set. For further

details of this and other aspects of molecule design, we refer to the

review by Sanchez-Lengeling and Aspuru-Guzik (2018).

The concept of guided data generation is closely related to the

areas of sequential decision-making, active learning, and reinforce-

ment learning (RL) (Peters & Schaal, 2007). The respective proce-

dures generally include an agent and an environment, in which the

agent takes actions based on a limited amount of data and proceeds

iteratively to test the property of interest in new samples that it

generates. The success of RL applications in molecular discovery

therefore largely depends on the ability to evaluate the desired

chemical specification in an interactive manner (Mnih et al, 2015).

In molecule design, a black-box oracle predicts the particular chemi-

cal property of a given input molecule (either using molecular

dynamics simulations or learned from data). As such, the quality of

the oracle is also of great importance to the success of these applica-

tions (Schneider et al, 2020).

Significant bottlenecks that limit the applicability of RL in mole-

cular biology compared to robotics include lower experimental

throughput and higher turnaround time (e.g., due to the need for

recruiting donors, preparing samples, and preprocessing data). As

the efficiency of experimental platforms (e.g., from sequencing to

analysis of higher order chemical properties) is increasing, we

believe it is reasonable to expect true RL applications in molecular

biology, which will automatically analyze experimental results and

(for instance) explore new drug candidates in an online fashion.

Generating out-of-sample data

Generated data may also extrapolate beyond our observations—

namely generating and then drawing conclusions from new data

points that are fundamentally different from the observed ones. This

can be done by sampling from areas of the latent space to which

none of the observed data points is mapped, but that may still have

a meaning. A popular way to do that is using the so-called latent

space arithmetic, namely performing linear operations on the latent

representation of observed points and generating data from the

resulting coordinates. For instance, one may sample points in latent

space along a line between two observed data points, presumably

spanning all intermediate states between these points. While latent

space arithmetic does not have any theoretical guarantees, it has

been successfully applied in computer vision, for instance to linearly

interpolate between z0, the latent representation of an image of faces

looking left, and z1, that of a face looking right, thus generating an

artificial, yet smooth left-to-right transition xt (Radford et al, 2016).

zt ¼ tz0 þ ð1� tÞz1
xt ¼ EpðxjztÞ½x�

: (6)

An application of this idea in molecular biology was presented

by preprint: Ghahramani et al (2018) who used latent space arith-

metic to simulate epidermal differentiation. Here, a GAN was

trained on scRNA-seq data sets of epidermal cells and a differentia-

tion gradient was estimated in the latent space by subtracting the

latent representations of differentiated and undifferentiated cells.

This gradient was then used to study epidermal cell differentiation

in silico. Notably, mapping an observation x (here a cell’s transcrip-

tome) back to its latent representation z is not trivial with GAN

since, unlike VAES, they do not include a posterior distribution

p(z|x). To resolve this, the authors proposed to randomly sample

points from the latent space (i.e., inputs to the generator network G)

until a point z0 is found whose generated transcriptome G(z0) is suffi-
ciently similar to the desired x.

By starting from the latent representation of a specific undifferen-

tiated cell and following the differentiation gradient, new and unob-

served points were then sampled at various points along the

differentiated-undifferentiated segment. These points in latent space

were then converted to full-dimensional points (in gene expression

space) using the GAN generator. The authors used these simulated

profiles to understand the dynamics of the differentiation process

and verified that known differentiation markers such as Ppl and

Grhl3 increase over the simulated process.

