Skip to main content
. 2020 Aug 8;22(8):874. doi: 10.3390/e22080874
1 Introduction 3
2 The Framework and Application Setups 5
  2.1 Process Setup 5
  2.2 Connections to Time Series of Counts 6
  2.3 Applicability to Epidemiology 8
  2.4 Information Measures 12
  2.5 Decision Making under Uncertainty 15
  2.6 Asymptotical Distinguishability 19
3 Detailed Recursive Analyses of Hellinger Integrals 21
  3.1 A First Basic Result 21
  3.2 Some Useful Facts for Deeper Analyses 25
  3.3 Detailed Analyses of the Exact Recursive Values, i.e., for the Cases βA,βH,αA,αHPNIPSP,1 27
  3.4 Some Preparatory Basic Facts for the Remaining Cases βA,βH,αA,αHPSP\PSP,1 29
  3.5 Lower Bounds for the Cases βA,βH,αA,αH,λ(PSP\PSP,1)×]0,1[ 31
  3.6 Goals for Upper Bounds for the Cases βA,βH,αA,αH,λ(PSP\PSP,1)×]0,1[ 32
  3.7 Upper Bounds for the Cases βA,βH,αA,αH,λPSP,2×]0,1[ 34
  3.8 Upper Bounds for the Cases βA,βH,αA,αH,λPSP,3a×]0,1[ 35
  3.9 Upper Bounds for the Cases βA,βH,αA,αH,λPSP,3b×]0,1[ 36
  3.10 Upper Bounds for the Cases βA,βH,αA,αH,λPSP,3c×]0,1[ 37
  3.11 Upper Bounds for the Cases βA,βH,αA,αH,λPSP,4a×]0,1[ 37
  3.12 Upper Bounds for the Cases βA,βH,αA,αH,λPSP,4b×]0,1[ 37
  3.13 Concluding Remarks on Alternative Upper Bounds for all Cases βA,βH,αA,αH,λ (PSP\PSP,1)×]0,1[ 37
  3.14 Intermezzo 1: Application to Asymptotical Distinguishability 38
  3.15 Intermezzo 2: Application to Decision Making under Uncertainty 39
   3.15.1 Bayesian Decision Making 39
   3.15.2. Neyman-Pearson Testing 41
  3.16 Goals for Lower Bounds for the Cases βA,βH,αA,αH,λ(PSP\PSP,1)×(R\[0,1]) 41
  3.17 Lower Bounds for the Cases βA,βH,αA,αH,λPSP,2×(R\[0,1]) 44
  3.18 Lower Bounds for the Cases βA,βH,αA,αH,λPSP,3a×(R\[0,1]) 45
  3.19 Lower Bounds for the Cases βA,βH,αA,αH,λPSP,3b×(R\[0,1]) 46
  3.20 Lower Bounds for the Cases βA,βH,αA,αH,λPSP,3c×(R\[0,1]) 47
  3.21 Lower Bounds for the Cases βA,βH,αA,αH,λPSP,4a×(R\[0,1]) 47
  3.22 Lower Bounds for the Cases βA,βH,αA,αH,λPSP,4b×(R\[0,1]) 48
  3.23 Concluding Remarks on Alternative Lower Bounds for all Cases βA,βH,αA,αH,λ(PSP\PSP,1)×(R\[0,1]) 48
  3.24 Upper Bounds for the Cases βA,βH,αA,αH,λ(PSP\PSP,1)×(R\[0,1]) 48
4 Power Divergences of Non-Kullback-Leibler-Information-Divergence Type 49
  4.1 A First Basic Result 49
  4.2 Detailed Analyses of the Exact Recursive Values of Iλ(··), i.e., for the Cases βA,βH,αA,αH,λ(PNIPSP,1)×(R\{0,1}) 51
  4.3 Lower Bounds of Iλ(··) for the Cases βA,βH,αA,αH,λ(PSP\PSP,1)×]0,1[ 52
  4.4 Upper Bounds of Iλ(··) for the Cases βA,βH,αA,αH,λ(PSP\PSP,1)×]0,1[ 53
  4.5 Lower Bounds of Iλ(··) for the Cases (βA,βH,αA,αH,λ)(PSP\PSP,1)×(R\[0,1]) 53
  4.6 Upper Bounds of Iλ(··) for the Cases βA,βH,αA,αH,λ(PSP\PSP,1)×(R\[0,1]) 54
  4.7 Applications to Bayesian Decision Making 55
5 Kullback-Leibler Information Divergence (Relative Entropy) 55
  5.1 Exact Values Respectively Upper Bounds of I(·||·) 55
  5.2 Lower Bounds of I(·||·) for the Cases βA,βH,αA,αH(PSP\PSP,1) 56
  5.3 Applications to Bayesian Decision Making 58
6 Explicit Closed-Form Bounds of Hellinger Integrals 59
  6.1 Principal Approach 59
  6.2 Explicit Closed-Form Bounds for the Cases βA,βH,αA,αH,λ(PNIPSP,1)×(R\{0,1}) 63
  6.3 Explicit Closed-Form Bounds for the Cases βA,βH,αA,αH,λ(PSP\PSP,1)×]0,1[ 64
  6.4 Explicit Closed-Form Bounds for the Cases βA,βH,αA,αH,λ(PSP\PSP,1)×(R\[0,1]) 67
  6.5 Totally Explicit Closed-Form Bounds 69
  6.6 Closed-Form Bounds for Power Divergences of Non-Kullback-Leibler-Information-Divergence Type 70
  6.7 Applications to Decision Making 71
7 Hellinger Integrals and Power Divergences of Galton-Watson Type Diffusion Approximations 71
  7.1 Branching-Type Diffusion Approximations 71
  7.2 Bounds of Hellinger Integrals for Diffusion Approximations 74
  7.3 Bounds of Power Divergences for Diffusion Approximations 79
  7.4 Applications to Decision Making 80
A Proofs and Auxiliary Lemmas 81
  A.1. Proofs and Auxiliary Lemmas for Section 3 81
  A.2 Proofs and Auxiliary Lemmas for Section 5 88
  A.3 Proofs and Auxiliary Lemmas for Section 6 94
  A.4 Proofs and Auxiliary Lemmas for Section 7 101
References 115