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Abstract: Computer-aided automatic segmentation of retinal blood vessels plays an important
role in the diagnosis of diseases such as diabetes, glaucoma, and macular degeneration. In this
paper, we propose a multi-scale feature fusion retinal vessel segmentation model based on U-Net,
named MSFFU-Net. The model introduces the inception structure into the multi-scale feature
extraction encoder part, and the max-pooling index is applied during the upsampling process in the
feature fusion decoder of an improved network. The skip layer connection is used to transfer each set
of feature maps generated on the encoder path to the corresponding feature maps on the decoder path.
Moreover, a cost-sensitive loss function based on the Dice coefficient and cross-entropy is designed.
Four transformations—rotating, mirroring, shifting and cropping—are used as data augmentation
strategies, and the CLAHE algorithm is applied to image preprocessing. The proposed framework
is tested and trained on DRIVE and STARE, and sensitivity (Sen), specificity (Spe), accuracy (Acc),
and area under curve (AUC) are adopted as the evaluation metrics. Detailed comparisons with U-Net
model, at last, it verifies the effectiveness and robustness of the proposed model. The Sen of 0.7762
and 0.7721, Spe of 0.9835 and 0.9885, Acc of 0.9694 and 0.9537 and AUC value of 0.9790 and 0.9680
were achieved on DRIVE and STARE databases, respectively. Results are also compared to other
state-of-the-art methods, demonstrating that the performance of the proposed method is superior to
that of other methods and showing its competitive results.

Keywords: multi-scale; retinal vessel segmentation; U-Net; inception structure; max-pooling index

1. Introduction

Retinal fundus images facilitate the study of various structures in the retina [1]. The morphological
changes of the retinal blood vessels are closely related to fundus diseases such as glaucoma, age-related
macular degeneration, and diabetic retinopathy [2]. Therefore, accurate segmented images of retinal
blood vessels can assist experts in early diagnosis and monitoring of the above diseases, thus preventing
blindness [3]. However, retinal blood vessels are difficult to segment completely, manual labeling is
time-consuming and labor-intensive, and there is a large amount of subjectivity [4]. Therefore, a lot of
research has been done to achieve automatic segmentation of retinal vessels [5,6]. At present, retinal
blood vessel automatic segmentation technology has become an important tool for clinical medical
disease screening and diagnosis. In addition, the technology can also provide people living in remote
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areas with advanced medical technologies, equivalent to those in developed areas, which improves
people’s health and quality of life.

Many retinal vascular segmentation methods have been proposed in recent years, which can
be divided into supervised and unsupervised methods, according to whether prior information is
required or not. Unsupervised methods do not require a priori labeling information, and use the
similarity between data for analysis. They can be subdivided into five sub-categories: matched filtering,
morphological processing, vessel tracking, multi-scale analysis and model-based algorithms [7].
Based on the matched filter method, the retinal image is convolved with the two-dimensional Gaussian
kernel function, and the retinal blood vessel image is obtained by extracting the maximum response
of the Gaussian matched filter in different directions. Chaudhuri et al. [8] were primarily worked
on matched filter approach and find that cross-section greyscale profile and intensity similarity
of vessels follows the curve form of Gauss. However, the detection accuracy of the technique
is very low. Hoover et al. [9] described an automated retinal blood vessel segmentation method
using local and global vessel features cooperatively on matched filter response images. Miri and
Mahloojifar [10] presented a method to detect retinal blood vessels effectively using curvelet transform
and multistructure elements morphological processing. The edges of the retinal image were enhanced
by modifying the curvelet transform coefficients, where the erroneously detected edges were deleted
during the modification process, so that tiny vessels can be better segmented. Wang et al. [11] proposed
a comprehensive method combined matched filtering with multiwavelet kernels and multiscale
hierarchical decomposition for retinal vessels segmentation. The method can be directly used on
different data sets without preprocessing and training. The experimental results demonstrated an
excellent performance, but its calculation was expensive. Mendonca and Campilho [12] presented an
automated method for detection of the retinal blood vessels by combining differential operators to
extract vessel centerlines and morphological filters. The results approximate the accuracy of expert
manual labelling, and the sensitivity and specificity do not drop significantly. However, the method
is very penalizing for larger vessels. Based on the continuous morphology nature of blood vessels,
the vascular tracking algorithm firstly establishes an initial seed node on the vascular structure,
and then tracks along the direction of blood vessels from the node to stop when the morphology
is not continuous, so as to find the vascular structure between different initial nodes. The center
of the longitudinal section of the blood vessel was determined by greyscale intensity and flexura.
This type of method can provide highly accurate vessel widths, but they cannot segment the retinal
vessels without seed points [13]. Vlachos and Dermatas [14] implemented a multi-scale retinal
vessel segmentation method. The algorithm combined a multiscale line-tracking procedure and a
morphological post-processing. Experimental results demonstrate that the algorithm is robust even in
the case of a low signal-to-noise ratio, but its drawback is the high misclassification rate of fundus
optic discs. Although the unsupervised methods performed well in the detection of retinal vessels
according to the structure of vessels without using a priori labeling information, the effectiveness on
thin tiny vessels and low contrast images still has a lot of room for improvement [15].

