|
Algorithm 1 Label Complementary multi-population genetic algorithm for multilabel feature selection |
-
1:
Input:; ▹ the multilabel dataset D, the number of sub-populations m
-
2:
Output: S; ▹ the final feature subset S
-
3:
;
-
4:
initialization ▹ use Algorithm 2
-
5:
for each sub-population
do
-
6:
evaluate using D; ▹ compute fitness values via a fitness function
-
7:
compute the label-specific accuracy matrix for individuals of ; ▹ reuse the fitness function
-
8:
end for
-
9:
while (not termination-condition) do
-
10:
for each sub-population
do
-
11:
communication; ▹ use Algorithm 3
-
12:
update; ▹ use Algorithm 4
-
13:
evaluate using D;
-
14:
compute the label-specific accuracy matrix for individuals of ;
-
15:
;
-
16:
end for
-
17:
end while
-
18:
the best feature subset so far;
|