Latent space arithmetic is also central to the method scGen (Lot-

follahi et al, 2019), which uses a VAE framework to predict the

Box 5: Number of data points

One practical consideration to determine whether a problem is amenable to deep generative modeling is whether we have a sufficient amount of obser-
vations to learn such a model. What matters here is not only the number of data points but also the complexity of the model (e.g., number of parame-
ters) as well as the complexity of the data (e.g., dimension for the input data). Naturally, as dimensionality and model complexity increase, so does the
amount of data needed to fit a model that is robust (i.e., does not change much in response to small perturbations in the data or training procedure)
and that generalizes well (i.e., explains unobserved data well). This may explain why most applications use a low-dimensional embedding (between 10
and 32 for our selected methods), in order to keep a small model complexity. However, latent spaces of higher dimension might help learn disentangled
representations as well as provide more expressive models (Mairal et al, 2009) in the future.
Most of the frameworks presented in this study have indeed been applied to large data sets. For instance, scVI has been tested with data sets of thou-
sands and up to a million single-cell transcriptomes. DeepSequence was applied to several data sets derived from multiple sequence alignments, one of
which is approximately 100,000 sequences of amino acids in the order of length 100. Nevertheless, when data availability is an issue one can attempt
to decrease the required amount using heuristics such as a priori limiting the dimension of the data (e.g., using feature selection as in Lopez et al,
(2018a)) or limiting the complexity of the model. For example, DeepSequence utilized the group sparsity prior to encourage most locus–locus interaction
parameters to have a zero value, thus effectively reducing complexity and improving generalization.
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effect of any given perturbation (e.g., chemical treatments) on the

transcriptome. First, the authors derive a perturbation vector that

represents the difference in latent space between the average tran-

scriptomes of perturbed xp and unperturbed xu cells. Applying this

vector to the latent representation of cells x�u of a different type for

which perturbation data are not available results in the generation

of perturbed expression profiles ~xp, using the formula

d ¼ Eqðzp jxpÞ½zp� � Eqðzu jxuÞ½zu�
~zp ¼ Eqðzu jx�uÞ½zu� þ d

~xp ¼ Epðxp j~zpÞ½xp�
: (7)

This generated expression profile is then validated using held-

out data. The authors also showed that this method corrects batch

effects (estimated by a gradient representing the latent space dif-

ference between batches). We stress that these methods do not

come with theoretical guarantees and that conclusions drawn from

out-of-sample generation require manual inspection. Indeed, DGMs

often fail to capture the full extent of the semantics contained in the

data set. For example, a data set of shape drawings is used to train

a DGM in Zhao et al (2018). While each image of the training set

contains exactly six colored dots, the images generated from the

DGM can contain a variable number of dots. This shows that the

model learned only a limited semantic and in a biological setting

could generate artifacts that are irrelevant to scientists. This risk

can be mitigated by careful assumptions as well as experimental

validation.

Imputing missing data

Often biomedical data are derived from experimental procedures

with low sensitivity or limited scope, resulting in many missing

entries in the observed data. For example, most imaging-based

protocols for spatial transcriptomics of single cells (e.g., smFISH

(Codeluppi et al, 2018)) record for each cell its position in a tissue,

while measuring the expression of a certain panel of genes (instead

of transcriptome-wide). In this case, we wish to query the expres-

sion for unseen genes to study the spatial determinants of their

expression. To address this, our group developed a method that

leverages any available scRNA-seq data (which is genome-wide, but

with no spatial information) of the same biological system (Lopez

et al, 2019). In the model, cells from both assays (scRNA-seq and

spatial transcriptomics) are embedded in the same latent space

using a coupled decoder network that was designed to control for

protocol-specific artifacts. From that latent space, the model gener-

ates either type of observation by learning two different decoder

networks (one per protocol). This framework has been evaluated

using held-out data, demonstrating that cells profiled with spatial

transcriptomics can be “encoded” into a joint latent space with cells

profiled with scRNA-seq and then “decoded” to their predicted full

transcriptome.