Compared with the unsupervised methods, supervised methods takes the manually marked
image as the training data label and generate the corresponding algorithm model. The process
of supervised retinal vessel segmentation methods include two steps: (1) feature extraction and
(2) classification. For different segmentation tasks, the k-nearest neighbor classifier [16], support
vector machine classifier [17], convolutional neural network architecture [18] and other segmentation
methods are proposed. Fraz et al. [19]. presented an ensemble method for segmentation of retinal
blood vessel based on the line strength measures and orientation analysis of the gradient vector field,
and a boosted decision tree classifier was applied in this method, but no objective analysis was given.
Orlando et al. proposed an extensive description based on a fully connected conditional random
field model, where a structured output support vector machine is applied to learned the parameters.
However, most existing methods are based on the ground truth of manual segmentation, which is
easily affected by subjective factors and pathological areas. [20]. In recent years, deep learning has
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made great breakthroughs in various fields of computer vision [21]. The mainstream algorithm of
deep learning, convolutional neural networks, is widely used in image classification, target recognition
and natural language processing [22]. In 2015, Ronneberger et al. in [23] presented a U-Net network
for biomedical image segmentation, which used multi-level skip connection and encoder-decoder
structure to improve the accuracy of pixel localization and captured context features. Aiming at solving
the boundary detection problem, a deep learning architecture utilizing a fully-connected Conditional
Random Fields and a full convolutional neural network was proposed in [24] to extract retinal vessel.
Diego et al. [25] classified retinal vascular pixels by a supervised method. This method is based on a
network structure, and computes the feature vector composed of gray-level and moment invariants
for model training. Mo and Zhang [26] developed a deeply neural network by fusing multilevel full
convolutional network and incorporating auxiliary supervision at some intermediate layers for vessel
segmentation more robustly. Jiang et al. [27] proposed an automatic segmentation model for retinal
vessels by D-Net, and used dilated convolution, pre-processing and denoising. The network can
obtain denser feature information and alleviate the excessive loss of feature information of tiny vessels.
Despite the great success of neural network-based methods, due to the small diameter of the thin tiny
vessel and the poor contrast of the fundus image, existing methods still cannot accurately segment
the capillaries.

Considering the existing problem of retinal vessel segmentation, we proposed a multi-scale feature
fusion retinal vessel segmentation method based on U-Net, which integrated data augmentation,
data preprocessing, and MSFFU-Net model. The model introduced an inception structure [28] into the
multi-scale feature extraction encoder. The max-pooling index [29] was applied during the upsampling
process in the feature fusion decoder part. Then, the network contained two skip connections: one was
that each set of feature maps generated on the encoder path were concatenated to the corresponding
feature maps on the decoder path; the other was that transferring of max pooling indices instead of the
whole values from the encoder to the decoder. Moreover, we designed a cost-sensitive loss function
based on the Dice coefficient and cross entropy. Rotating, mirroring, shifting and cropping were
used as data augmentation strategies, and the CLAHE algorithm was applied to data preprocessing.
The proposed method was trained and tested on public datasets DRIVE and STARE, and sensitivity,
specificity, accuracy and area under curve (AUC) were adopted as evaluation metrics. Comparisons
with U-Net model verified the effectiveness and robustness of the proposed model. The experimental
results show that the method can solve the problem of insufficient segmentation of multiscale blood
vessels. Compared to other state-of-the-art methods including the unsupervised and supervised
methods, the results demonstrated that the performance of the proposed method is superior to existing
methods and shows its competitive.

The contributions of our work can be elaborated as follows:

(1) We propose a multi-scale feature fusion retinal vessel segmentation method based on U-Net.
(2) Four transformations—rotating, mirroring, shifting and cropping—are used as data augmentation

strategies to improve the generalization ability of the proposed method.
(3) We design a cost-sensitive loss function based on the Dice coefficient and cross entropy,

which improves the classification effect of categories with a small sample number.

The rest of this paper is organized as follows: Section 2 presents the improved method;
Section 3 analyzes and discusses the experimental results; Section 4 summarizes the paper and
draws our conclusions.

2. Proposed Method

2.1. U-Net Model

U-Net is a convolutional network for biological image segmentation proposed by Ronneberger et al.
in 2015 [23]. The network structure is symmetrical and mainly consists of an encoder part (left side)
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and a decoder part (right side) as shown in Figure 1. The encoder part follows the typical architecture
of a convolutional network to extract spatial features from images. It involves the repeated application
of two 3 × 3 convolutions, each followed by an activation function (ReLU) and a max-pooling operation
with a pooling size of 2 × 2 and step size of 2 for down-sampling. The number of repetitions is
four. In each down-sampling step, we double the number of feature channels. On the other hand,
the decoder is applied to construct a segmentation map based on the features obtained from the
encoder. It includes an up-sampling of the 2 × 2 transpose convolution of the feature map, which
reduces the feature channel by half, a connection with the correspondingly feature map in the encoder
path, and two 3 × 3 convolutions, each followed similarly by a activation function ReLU. In the last
layer, a 1 × 1 convolution is used to generate the final segmentation map.
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Figure 1. The classic U-Net architecture.

