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Abstract

Radiomics involves the study of tumor images to identify quantitative markers explaining cancer 

heterogeneity. The predominant approach is to extract hundreds to thousands of image features, 

including histogram features comprised of summaries of the marginal distribution of pixel 

intensities, which leads to multiple testing problems and can miss out on insights not contained in 

the selected features. In this paper, we present methods to model the entire marginal distribution of 

pixel intensities via the quantile function as functional data, regressed on a set of demographic, 

clinical, and genetic predictors to investigate their effects of imaging-based cancer heterogeneity. 

We call this approach quantile functional regression, regressing subject-specific marginal 

distributions across repeated measurements on a set of covariates, allowing us to assess which 

covariates are associated with the distribution in a global sense, as well as to identify distributional 

features characterizing these differences, including mean, variance, skewness, heavy-tailedness, 

and various upper and lower quantiles. To account for smoothness in the quantile functions, 

account for intrafunctional correlation, and gain statistical power, we introduce custom basis 

functions we call quantlets that are sparse, regularized, near-lossless, and empirically defined, 

adapting to the features of a given data set and containing a Gaussian subspace so non-

Gaussianness can be assessed. We fit this model using a Bayesian framework that uses nonlinear 

shrinkage of quantlet coefficients to regularize the functional regression coefficients and provides 

fully Bayesian inference after fitting a Markov chain Monte Carlo. We demonstrate the benefit of 

the basis space modeling through simulation studies, and apply the method to Magnetic resonance 

imaging (MRI) based radiomic dataset from Glioblastoma Multiforme to relate imaging-based 

quantile functions to various demographic, clinical, and genetic predictors, finding specific 

differences in tumor pixel intensity distribution between males and females and between tumors 

with and without DDIT3 mutations.
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1. INTRODUCTION

Glioblastoma multiforme (GBM), also known as glioblastoma and grade IV astrocytoma, is 

the most common and most aggressive cancer that begins within the brain. Studying GBM is 

difficult in that the cause of most cases is unclear, there is no known way to prevent the 

disease, and most people diagnosed with GBM survive only 12 to 15 months, with less than 

3% to 5% surviving longer than five years (Tutt 2011). Most GBM diagnoses are made by 

medical imaging such as computed tomography (CT), magnetic resonance imaging (MRI), 

and positron emission tomography (PET). MRI is frequently chosen because it offers a wide 

range of high-resolution image contrast that can serve as indicators for clinical decision 

making or for tumor progression in GBM studies. A GBM tumor, which usually originates 

from a single cell, demonstrates heterogeneous physiological and morphological features as 

it proliferates (Marusyk, Almendro and Polyak 2012). Those heterogeneous features make it 

difficult to predict treatment impacts and outcomes for patients with GBM. Investigating 

tumor heterogeneity is critical in cancer research since inter/intra-tumor differences have 

stymied the systematic development of targeted therapies for cancer patients (Felipe De 

Sousa, Vermeulen, Fessler and Medema 2013).

Our motivating dataset comes from The Cancer Imaging Archive (TCIA, 

cancerimagingarchive.net) – a comprehensive archive of biomedical images of various 

cancer types along with associated clinical and genomic data (described in detail in Section 

4). As an illustration, the rightmost four plots of Figure 1 display MRI images for 4 patients 

with GBM, two males and two females, and with and without mutations in the DDIT3 gene, 

an important gene associated with GBM development, with tumor boundaries indicated by 

the black lines. The upper left plot contains smoothed density estimates of the pixel 

intensities while the bottom left plot contains the empirical quantile functions for these 

tumors. Features of these images may comprise clinically useful biomarkers since these 

pixel intensities denote the amount of contrast enhancement (or vascularization) on T1-

weighted sequence; or extent of infiltration into neighboring tissue (in T2-weighted or fluid-

attenuated inversion recovery (FLAIR) MR sequence). It is of scientific interest to study the 

pixel intensity distributions for a set of 64 GBM tumors of which these four are a subset and 

investigate their associations with various covariates including age, sex, tumor subtype, 

DDIT3 mutation status, EGFR mutation status, and survival status (> 12 months, ≤ 12 

months), to assess how various aspects of GBM tumor heterogeneity are reflected in the 

tumor images.