In a different setup, we are interested in transcriptome-wide gene

expression data in our set of samples, but we only have access to

the expression of a small set of landmark genes. An example for this

scenario is the Connectivity Map project (Subramanian et al, 2017)

where expression levels were only measured for a panel of approxi-

mately 1,000 genes using a custom-designed microarray. This made

gene expression measurements cost-efficient and feasible for a very

large number of samples. Dizaji et al (2018) and Wang et al (2018)

proposed GAN frameworks to predict (impute) the expression

values of the unmeasured genes. Wang et al (2018) used a condi-

tional GAN, meaning that the generator takes the landmark gene

expression as input and outputs the target gene expression. This

approach leverages correlations between the set of landmark and

target genes in expression data from projects like 1000 Genomes. Its

performance also improves upon baseline linear regression and

deep learning models.

Another problem that has received much attention is imputa-

tion of scRNA-seq dropout events (Codeluppi et al, 2018; Lopez

et al, 2018a; preprint: Qiu et al, 2018; Deng et al, 2019; Eraslan

et al, 2019b). Dropout is regarded as a technical artifact in which

a certain transcript is not observed in a cell despite being present.

While some biases may affect dropout rates, it is largely ascribed

(especially in the current state-of-the-art protocols) to limited

sensitivity (only capturing a small percentage of the transcript in

a cell) (Lopez et al, 2018a). The imputation of dropped out tran-

scripts has been formulated either as a missing value problem

(preprint: Qiu et al, 2018; Deng et al, 2019) or as querying the

mean of unobserved latent variables (Lopez et al, 2018a; Eraslan

et al, 2019b). In the latter approach, one can generate a new

count matrix in which dropouts have been imputed and then use

this matrix for downstream analysis. For example, Eraslan et al

(2019b) used such an imputed matrix to estimate a gene–gene

covariance matrix of key regulatory genes in blood differentiation.

Using the imputed data (instead of the raw data) led to an

increase in anticorrelation between Pu.1 and Gata1, which are

well-known megakaryocyte–erythrocyte progenitor and granulo-

cyte–monocyte progenitor regulators. Despite promising results,

this approach should be used with caution as it has been

observed that imputation may also induce spurious correlations

(Andrews & Hemberg, 2018).

In a more clinical application, Rampá�sek et al (2019) learned a

VAE on bulk gene expression data sets from cancer cell lines. A

small fraction of the data has paired pretreatment and post-treat-

ment measurements as well as drug response information.

However, most data points only have a subset of the paired

measurements. Because they use a fully probabilistic model, the

label information can be incorporated directly in the model. Their

method outperforms baseline discriminative methods in drug

response classification performance.

Disentangling factors of variation
A common task in analyzing large data sets is isolating and inter-

preting the different sources that contribute to the observed varia-

tion (Fig 3C). A related classical problem in statistics and computer

science is the one of blind signal separation (Hyvärinen & Oja,

2000). In this setting, one observes a superposition of signals and

the aim is to recover independent components of variations. A more

relaxed version of this problem is simply to summarize the data into

useful statistics (e.g., correlations) so that the practitioner can gain

insight about contributions of each bit of information to an abstract

model. A model or a procedure that achieves this goal will be

referred to as interpretable.

Signal separation in single-cell transcriptomics

The characterization of a cell by the transcripts it expresses is reflec-

tive of many sources of variation—both biological and technical
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(Wagner et al, 2016). The biological component consists of numer-

ous factors such as the type of the cell, its microenvironment, its

progression along differentiation or stimulation processes, the cell

cycle phase it is at, variation in DNA (e.g., in T- or B-cell receptors),

and more. The technical component is governed by nuisance factors

that can be either observed (e.g., sequencing depth or batch identi-

fier) or not (e.g., mRNA capture efficiency per cell). The product of a

scRNA-seq experiment is therefore a superposition of mixed effects

representing all these sources. In general, it is infeasible to recover

the contributions of all the different sources without explicit design,

largely because they can be confounded with each other (Wagner

et al, 2016). This justifies the choice of some methods in a more

coarse approach, considering the gene expression data as a mix of

between wanted and unwanted variation (e.g., SCONE (Cole et al,

2019), RUV (Risso et al, 2014), and ZINB-WaVE (Risso et al, 2018)).