2.2. MSFFU-Net

The U-Net module realizes the fusion of the low-level image features and the high-level image
features through the multi-level jump structure, which can extract more sufficient features. We proposed
a multi-scale feature fusion retinal vascular image segmentation model based on U-Net, which consisted
of multi-scale feature extraction encoder and feature fusion decoder, named MSFFU-Net. The 3 × 3
convolution operation in U-Net was replaced by the inception structure to extract as much information
as possible about the retinal microvessels in the encoder part of the improved network. The multi-scale
feature extraction module based on Inception adopted the convolution of different kernel sizes,
which can enhance the generalization and expressiveness of the network. Then, in order to accurately
retain the location information of the object features, the max-pooling index was applied during the
upsampling process in the feature fusion decoder part. The overall structure is shown in Figure 2.
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Figure 2. MSFFU-Net structure.

2.2.1. Multi-Scale Feature Extraction Encoder

This part consists of the repeated application of two multi-scale feature extraction modules and a
max-pooling operation with a pooling size of 2 × 2 and step size of 2 for downsampling. The number
of repetitions is four. In each step of downsampling, we double the number of feature channels.
The Inception module [28] is the core structure of the GoogleNet network model that achieved the best
results in ILSVRPC 2014. The Inception network’s architecture improves the utilization of computing
resources within the network by increasing the depth and width of the network while keeping the
computing budget constant. Filters of different sizes are employed in the same layer to handle the
feature information of multiple scales, and then the features are aggregated in the next layer so that
the fusion features of multiple scales can be extracted in the next Inception module [30]. The basic
inception structure uses filters of sizes 1 × 1, 3 × 3, and 5 × 5, as shown in Figure 3. The convolution
output and the max pool output are connected to a single output vector to form the input for the next
stage. Rather than using a properly sized filter at one level, using multiple sized filters makes the
network wider and deeper, so it can recognize different scale features. The resulting feature maps
are concatenated and then go to the next layer. Further refinement is achieved by applying the 1 × 1
convolution operation to merge dimensional reduction before the convolution of 3 × 3 and 5 × 5.
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In this work, we used two 3 × 3 filters in series instead of a 5 × 5 convolution filter because they
have an equivalent receiving field. This reduced the computational cost, resulting in a reduction in the
number of parameters and a faster training speed. The multi-scale feature extraction module based on
inception structure is shown as Figure 4. We perform three sets of different scale convolution operations
(1 × 1 convolution, 3 × 3 convolution and two 3 × 3 convolutions) on the previous layer feature map
(H ×W × C), with a step size of 2 and a padding of 0. The other two 1 × 1 convolution operations play
the role of compressing the number of channels and reducing the calculation cost. In the multi-scale
feature extraction module designed in this paper, the feature images obtained by the 3 × 3 convolution
account for half of the total feature images, and the remaining two convolutions each account for one
quarter. The three sets of feature maps (x, y, z) are concatenated to be the back layer feature map.
Furthermore, we also adopted an activation function (leaky ReLU) and a batch normalization (BN) [31]
following each convolutional layer. The activation function introduces nonlinear characteristics into
the network and maps the input to the output. The leaky ReLU function is simple to calculate, can
solve the problem of gradient disappearance and gradient explosion, and can also effectively solve the
gradient death of ReLU. BN could help our algorithm achieve high-speed coverage and alleviate the
problem of overfitting. Different kernel sizes for convolution operations result in different receptive
fields, which allows the model to incorporate multi-scale feature maps and has good learning ability
for target features of various sizes.
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Figure 4. Multi-scale feature exception module based on an inception structure.

2.2.2. Feature Fusion Decoder

In the improved decoder part, the structural framework of the original U-Net decoder was retained.
It included an upsampling of the 2 × 2 transpose convolution of the feature map, which reduced the
feature channel by half, a connection with the correspondingly feature map in the multi-scale feature
extraction encoder path, and two 3 × 3 convolutions, each followed similarly by an activation function
leaky ReLU. At the last layer, a 1 × 1 convolution was used to generate the final segmentation map.
In addition, we added a max-pooling index storage module [29], as shown in Figure 5. The pooling
process in the encoder used max-pooling and recorded the max value indices. The upsampling process
was based on the index values recorded during the pooling. In the feature map, the non-index position
was filled with 0, and the corresponding pixel value was filled in the index position.



Entropy 2020, 22, 811 7 of 21

Entropy 2020, 22, x FOR PEER REVIEW 6 of 22 

 

the number of parameters and a faster training speed. The multi-scale feature extraction module 

based on inception structure is shown as Figure 4. We perform three sets of different scale 

convolution operations (1  1 convolution, 3  3 convolution and two 3  3 convolutions) on the 

previous layer feature map (H × W × C), with a step size of 2 and a padding of 0. The other two 1  1 

convolution operations play the role of compressing the number of channels and reducing the 

calculation cost. In the multi-scale feature extraction module designed in this paper, the feature 

images obtained by the 3  3 convolution account for half of the total feature images, and the 

remaining two convolutions each account for one quarter. The three sets of feature maps (x, y, z) are 

concatenated to be the back layer feature map. Furthermore, we also adopted an activation function 

(leaky ReLU) and a batch normalization (BN) [31] following each convolutional layer. The activation 

function introduces nonlinear characteristics into the network and maps the input to the output. The 

leaky ReLU function is simple to calculate, can solve the problem of gradient disappearance and 

gradient explosion, and can also effectively solve the gradient death of ReLU. BN could help our 

algorithm achieve high-speed coverage and alleviate the problem of overfitting. Different kernel sizes 

for convolution operations result in different receptive fields, which allows the model to incorporate 

multi-scale feature maps and has good learning ability for target features of various sizes. 