Radiomics is a field of study to identify quantitative biomarkers from biomedical imaging 

data. The typical approach is to extract various features of the images and then relate them to 

various clinical and genetic outcomes. While some of these features characterize various 

spatial relationships among the pixel intensities, an important subset called histogram 
features (Just 2014) extracts information from the marginal distribution of pixel intensities 

within the tumor, such as the mean and variance. While the feature extraction strategy that is 

typical in radiomics is reasonable and often can yield meaningful results, it has numerous 

drawbacks. The exploratory regression analysis of numerous different summaries raises 

multiple testing problems, and if the key distributional differences are not contained in the 

pre-defined summaries, then this approach can miss out on important insights.
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In this paper, we choose to represent and model the distribution through the quantile 

function, which has numerous advantages as described in Section 2.6, including a fixed, 

common domain [0, 1], their ease of estimation by order statistics without any need for 

smoothing parameter specification, and the ability to readily compute distributional 

moments. Thus, our approach is to represent each subject’s data via their empirical quantile 

function Qi(p), p ∈ P = [0, 1], computed from the order statistics, and then treat these as 

functional responses regressed on a set of scalar covariates xia; j = 1, …, A through 

Qi(p) = β0(p) + ∑a = 1
J xiaβa(p) + Ei(p). This models the distribution of subject-level 

distributions as a function of subject-level covariates. We call the fitting of this model 

quantile functional regression, which is fundamentally different and distinguished from 

other models for quantile regression in existing literature in Section 2.1. Regression analysis 

using the quantile function as the response is based upon the Wasserstein metric between 

distributions (Dobrushin 1970), which can be shown to be equivalent to an L2 distance 

between the corresponding quantile functions.

One simple approach to fitting this model would be to interpolate each subject’s data onto a 

common grid of P and then perform independent regressions for each interior point p. This 

would lead to estimators that are unbiased but ine cient, as they would not borrow strength 

across nearby p, which should be similar to each other. We refer to this strategy as naive 
quantile functional regression. As is typically done in other functional regression settings 

(see review article by (Morris 2015)), alternatively one could borrow strength across p using 

basis representations, with common choices including splines, principal components, and 

wavelets. In this paper, we will introduce a new strategy for construction of a custom basis 

set we call quantlets that is sparse, regularized, near-lossless, and empirically defined, 

adapting to the features of the given data set and containing the Gaussian distribution as a 

prespecified subspace so non-Gaussianness can be assessed. Representing the quantile 

functions with a quantlet basis expansion, we propose a Bayesian modeling approach for 

fitting the quantile functional regression model that utilizes shrinkage priors on the quantlet 

coefficients to induce regularization of the regression coefficients βa(p), and leading to a 

series of global and local inferential procedures that can first determine whether βa(p) ≡ 0 

and then assess which p and/or distributional summaries (e.g. mean/variance/skewness/

Gaussianness) characterize any such difference. While based on quantile functions, our 

model will also be able to provide predicted distribution functions and densities for any set 

of covariates to use as summaries for users more accustomed to interpreting densities than 

quantile functions.

While developed in the context of our GBM motivating case study, the methods we develop 

are general and can be applied to a wide range of contexts in which multiple observations 

are obtained per subject and one wishes to associate subject-specific distributions to 

explanatory variables. This paper is organized as follows. In Section 2, we introduce the 

general quantile function regression model, introduce quantlets, describe how to construct a 

set of quantlet basis functions for a given data set, and describe our Bayesian approach to 

fitting the model. In Section 3, we describe simulation studies conducted to evaluate the 

finite-sample performance of our method and demonstrate the benefit of incorporating 

quantlet bases in the modeling. In Section 4, we apply our method to data in our GBM case 
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study and perform various investigations to obtain insightful scientific results. We provide 

concluding remarks in Section 5.

2. MODELS AND METHODS

2.1 Quantile Functions and Empirical Quantile Functions

Let Y be a real valued random variable which in our context, represents the pixel intensity 

from a tumor image in our GBM application, and FY (y) be its cumulative distribution 

function (right-continuous) such that FY (y) = P(Y ≤ y), and p = FY (y) be the percentage of 

the population less than or equal to y. The quantile function of Y, defined for p ∈ [0, 1], is 

defined as

Q(p) = QY (p) = FY
−1(p) = inf y:FY (y) ≥ p .