One way to address the disentanglement challenge with DGMs is

to treat each component of the latent space as a source of variation

and then use additional inspection to ascribe biological meaning to

each component. In PCA, such an interpretation is straightforward

as the components are orthogonal and represent a linear combina-

tion of the observed features (Gaublomme et al, 2015). Indeed, in

many applications these components reflect critical aspects of the

data such as geographical locations in population genetics (Novem-

bre et al, 2008) and T-cell effector function in single-cell RNA

sequencing (Gaublomme et al, 2015.). Interpretation can be more

challenging in the case of DGMs, where the embeddings are (at least

in the standard formulations) non-linear and not necessarily

independent.

One way to increase the interpretability of latent components in

DGMs is to reduce their association with observed nuisance factors.

In the context of scRNA-seq, scVI uses conditional independence via

a graphical model to enforce statistical independence between the

components of the latent space and nuisance factors such as cell-

specific scaling (indicative of sequencing depth), batch effects, and

propensity for dropouts (Lopez et al, 2018a). This type of modeling

was also used to integrate scRNA-seq data sets from different proto-

cols, by conditioning on protocol identifier (preprint: Xu et al,

2020). One can also go beyond conditional independence by explic-

itly optimizing for weak dependence between the latent space z and

any observed nuisance factor s. In principle, this can be done by

adding the respective independence term I(z,s) to the evidence

lower bound (equation (4)) that we usually optimize for during

training

~LðxÞ ¼ ELBOðxÞ þ jEqðzjxÞIðz; sÞ (8)

where j is a parameter which governs the trade-off between the

flexibility of the model and the independence constraints. For

example, Higgins et al (2017) use as an independence term the

Kullback–Leibler divergence between the posterior and the prior

distribution DKL(q/(z|x) || ph(z)). This choice of independent terms

forces the VAE to use less bits of information to encode the same

image and therefore disentangle semantics of the images (such as

shapes and angles). Lopez et al (2018b) used instead a non-para-

metric measure of dependence, based on kernel methods and

applied it to reduce the effect of quality metrics associated with

each cell (e.g., number of reads) on its representation in latent

space and consequently on any downstream analysis. It does,

however, require tuning of the regularization strength j, which

may be hard in biological setting because some nuisance variables

are confounded with the biology (Vallejos et al, 2017).

Up to now, the presented methods learned a generative model

conditioned on experimental information s. This is not the unique

possibility, since other methods in the single-cell field are still able

to isolate variation due to batch effects or protocol-specific effects.

For example, scGen corrects scRNA-seq batch effects through latent

space arithmetic, namely through a subtraction operation in latent

space (Lotfollahi et al, 2019). Another related method, MAGAN,

was developed to merge data from different modalities such as

CyTOF (which estimates the abundance of a small panel of proteins

in single cells using mass spectrometry) and scRNA-seq (Amodio &

Krishnaswamy, 2018). MAGAN has a different architecture from the

classical GAN. In MAGAN, one generator G12 takes a sample from

modality 1 and maps it to values in modality 2. Similarly, a second

generator G21 operates the transformation in the inverse direction.

In one of its key innovations over earlier work in computer vision

(Zhu et al, 2017), MAGAN exploits biological knowledge about

feature correspondence (e.g., mapping proteins to their coding gene)

in order to make the problem more tractable.

We may also want to understand the variation in one target data

set relative to some background data set. For example, if we have

skin images collected from a diverse population, our standard meth-

ods might pick up on variation due to skin color, age, and gender

instead of salient information like skin lesions (preprint: Abid &

Zou, 2019). Contrastive learning is a framework that aims to high-

light the differences between a background and a target data set

with a latent variable model (Abid et al, 2018). This framework was

extended to use VAEs in preprint: Abid & Zou (2019) with results

showing the ability to better categorize blood cells pretreatment and

post-treatment from a leukemia patient when using healthy cells as

a background. We note that choosing an appropriate background

data set is non-trivial and will ultimately influence performance.