 

Figure 4. Multi-scale feature exception module based on an inception structure. 

2.2.2. Feature Fusion Decoder 

In the improved decoder part, the structural framework of the original U-Net decoder was 

retained. It included an upsampling of the 2  2 transpose convolution of the feature map, which 

reduced the feature channel by half, a connection with the correspondingly feature map in the multi-

scale feature extraction encoder path, and two 3  3 convolutions, each followed similarly by an 

activation function leaky ReLU. At the last layer, a 1  1 convolution was used to generate the final 

segmentation map. In addition, we added a max-pooling index storage module [29], as shown in 

Figure 5. The pooling process in the encoder used max-pooling and recorded the max value indices. 

The upsampling process was based on the index values recorded during the pooling. In the feature 

map, the non-index position was filled with 0, and the corresponding pixel value was filled in the 

index position.  

a 1 2 1

4 4 b 3

1 1 3 d

c 1 2 2

a 0 0 0

0 0 b 0

0 0 0 d

c 0 0 0

a b

c d

Max-pooing 

Indices

 

Figure 5. Max-pooling indices storage module. a, b, c, d correspond to values in a feature map and
represent the maximum value in the 2 × 2 region respectively.

As a whole, each block in the feature fusion decoder was also a repeating structure of up-sampling,
followed by multiple 3 × 3 deconvolutions, Batch Normalization (BN), and leaky ReLU activation
operations. Simultaneously, the MSFFU-Net contained extended two skip connections: one was that
each set of feature maps generated on the encoder path are concatenated to the corresponding feature
maps on the decoder path; the other was that transferring of max pooling indices values from the
encoder to the decoder to locate contour position information of multi-scale retinal vessel features for
higher segmentation accuracy [32]. The feature maps of the upsampling operation were merged with
the corresponding output feature maps of the two extended skip modules [33], as shown in Figure 6.
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2.3. Loss Function Design

The quality of segmenting retinal vessels using the proposed method depends not only on the
choice of model architecture, but also on the loss function chosen for training the model and optimizing
network parameters. The loss function (also known as the error function) reflects the difference
between the predicted value and the ground truth. The pixels can be categorized into vessel and
background; the statistics show that only 10% of pixels in the fundus image are blood vessels. The ratio
of blood vessels to background pixels is very uneven [34]. If the characteristics of the fundus image
are not fully considered in the process of designing the loss function, the learning process will tend
to segment the background region. The learning process will fall into a local minimum of the loss
function, and vascular pixels are often lost or only partially identified. In the work, we propose a novel
loss function based on the Dice coefficient and cross entropy, and added a cost-sensitive matrix to the
cross-entropy loss function.

The Dice loss function that is very popular in medical image segmentation is defined as:

LossDice = 1−
2|A∩ B|
|A|+|B|

(1)
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In Equation (1), A represents the fundus blood vessel region segmented by the algorithm, and B
denotes the fundus blood vessel region manually segmented by the expert. |A∩ B| represents the same
area of the retinal blood vessel region segmented by the proposed method and expert. Additionally,
the equation shows that if the Dice coefficient is close to 1, the prediction result will be close to the
ground true value. The cross-entropy loss function is defined as follows:

Losscross_entropy = −
∑[

y 1− y
][ log(p)

log(1− p)

]
(2)

where y and p are the ground truth and prediction, respectively y is 0 or 1 and p is between 0 and
1. The cost-sensitive matrix M is incorporated, as shown in formula (3), this can avoid under-fitting
due to the small number of retinal blood vessels during the neural network learning process [35].
When retinal blood vessels are misclassified, the cost will be greater and the attention to retinal blood
vessels will be increased:

M =

[
1 6× I(p <= 0.5)
0 1

]
(3)

In the matrix, 1 at the (1,1) position is the penalty coefficient for predicting the blood vessel type
as the blood vessel type; 6 at the (1,2) position is the penalty coefficient for predicting the blood vessel
category as the background category; 0 at the (2,1) position is no penalty for predicting the background
category as the blood vessel category; 1 at the (2,2) position represents the penalty coefficient for
predicting the background type as the background type. In the neural network training, we did
not adjust for the class-imbalance based on the number of retinal pixels against the background.
The penalty coefficient for predicting the blood vessel category as the background category is always 6.
The indicator function I(p ≤ 0.5) is denoted as:

I(p <= 0.5) =

1, p <= 0.5

0, p > 0.5
(4)

The improved cross-entropy loss function is expressed as:

Losscross_entropy = −
∑[

y 1− y
][ 1 6× I(p <= 0.5)

0 1

][
y log(p) + (1− y) log(1− p)
y log(p) + (1− y) log(1− p)

]
(5)