Given a sample of m repeated observations for a given subject, intensities for multiple pixels 

for the subject’s tumor in our GBM application, let Y(1) ≤ ⋯ ≤ Y(m) be the corresponding 

order statistics. For p ∈ [1/(m+1), m/(m+1)], a subject-specific empirical quantile function 

of Y can be computed, e.g. using linear interpolation across order statistics,

Q(p) = (1 − w)Y ([(m + 1)p]) + wY ([m + 1)p] + 1),

where [x] is an integer less than or equal to x and w is a weight such that (m + 1)p = [(m + 

1)p] + w. This empirical quantile function is an estimate of the true quantile function.

As shown in (Parzen 2004), for a fixed p, the empirical estimator is consistent and is 

asymptotically equivalent to a Brownian bridge when the density function fY (y) exists and 

is positive. This can serve as a summary of the subject-specific distribution that does not 

require specification of any smoothing parameter, that in this paper we regress on outcomes 

to assess how they vary across covariates. In this paper, we are interested in studying 

outcomes Y that are absolutely continuous, meaning that the corresponding quantile 

functions are continuous and smooth, without jumps that would occur for discretely valued 

random variables. For brevity, we omit the estimator notation for the empirical quantile 

functions and just refer to them as Q(p).

2.2 Quantile Functional Regression Model

Suppose that for a series of subjects i = 1, …, n we observe a sample of mi observations 

from which we construct a subject-specific empirical quantile function Qi(pj) for pj = j/(mi + 

1); j = 1, …, mi, along with a set of A covariates Xi = (xi1,…, xiA)T, which are the 

demographic, clinical, and genetic factors described in the introduction for our GBM 

application. Note that by construction all subject-specific empirical quantile functions Qi(pj) 

are non-decreasing in p. See Section 4 of the supplement for further discussion of 

monotonicity issues in this framework.

The quantile functional regression model is given by
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Qi(p) = ∑
a = 1

A
xiaβa(p) + Ei(p) = Xi

TB(p) + Ei(p), (1)

where B(p) = (β1(p), …, βA(p))T is a column vector of length A containing unknown fixed 

functional coefficients for the quantile p and Ei(p) is a residual error process, assumed to 

follow a mean zero Gaussian process with the covariance surface, Σ(p1, p2) = cov{Ei(p1), 

Ei(p2)} and to be independent of Xi. The structure of (·, ·) captures the variability across 

subject-specific quantiles, and the diagonals capture the intrasubject covariance across p. In 

practice, we will focus our modeling on p ∈ P = [δ, 1 − δ], with δ = maxi≤n{1/(mi + 1)} 

being the most extreme quantile estimable from the subject with the fewest observed data 

points. In this paper, we are primarily interested in settings with at least moderately large 

numbers of observations per subject, i.e. mi not too small, and in later studies will extend our 

work to sparse data settings with few observations per subject.

To place our model in the proper context within the current literature on quantile and 

functional regression, Table 1 lists various types of regression in terms of response and 

objective function. In contrast to classical regression, which specifies the mean of the 

response conditional on a set of covariates, quantile regression (He and Liang 2000; Koenker 

2005; Yang and He 2015) works by estimating a pre-specified p-quantile of the response 

distribution conditional on the covariates, either with independent (Koenker 2004; Hao and 

Naiman 2007; Davino, Furno and Vistocco 2013) or spatially/temporally correlated errors 

(Koenker 2004; Reich, Fuentes and Dunson 2012; Reich 2012). Most existing methods fit 

independent quantile regressions for each desired p, which can lead to crossing quantile 

planes, although recent methods (e.g. Yang and Tokdar (2017)) jointly model all quantiles, 

borrowing strength across p using Gaussian process priors. Parallel to these e orts are 

methods to perform Bayesian density regression (Dunson, Pillai and Park 2007), in which 

the density of the response variable is modeled as a function of covariates via dependent 

Dirichlet processes (Muller, Erkanli and West 1996; MacEachern 1999; Griffin and Steel 

2006; Dunson 2006). These quantile regression models are inherently different from the 

setting of this paper, as they are modeling the quantile of the population given covariates, 

while our framework is modeling the quantile function of each subject as a function of 

subject-specific covariates. Another difference is that, in general, these methods do not 

model intrasubject correlation in settings for which there is more than one observation per 

subject.