Finally, we anticipate that a future step for single-molecule fluo-

rescent in situ hybridization (smFISH) data analysis will require to

disentangle between variation in gene expression that depends on

the position of the cell in the tissue (spatial component) and other

biological components that are independent of that position. Gaus-

sian processes are particularly suitable for these tasks, while VAEs

are particularly useful for coupling a latent space with count obser-

vation. We therefore anticipate a mixture of the two techniques will

yield valuable insight to biology scientists on smFISH data (Casale

et al, 2018).

In this section, we have focused on decomposing embeddings

into sets of uncorrelated features in order to possibly learn statistical

associations between biological phenomena. This approach

contrasts with the field of causal inference, which aims at drawing

conclusions between actions and outcomes, as we further discuss in

Box 6.

Interpretability of deep generative models

Generally, it is difficult to interpret internal hidden neurons of the

neural networks of a deep generative model. Still, there are several

examples where manual examination or algorithmic procedures can

unravel interesting information. Some of the topics we refer to here

are related to the field of explainable machine learning (Gilpin et al,

2018).
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First, it is known that linearity is an efficient way to get inter-

pretability (as in principal component analysis). Therefore, it is

quite natural to investigate the last layer of the neural network

(which is followed by the output layer) since these neurons are

often linked to the output with a linear function. This last linear

transformation can be used to discover feature-specific information

either in generative networks of VAEs or in generators of GANs. In

preprint: Ghahramani et al (2018), a GAN is trained on scRNA-seq

data and a gene–gene covariance matrix is constructed through

representing each gene by the weights of the final neural network

layer. While this approach is interesting, we note that it comes with

no theoretical guarantees and may produce spurious correlations. In

Svensson et al (2020), a VAE with a linear decoder (LDVAE) is

proposed for scRNA-seq data. The LDVAE trades model fit for more

interpretability since the decoder now relates directly latent vari-

ables to the expression of individual genes.

For some type of data, features can have a spatio-temporal struc-

ture such as pixels in images, sampling of a time-series, or sequence

data. In this case, a common practice is to structure the architecture

in a way that each hidden variable can focus on only a certain

region (e.g., area of the image) at a time. These so-called attention

mechanisms (Bahdanau et al, 2015) may be an attractive solution

for interpreting predictions of a neural network. In Manica et al

(2019), the multimodal convolutional neural network has an

attention mechanism to encode the SMILES string of the chemical

compounds as well as gene expression and predict drug sensitivity.

Their results suggest that the attention mechanism focuses on rele-

vant genes and functional groups for understanding progression of

leukemia. While attention mechanisms have proven to be successful

in areas of natural language processing (Bahdanau et al, 2015),

applications to biology should control at least a measure of risk such

as the false discovery rate. Current approaches have no methods for

providing such guarantees.

In a certain number of real-world instances, using a linear model

might result in an important loss of performance and the input data

might not have spatial structure such as molecular information. In

that setting, the Shapley value (the expected marginal contribution

over all possible subsets) can be a valuable tool to assess feature

importance and interpret models. Although the original Shapley

value is computationally intensive, recent research work provided

tractable approximations (Lundberg & Lee, 2017) to interpret

complex models and large data sets. Such approach has been

applied to explainable predictions of anticancer drug synergy

(Janizek et al, 2019). In this work, Janizek et al provide a model

which outperforms state-of-the-art predictions and provides biologi-

cal insight into relevant pathways for understanding drug synergy in

leukemia treatment. More systematic use of such tools may be an

important direction to take for applications of machine learning in

computational biology.

Additionally, a more Bayesian procedure for interpretability is to

treat the weights of the neural networks as hidden random variables

with a sparsity-inducing prior (e.g., a Laplacian, Gamma, or a spike-

and-slab prior), as in DeepSequence. Similarly, the concrete autoen-

coder (Balın et al, 2019) performs combinatorial optimization to

find the optimal subset of features which better recapitulates the

input data. This latter technique could be applied more widely to

investigate feature importance for different hidden random variables

for example.