Considering m samples
{
(x1, y1), (x2, y2) · · · (xm, ym)

}
, the overall cost function of the MSFFU-Net

model can be defined as:

J(W, b, x, y) =
1
m

m∑
k=1

[αLossDice(yk, pk) + (1− α)Losscross_entropy(yk, pk)] (6)

In this formula, W and b represent the parameters obtained by training in the model, m represents
the total number of samples, y represents the label value of the sample, and x represents the input value
of the model. α is the weighting coefficient between Dice and the cross-entropy loss function, which can
be obtained by solving the partial derivatives of W and b for the objective function J(W, b, x, y) using
the backpropagation algorithm. The value ranges from 0 to 1. In the neural network model, the larger
the value of W, the more serious the overfitting phenomenon. Therefore, L2 regularization item was
added in Equation (6). The equation was rewritten as:

J(W, b) = J(W, b, x, y) +
λ
2

∑
W2 (7)
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where λ is the regularization coefficient. This approach can obviously speed up the convergence of the
network. The proposed model parameters are converged to the optimal value after a certain number
of iterations.

2.4. Dataset

The comparison of evaluation indexes of retinal vessel segmentation algorithm requires a standard
data set.

The published standard datasets for retinal images are DRIVE and STARE, which are often used
in the research of retinal vessel segmentation methods. Figure 7 shows an example of the two datasets.
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2.4.1. DRIVE

The DRIVE dataset was composed by Niemeijer’s team in The Netherlands in 2004 from a diabetic
retinopathy screening program [16]. The 40 samples were selected from 400 diabetic patients aged
between 25 and 90 years. Among them, 33 cases did not show the characteristics of diabetic retinopathy,
and seven cases did show them. The dataset was randomly divided into two groups, one was the test
set and the other was the training set, each group contained twenty images. The images were captured
by a CR53 camera (Canon, Oita, Japan) and the size of each image was 565 × 584. There were two
manual segmentation result of experts in the test set. Among the results of one expert segmentation,
the blood vessels pixels accounted for 12.7% of the total pixels, while the other expert was 12.3%.
The former is called set A, while the latter is called set B. The manual segmentation result in the set A
in DRIVE is used as the standard reference image.

2.4.2. STARE

This paper also tested the images in the STARE dataset. The STARE dataset was compiled and
published by Hoover et al. in 2000 [9]. It includes 20 retinal images, of which 10 are healthy images and
the rest are retinopathy images. Retinal photographs, each 700 × 605 in size, were taken by a Topcon-50
(Mitsui Bussan Electronics, Tokyo, Japan) fundus camera. Similarly, the images are randomly divided
into 10 training images and 10 test images. There were also two manual segmentation result of experts
in the dataset. Among the results of the one expert, blood vessels accounted for 10.4% of the total
pixels, while the other expert accounted for 14.9. In this paper, the segmentation result of the first
expert in STARE is used as the standard reference image.



Entropy 2020, 22, 811 10 of 21

2.5. Data Augmentation

Data augmentation is widely applied in convolutional neural networks because of its high
efficiency and operability. In this paper, the training sets in DRIVE and STARE are used as the training
data of the model. A total of 30 original retinal vascular images were included. Considering that the
number of dataset is too small, the model will be prone to overfitting and has a poor classification
performance. Therefore, it is necessary to augment the dataset for achieving the better results. And at
the same time, data augmentation is an effective solution to equip a convolutional neural network
with the invariance and robustness. Four image processing steps were used for augmenting dataset
and they are rotating, mirroring, shifting and cropping. The detail process was as shown in Figure 8.
First, each image was rotated at 30-degree intervals. Then, a mirror flip operation on each image was
performed. Next, each image was randomly shifted 20 to 50 pixels towards its four corners. Finally,
each image was randomly cut four times, and the size of the patch was 512 × 512.
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2.6. Data Preprocessing

The original retinal blood vessel image has a low contrast. The features of retinal blood vessel
are not obvious. In order to improve the performance of the MSFFU-Net model, the technique that
enhances image contrast was used to make the retinal blood vessel features more obvious [3]. The
use of several monochromatic representations of the original color images was explored in order to
evaluate their adequacy for the segmentation of the retinal blood vessels. According to Figure 9b–d,
the green channel of RGB retinal image has highest contrast between the blood vessels and background.
The green channel as a natural choice for the segmentation of the retinal blood vessels have been
considered in several research works [12,16,36]. Therefore, the green channel is used for further
processing and MSFFU-Net training treatment.
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Figure 9. Retinal R, G and B channel images. (a) DRIVE dataset fundus image, (b) R channel image,
(c) G channel image, (d) B channel image.

In addition to extracting the green channel of the retinal image, further processing is needed to
make the features of the blood vessels more prominent. The Contrast Limiting Adaptive Histogram
Equalization (CLAHE) algorithm can improve the contrast between blood vessels and background
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while suppressing noise [37]. We implemented the CLAHE algorithm to get a well-contrasted image.
First, the original retinal blood vessel image was evenly divided into small sub-blocks of the same size.
Then perform a histogram height limit on each sub-block, and the histogram was equalized for each
sub-block, as shown in Figure 10. Finally, the transformed gray value was obtained by interpolation
operation for each pixel, thereby realizing contrast-limited adaptive image enhancement.
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Figure 10. Schematic diagram of the CLAHE algorithm. (a) The original image, (b) Redistributed
by CLAHE.

