Skip to main content
. 2020 Aug 10;22(8):876. doi: 10.3390/e22080876
Algorithm 1 Label Complementary multi-population genetic algorithm for multilabel feature selection
  • 1:

    Input:D,m;                  ▹ the multilabel dataset D, the number of sub-populations m

  • 2:

    Output: S;                                  ▹ the final feature subset S

  • 3:

    t0;

  • 4:

    [P1(t),,Pm(t)]initialization(m)                       ▹ use Algorithm 2

  • 5:

    for each sub-population Pk do

  • 6:

        vk(t) evaluate Pk(t) using D;              ▹ compute fitness values via a fitness function

  • 7:

        Ak(t) compute the label-specific accuracy matrix for individuals of Pk(t);    ▹ reuse the fitness function

  • 8:

    end for

  • 9:

    while (not termination-condition) do

  • 10:

        for each sub-population Pk do

  • 11:

            indccommunication(Pk(t),A);                       ▹ use Algorithm 3

  • 12:

            Pk(t+1)update(Pk(t),indc);                       ▹ use Algorithm 4

  • 13:

            vk(t+1) evaluate Pk(t+1) using D;

  • 14:

            Ak(t+1) compute the label-specific accuracy matrix for individuals of Pk(t+1);

  • 15:

            tt+1;

  • 16:

        end for

  • 17:

    end while

  • 18:

    S the best feature subset so far;