Utilizing uncertainty for Bayesian decision-making
The Bayesian model in equation (1) provides a joint probability

distribution ph(x,y) that, along with Bayes rule, fully describes the

latent variables associated with each data point (i.e., the posterior

distribution ph(z|x)). Variational methods provide an approximation

to this posterior (i.e., q/(z|x)), and therefore, as soon as the quality

of the approximation is sufficient, one can obtain a myriad of uncer-

tainty measures about our observations, such as a credible interval

(or region) around the observed value x. Estimating and utilizing

this uncertainty received much attention in the machine learning

literature, especially in the context of active learning and reinforce-

ment learning (Osband et al, 2018). More generally, the posterior

can be used for any type of Bayesian decision-making procedure

such as hypothesis testing, issuing natural hazard warnings in

public policy (Economou et al, 2016), and novelty detection in

Box 6: Beyond statistical associations and toward causal inference

Causal inference (Pearl, 2009) provides a principled way of reasoning about actions and outcomes. While generally, causal inference is out of the scope
of this review, we will briefly discuss how this paradigm, combined with DGMs, might be applied to questions in molecular biology.
A key class of problems in causal inference relates to counterfactuals. This is an especially common topic in health care, where key questions are of the
form “what would have been the treatment leading to the optimal outcome for this particular patient?” Notably, deep generative models have been used
to study causal effects (Pearl, 2009) on semi-simulated data, for marketing or healthcare applications (e.g., individualized treatment effect estimation
(Louizos et al, 2017; Yoon et al, 2018)). However, accurately recovering treatment effect from observational (rather than interventional) data requires first
that there are no hidden confounders that control treatment outcome and second that it was feasible to assign to each observed case actions different
from the one observed.
Classically, integration of single-cell transcriptomics data is a critical field of research but does not satisfy the hypothesis mentioned above. For example,
let us consider a clinical study performed via scRNA-seq and in which there are n patients for control and n others for the phenotype of interest. scRNA-
seq is performed via the same protocol but on different days. Of course, there are probably some hidden confounders such as age, sex, or lineage, but
more importantly, each cell is assigned to a single batch since scRNA-seq is a destructive method. Consequently, having a general understanding of how
individual cells react to phenotypical changes is in general intractable and one might resort to more structured hypotheses. For example, scGen (Lotfol-
lahi et al, 2019) assumes that in its latent space all cell types between conditions are affected by the same vector translation. While this might be a
reasonable assumption in the particular case studied in the manuscript, such an hypothesis may not hold in the more general setting of cell type-
specific response to a stimulation. In particular, such an approach might yield spurious discoveries. Consequently, it may be more suitable to re-think
the experimental design. Indeed, another workaround to identify causal effects is to perform interventions (e.g., force key variables to have some fixed
values). A particularly promising framework is Perturb-seq (Dixit et al, 2016), for which CRISPR perturbations (e.g., interventions) make possible the esti-
mation of causal effect for transcription factors or gene modules.

ª 2020 The Authors Molecular Systems Biology 16: e9198 | 2020 15 of 21

Romain Lopez et al Molecular Systems Biology



robotics (Amini et al, 2018). In this section, we present work that

makes implicit appeal to Bayesian decision theory (Berger, 2013) in

order to ground scientific discoveries.

One natural utilization of the approximate posterior is to approxi-

mate the marginal log-likelihood of each data point, which can help

highlight observations that are not described well by the model. In

the context of scRNA-seq, this concept was used by scvis (Ding

et al, 2018) to identify novel subpopulations of cells. Specifically,

the authors first trained a VAE on a set of mouse retinal bipolar

cells. Then, another data set of cells from the entire retina was

embedded in the same latent space, without re-fitting the model.