The specific process of CLAHE algorithm is as follows:

(1) Divide into multiple sub-blocks. The retinal blood vessel image was divided into sub-block of
the same size and not overlapping. Each sub-block containing the number of pixels as M. The
larger the sub-block, the more obvious the enhancement, but the more the image details were lost.
In the proposed method, set M = 8 × 8. The size of the original image was 512 × 512, and the size
of each sub-block was 64 × 64.

(2) Calculate the histogram. Calculate the histogram distribution h(x) of each sub-block, where x is
the gray value of each pixel in the image, ranging from 0 to 255.

(3) Calculate the shear threshold TClip. As shown in Equation (8):

TClip =
M×N

L
+ [α× (M×N −

M×N
L

)] (8)

where α is the normalized clipping coefficient, whose value ranges from 0 to 1. The smaller the
value, the better the effect. In this paper, the value is 0.05.

(4) Redistribution of pixels. Count the number of pixel points above the threshold as NTol,

and calculate the increment of gray value of each pixel as NAce =
NTol

L . Finally, the assigned
threshold as TLim = TClip −NAce:

h′(x) =
{

TClip h(x) > TLim
h(x) h(x) ≤ TLim

(9)

(5) Pixel gray value reconstruction. Bilinear interpolation was used to reconstruct the gray value of
the center pixel of each row molecule block.

The image after processing the retinal blood vessel image using the CLAHE method is as seen in
Figure 11.
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2.7. Experiment Setup

We used a PC equipped with an Intel Core i7-6700k, 4 GHz CPU (Intel, Penang, Malaysia) with
16 GB RAM (Samsung, Suzhou, China) and 6 GB of RTX2070S GPU (GIGABYTE, Taipei, Taiwan) for
MSFFU-Net training. The operating system of the computer was 64-bit Win10. The structure of the
network was implemented under the open source deep learning library TensorFlow with Pycharm
implementation. In addition, Numpy (scientific computing library), some methods of image processing
in OpenCV and some libraries in sklearn were used for image processing.

In the process of model training, the stochastic gradient descent optimization algorithm was
used to iteratively solve the parameters of the fundus retinal vascular image segmentation network.
The initial learning rate was set to 0.001, which was changed to 0.1 times the current value every
20 epochs. The batch size was set to 20, and total training epochs to 100 [38]. It took about 60 h to train
the network on this platform.

2.8. Evaluation Metrics

In order to quantitatively evaluate the performance of the segmentation results of the proposed
algorithm, four evaluation indicators were used in this paper named: Sensitivity (Sen), Specificity
(Spe), Accuracy (Acc) and Area Under Curve (AUC) to evaluate the experimental results. Sensitivity is
the ratio of the number of correctly detected retinal blood vessel pixels to the total number of blood
vessel pixels. Specificity is the ratio of the number of correctly detected non-vessel pixels to the total
number of non-vessel pixels. Accuracy is the ratio of the number of correctly detected blood vessels
and background pixels to the total number of image pixels. The expressions of Se, Sp and Acc are
defined as follows:

Sensitivity =
TP

TP + FN
(10)

Speci f icity =
TN

FP + TN
(11)

Accuracy =
TP + TN

TP + FN + TN + FP
(12)
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where TP, TN, FP and FN denote true positive, true negative, false positive and false negative,
respectively. In this model, positive refers to blood vessels and negative refers to background.
Therefore, they are the four kinds of retinal vessel segmentation results based on the fact that each
pixel can be segmented correctly or incorrectly. TP represents vascular pixels are correctly detected as
blood vessels; TN represents background pixels are correctly detected as background; FP represents
background pixels are incorrectly detected as blood vessels; FN represents vascular pixels are incorrectly
detected as background.

The ROC curve is an important method for measuring the comprehensive performance of Image
semantic segmentation results. For the ROC curve, the horizontal axis is the FPR, representing the
percentage of detected blood vessel pixels in all the blood vessel pixels. And the vertical axis is the
TPR, denoting the false detection of background pixels into the proportion of blood vessels in the real
background pixels. They can be written as:

TPR =
TP

TP + FN
(13)

FPR =
FP

TN + FP
(14)

The AUC value represents the area under the ROC curve. Its value ranges from 0 to 1. Condition
AUC = 1, a perfect classifier; 0.5 < AUC < 1, better than random classifiers; 0 < AUC < 0.5, worse than
the random classifier.

3. Results and Discussion

3.1. Comparison with U-Net Model

To show the performance of proposed model, we compared the retinal vessel segmentation results
on DRIVE test dataset and STARE test dataset with the U-Net model. We did the analysis from
both qualitative and quantitative perspectives. Accordingly, in the contrast experiments, the same
experimental configuration, parameters, and number of training sets are used in the training of
U-Net model.

3.1.1. Qualitative Analysis

Figures 12 and 13 compare the segmentation results of two retinal blood vessel images from the
DRIVE and STARE test datasets, respectively. In the two figures, column (a) shows the original retinal
image; column (b) shows the ground truth; column (c) shows the segmentation results by U-Net model
and column (d) shows the segmentation results by proposed model. The effectiveness of the proposed
model was demonstrated, and the segmentation results are superior to the U-Net model.

