Table 5.
Performance Measures for Classification | Performance Measures for Ordinal Classification | ||||
---|---|---|---|---|---|
F-Score | Accuracy | AUC | MSE | ||
Non-ordinal classifiers | |||||
Naïve Bayes | 0.246 | 0.305 | 0.478 | 0.916 | −0.065 |
Logistic regression | 0.453 | 0.505 | 0.560 | 1.189 | 0.060 |
Gradient boosting | 0.347 | 0.356 | 0.481 | 1.611 | −0.117 |
XGBoost | 0.378 | 0.389 | 0.506 | 1.558 | −0.077 |
K-nearest neighbor | 0.433 | 0.453 | 0.543 | 1.305 | 0.013 |
AdaBoost | 0.380 | 0.411 | 0.507 | 1.253 | 0.006 |
Random forest | 0.405 | 0.400 | 0.540 | 1.421 | 0.035 |
CART | 0.361 | 0.379 | 0.493 | 1.537 | −0.079 |
Ordinal classifiers | |||||
Ordinal CART–OBE() | 0.409 | 0.442 | 0.535 | 1.316 | 0.016 |
Ordinal AdaBoost—OBE() | 0.475 | 0.526 | 0.578 | 1.137 | 0.163 |
Ordinal RF—OBE() | 0.439 | 0.484 | 0.570 | 1.147 | 0.185 |