The authors found that non-bipolar cells from the full retina data set

had lower likelihood than bipolar cells. While this trend was

expected given our a priori knowledge on the assayed cells, it served

to validate this use of VAEs as a general way of identifying subpopu-

lations of cells that are present in a new sample and were not in any

previous ones.

A more complex application of uncertainty in molecular biology

pertains to decision-making via likelihood ratios. In the case of scVI,

the posterior distribution over the latent space can be used to derive

credible intervals of gene expression levels (reflecting measurement

uncertainty), thus enabling estimation of differential expression.

Indeed, differential expression can be formulated as a Bayesian deci-

sion-making problem (whether the expression of a gene is signifi-

cantly changing between two populations of cells). Building on this

idea, scVI uses a likelihood ratio (comparing the two models of

either “differential” or “no difference” in gene expression), approxi-

mated by sampling from the posterior distribution q/(z|x) and then

the generative model ph(x|z), of cells in the two populations of

interest.

Estimation of uncertainty can be used for other critical tasks in

scRNA-seq analysis, beyond differential expression. One example is

assignment of cell type labels, which is often done by drawing arbi-

trary cutoffs between clusters (i.e., with no regards to uncertainty).

One way to address this was implemented in scANVI (preprint: Xu

et al, 2020) where cell type annotations c are treated in a semi-

supervised learning fashion (e.g., only labels with high confidence

such as from cells expressing key marker genes from a curated gene

set). The model learns a likelihood distribution p(x|z,c) that condi-

tions the gene expression values x not only on the latent space z but

also on the annotation c. This model treats cell types c as a random

variable and defines a posterior p(c|x) that can then be estimated

with variational inference (Kingma et al, 2014). This enabled us to

provide predictions as well as uncertainty for cell types based on

the variational posterior q/(c|x). Results suggest that this uncertainty

can also be useful for differential expression, since we longer

compare two fixed sets of cells (which might include misannotated

cells), but rather draw from the posterior of these sets.

Another application of uncertainty to decision-making is the

prediction of effects of mutations in DeepSequence. In this work,

the main assumption is that the training data are enriched for

biological sequences (e.g., proteins) that were selected during evolu-

tion and are therefore likely functional. In this setting, the model is

assumed to attribute high marginal likelihood to sequences that

represent functional proteins (possibly harboring non-deleterious

mutations) and low marginal likelihood to sequences that include

deleterious mutations (which were presumably under-represented

in the training set). Interestingly, the likelihood ratio wild-type

ph(xwt) to mutation ph(xm) is informative of how much evidence

there is that mutation xm is functional or deleterious.

log
phðxwtÞ
phðxmÞ : (9)

These preliminary applications of decision theory to real biolog-

ical problems are promising and can potentially be applied to more

critical problems such as online exploration of treatments or even

experimental design. However, these will probably require further

developments of the inference mechanisms. Indeed, correctly esti-

mating log-likelihood ratios or marginal log-likelihood requires to

have at disposal a variational distribution close to the model’s

posterior. In practice, variational inference does not provide a

provably efficient approximation method, and in certain instances,

estimations of log-likelihood ratios can be especially inaccurate.

Recent developments in variational inference provide empirical

procedures to assess the quality of the approximate posterior distri-

bution (Yao et al, 2018), as well as alternative training procedures

that yield more suitable posterior distributions (Le et al, 2019;

preprint: Lopez et al, 2020). Another important area for improve-

ment of the presented applications is the control of error (espe-

cially of the false discovery rate, [FDR] (Benjamini & Hochberg,

2016)). While this is vastly underexplored in current DGMs appli-

cations, the FDR can be in principle controlled using posterior

uncertainty (e.g., in RNA-seq data (Cui et al, 2015)). Taken

together, we expect that these tools will play an important role in

building meaningful and principled applications of VAEs to molec-

ular biology.