A set of segmentation results comparisons were selected from DRIVE and STARE, respectively,
for local magnification analysis. Figures 14 and 15 show the local segmentation results of the U-Net
model and the MSFFU-Net model in the two datasets.

The first row of images represents the retinal original image, the manual segmentation result and
the result images obtained by the two modes; the second row of images represents the tiny retinal
vessel; the third row of images represents the densely packed blood vessels. The images of the second
row and the third row are local details of the first row. Obviously, although U-Net model can detect
most of the retinal blood vessels, the detection effectiveness of microvessels and dense vessels is
poor. It is observable that the segmentation results by U-Net appears multiple incoherent vessels and
mis-classification of background and vessel pixels. However, the MSFFU-Net model proposed in this
paper has better classification performance and the ability to detect more tiny vessels. It proves that
the feature fusion decoder structure applied max-pooling indices can recorde more accurately the
retinal vascular edge and location information, and the multi-scale feature extraction encoder based on
Inception module can make the thin tiny retinal blood vessel features more discriminative, which can
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present excellent segmentation performance [35]. Therefore, it also demonstrates that the proposed
model has better performance on retinal blood vessels segmentation than the U-Net model.
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images; the second row represents the tiny retinal vessels; the third row displays the densely packed
blood vessels.

3.1.2. Quantitative Analysis

The comparison of U-Net and proposed model based on evaluation metrics from DRIVE and
STARE is shown in Table 1.

For both models, the values of Sen, Spe, Acc, and AUC using the proposed model in DRIVE dataset
are higher than those when using the U-Net model. Only the Spe in STARE dataset is lower when
using the proposed model compared to using the U-Net model. It demonstrates that the performance
of the proposed model is superior to the U-Net model.
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Table 1. Comparison of U-Net model and MSFFU-Net model based on evaluation metrics.

Model
DRIVE STARE

Sen Spe Acc AUC Sen Spe Acc AUC

U-Net 0.7758 0.9755 0.9500 0.9742 0.7838 0.9780 0.9535 0.9673
Proposed model 0.7762 0.9835 0.9694 0.9790 0.7721 0.9885 0.9537 0.9680

3.2. Comparison with the State-of-the-Art Methods

To further demonstrate the performance for retinal vessel segmentation, we compared the proposed
method with several other state-of-the-art methods using the DRIVE and STARE datasets, as shown in
Tables 2 and 3. Meanwhile, in order to show the advantages of the proposed method more intuitively,
the comparison result is shown in Figure 16. In the DRIVE dataset, proposed method achieved a better
result than human observer on all evaluation metrics. The sensitivity was 0.7762; the specificity was
0.9835; and the accuracy was 0.9694. Comparing evaluation indicators, most unsupervised methods
are inferior to the method in this paper. However, the sensitivity value of the reference [1] and
reference [39] is 0.0281 and 0.0145 higher than proposed method respectively. Khawaja et al. presented
a directional multi-scale line detector technology in [1] for retinal blood vessel segmentation, mainly
focusing on the tiny vessels that are most difficult to separate out. Khawaja et al. have devised a new
strategy in [39] by introducing a denoiser that precedes the vessel segmentation step, which boosted
the efficiency of Frangi filter detection tiny vessel. Compared with the other two evaluation parameters,
the methods proposed in this paper are superior to [1] and [39]. Moreover, the proposed method ranks
first among supervised methods in terms of specificity and accuracy, which proved that it could better
classify background pixels and blood vessel pixels. In terms of sensitivity, the value of the method in
this paper is 0.0499, 0.0001 and 0.001 lower than Maninis, Liskowsk and Hu, respectively. The resulting
image segmented with Maninis et al.’s method contains a lot of noise, and the segmented vessels are
thicker than real.

Table 2. Comparison of proposed method with other methods in DRIVE database.

Type Method Sensitivity Specificity Accuracy

Human observer 0.7760 0.9724 0.9472

Unsupervised methods

Khawaja [1] 0.8043 0.9730 0.9553
Mendonca [12] 0.7344 0.9764 0.9452

Espona [13] 0.7436 0.9615 0.9352
Vlachos [14] 0.7468 0.9551 0.9285

Miri [10] – – 0.9458
Wang [11] – – 0.9461

Azzopardi [40] 0.7655 0.9704 0.9442
Wang [41] 0.7527 – 0.9457

Khawaja [39] 0.7907 0.9790 0.9603
Roychowdhury [42] 0.7250 0.9830 0.9520

Supervised Methods

Liskowsk [43] 0.7763 0.9768 0.9495
You [17] 0.7410 0.9751 0.9434
Fraz [19] 0.7406 0.9807 0.9480
Fu [24] 0.7294 – 0.9470
Li [44] 0.7569 0.9816 0.9527

Maninis [45] 0.8261 0.9115 0.9541
Chen [46] 0.7426 0.9735 0.9453

Orlando [20] 0.7079 0.9802 –
Dasgupta [4] 0.7691 0.9801 0.9533

Hu [47] 0.7772 0.9793 0.9533
Na [48] 0.7680 0.9700 0.9540

Proposed method 0.7762 0.9835 0.9694
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Table 3. Comparison of proposed method with other methods in STARE database.