Perspectives

Deep generative models bring to the table both remarkably flexible

modeling capabilities and convenient inference procedures. These

advantages in practice resulted in promising range of applications in

molecular biology. We have highlighted a number of success stories

in the field of genomics, single-cell transcriptomics, molecular

design, and more. We also mentioned a few significant areas for

improvement such as interpretability of the models, looking for

causal relationships, and diagnosing the quality of the inference

procedures.

With the recent proliferation of DGMs, more consideration

needs to be given to model selection: the task of comparing the

performance of two or more candidate models. Aspects of model

selection that may be of interest include different choices for the

family of conditional distribution for the model (as in scVAE

(Grønbech et al, 2020)) or for the hyperparameters (e.g., neural

network architecture or parameters of the optimization procedure;

refer to Eraslan et al (2019a) for further details about hyperparam-

eters). In all of these scenarios, the methodology developed for

model criticism applies and should be used whenever appropriate.

The starting point is the assessment of the goodness of fit, often

done via estimation of the likelihood of held-out data and PPCs in

the case of VAEs. However, recent work showed that held-out log-

likelihood might not be correlated with performance for certain

downstream analyses where biological plausibility is evaluated

(Hu & Greene, 2019) (phenomenon also discussed in the machine
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learning literature (Theis et al, 2016)). Consequently, improve-

ments on goodness of fit may not be convincing enough and

generative models must therefore be evaluated, whenever possible,

in the context of their prospective use. A notable example of eval-

uation framework is TAPE (Rao et al, 2019), which provides

public data sets, evaluation metrics, and non-trivial training–test–

validation splits for assessing algorithms for embedding protein

sequences. Such an effort in applications ranging from machine

learning to molecular biology will allow fast, reproducible, and

scientifically relevant methodology developments.

In this review, we focus on probabilistic models as a conceptu-

ally attractive way to mine data. DGMs achieve this through their

capacity to generate artificial observations that have similar prop-

erties as the truly observed ones. We emphasize that this mimick-

ing, however, is usually limited—in many cases, DGMs can only

provide a crude representation of actual data-generating processes,

especially in complex settings encountered in biology. Neverthe-

less, while the saying “all models are wrong” (Box, 1976) is likely

to hold here, it might still be the case that “some are useful”.

Indeed, properly trained generative models can provide the analyst

with a principled way to model the uncertainty in the observations

he or she has, generalize upon these observations and draw

conclusions from them.

With the increase in experimental protocols that generate large

amounts of data (Efremova & Teichmann, 2020) (such as sequenc-

ing, microscopy) and the accumulation of large data repositories

(e.g., of medical records), we expect DGMs to find numerous new

applications and challenges. For example, the case of clinical trial

data is particularly sensitive because of privacy issues: It may be

possible to identify the participants from inspection of their data.

Generative models may then be used to generate a private copy of

the data (Dwork, 2008), shareable with others to explore scientific

hypotheses about the clinical trial (such as individual treatment

outcome with respect to age, sex, etc.) while preserving partici-

pants’ privacy (Beaulieu-Jones et al, 2019). Furthermore, one clear

advantage is that DGMs are well suited for a joint analysis of data

sets from different sources (e.g., experiments from different labora-

tories) or different types (e.g., harmonizing protein- and mRNA-

based single-cell profiles (Amodio & Krishnaswamy, 2018)). Indeed,

given the flexibility of DGMs (e.g., selecting which distribution to

use), one can incorporate prior knowledge on the system in hand in

terms of its generative process and in terms of the noise that comes

with the observations. Finally, software libraries are available that

already implement many of the operations needed by DGMs, while

making use of modern computational tools such as stochastic opti-

mization, automatic differentiation, and GPU-accelerated comput-

ing. For these reasons and given the scale and complexity of current

data sets (e.g., (Regev et al, 2017; Davis et al, 2018; Bento et al,

2014])), DGMs may become an integral part of the standard analysis

toolbox in the life sciences.
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