Type Method Sensitivity Specificity Accuracy

Human observer 0.8952 0.9384 0.9349

Unsupervised methods

Khawaja [1] 0.8011 0.9694 0.9545
Mendonca [12] 0.6996 0.9730 0.9440

Wang [11] – – 0.9521
Aguiree [49] 0.7116 0.9454 0.9231
Soomro [50] 0.7130 0.9680 0.9440

Azzopardi [40] 0.7716 0.9701 0.9563
Wang [41] 0.7686 – 0.9451

Khawaja [39] 0.7860 0.9725 0.9583
Roychowdhury [42] 0.7720 0.9730 0.9510

Mapayi [51] 0.7626 0.9657 0.9510

Supervised methods

Staal [16] 0.6970 0.9810 0.9520
You [17] 0.7260 0.9756 0.9497
Fraz [19] 0.7548 0.9763 0.9534
Fu [24] 0.7140 – 0.9545

Soares [52] 0.7200 0.9750 0.9480
Chen [46] 0.7295 0.9696 0.9449
Xie [53] 0.9955 0.5555 0.9378

Orlando [20] 0.7680 0.9738 –
Xia [54] 0.7670 0.9770 0.9530
Hu [47] 0.7543 0.9814 0.9632

Proposed method 0.7721 0.9885 0.9537
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Some background pixels are also detected as vascular pixels, so that the sensitivity is high and the
specificity is low. However, the MSFFU-Net model uses the multi-scale feature extraction encoder
module to more fully capture deep features at different scales, and the receiving field of feature
maps of is larger, which can segment the pathological regions well. We used the skip connection
and max-pooling index to alleviate the difficulty of decoding to recover microvessels, so that the
segmented retinal vessel image contains less pathology and the segmentation results are more accurate.
Image preprocessing and cost-sensitive loss functions also contributed significantly to this result.
As can be seen from Table 3 and Figure 16b, the specificity of the method for the STARE dataset are
highest in those listed methods, and the sensitivity value of the proposed method in this paper is 0.029,
0.0139 and 0.2234 lower than that in Ref. [1], Ref. [39] and Xie et al.’s method respectively. The HED
algorithm in the Xie et al.’s method can detect edge information with a small receptive field. Therefore,
due to the influence of the network model they proposed, the algorithm segmented a larger blood
vessel size, sometimes resulting in a blurred blood vessel segmentation image. As for the accuracy,
the value of the proposed method is 0.0008, 0.0026, 0.0046, 0.0008 and 0.0095 lower than that of [1],
Azzopardi, [39], Fu and Hu, respectively. However, the sensitivity or specificity of the method in this
paper are higher. Therefore, it can be seen from the evaluation metrics in Tables 2 and 3 and Figure 16
that the performance of the proposed method in this paper is superior.

4. Conclusions

In this study, we propose a multi-scale feature fusion retinal vessel segmentation method based on
U-Net, which integrates data augmentation, data preprocessing, and a MSFFU-Net model. The model
introduced the inception structure into the multi-scale feature extraction encoder part of the improved
network, and we optimized the basic inception structure, reducing the training parameters of the model.
The feature maps obtained by the inception module of the multi-scale convolution kernel designed in
this paper have different sizes of receptive fields, which can have a better detection effect on the vascular
structures of different sizes in the retinal blood vessel image and reduce the inaccurate segmentation
of tiny vessels. The max-pooling index was applied during the upsampling process in the feature
fusion decoder part, precisely retaining the location information of the object features, and obtaining a
clearer contour of retinal blood vessels in the segmentation results. The multiscale skip connections
architecture in the model transferred the detailed features from the encoder to the decoder. In addition,
we designed a cost-sensitive loss function based on the Dice coefficient and cross entropy, which
alleviated the problem of imbalance between the number of blood vessel pixels and the background
pixels in the fundus retina image. Four transformations were used as data augmentation strategies to
improve the generalization ability of the proposed method. Then, the images were preprocessed using
the CLAHE algorithm. The stochastic gradient descent (SGD) optimization algorithm was used to
iteratively solve the network parameters in the process of model training. We adopted the DRIVE
dataset and STARE datasets for training and testing of the proposed framework, and Sen, Spe, Acc
and AUC were used as evaluation metrics. The experimental results demonstrate the superiority of
the presented method to other supervised and unsupervised learning methods, therefore, the method
proposed in this paper showed its competitive results.

Although the inception blocks, storage of pooling indices, multiscale skip connections and the
combination of dice and loss function are not the ideas we proposed, we are the first to integrate
them into a system retinal vessel segmentation and add our own improvements. As mentioned
earlier, these modules play a very important role in the multi-scale feature fusion method based on
U-Net for retinal vessel segmentation proposed in this paper. In the future, we plan to improve the
image preprocessing algorithm to achieve better segmentation performance on the STARE dataset.
Furthermore, the attention mechanism will be added so that the extracted feature maps have different
weights, which improves the utilization of feature information and more accurately locates the contour
area of the fundus.
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