Other regression methods have been designed for functional responses. There is a subset of 

the functional regression literature (see Morris (2015) for an overview) that involve 

regression of a functional response on a set of covariates, with classical functional regression 

focusing on the mean function conditional on covariates (Faraway 1997; Wu and Chiang 

2000; Guo 2002; Ramsay and Silverman 2006; Morris and Carroll 2006; Reiss, Huang and 

Mennes 2010; Goldsmith, Wand and Crainiceanu 2011; Goldsmith, Bobb, Crainiceanu, 

Caffo and Reich 2012; Scheipl, Staicu and Greven 2015; Meyer, Coull, Versace, Cinciripini 

and Morris 2015), and functional quantile regression that computes the quantile of 

functional response conditional on covariates, using the check function as the objective 

function (Brockhaus, Scheipl, Hothorn and Greven 2015; Brockhaus and Rügamer 2015) or 
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the asymmetric Laplace likelihood as a Bayesian analog (Liu, Li and Morris 2018). Again 

these methods are not modeling subject-specific, but rather population-level quantiles. Other 

recent works on functional quantile regression have focused on the quantile of the scalar 

response distribution regressed on a set of functional covariates (Ferraty, Rabhi and Vieu 

2005; Cardot, Crambes and Sarda 2005; Chen and Müller 2012; Kato 2012; Kato, Galvao 

and Montes-Rojas 2012; Li, Wang, Maity and Staicu 2016), which is also an inherently 

different problem from the one addressed here.

All of these methods differ, fundamentally, from the quantile functional regression 

framework described in this paper. For these methods, the quantile regression is computing 

the pth quantile of the population given covariates X, while in our case, we are interested in 

modeling the pth quantile of an individual subject’s distribution given X. In our case, we are 

modeling the empirical quantile function for each subject as the response, and using a 

classical (mean) regression of these subject-specific quantile functions onto a set of scalar 

covariates, i.e. estimating the expected quantile function for a subject given a set of 

covariates. Note that this regression problem is based upon the Wasserstein metric between 

distributions (Dobrushin 1970), which can be shown to be equivalent to an L2 distance 

between the corresponding quantile functions. It would also be possible to compute the qth 

quantile of the distribution of specific empirical quantile functions for each p conditional on 

covariates, which could be dubbed quantile functional quantile regression, but this model is 

not addressed in the current paper.

2.3 Quantlet Basis Functions

If all empirical quantile functions are sampled on (or interpolated onto) the same grid (i.e. mi 

≡ m∀i = 1, …, n), then a simple way to fit model (1) would be to fit separate linear 

regressions for each p. However, this naive approach would treat observations across p as 

independent. This leads to a regression model that fails to borrow strength across p, and thus 

is expected to be inefficient for estimation of the functional coefficients βa(p), and ignores 

correlation across p in the residual error functions Ei(p), which would adversely affect any 

subsequent inference. We call this approach naive quantile functional regression in our 

comparisons below.

Basis function representations can be used to induce smoothness across p in βa(p) and 

capture intra-subject correlation in the residual error functions Ei(p). In existing functional 

regression literature, common choices for basis functions include splines, Fourier, wavelets, 

and principal components, and smoothness is induced across p by regularization of the basis 

coefficients via L1 or L2 penalization (Morris 2015). Here, we introduce a strategy to 

construct a custom basis set called quantlets for use in the quantile functional regression 

model that have many desirable properties, including regularity, sparsity, near-losslessness, 

interpretability, and empirical determination allowing them to capture the salient features of 

the empirical quantile functions for a given data set.

We empirically construct the quantlets for a given data set as a common near-lossless basis 

that can nearly perfectly represent each subject’s empirical quantile function, and then we 

use these basis functions as building blocks in our quantile functional regression model as 
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described later. Given a sample of subject-specific empirical quantile functions, we construct 

a quantlet basis set by the following steps:

1. Construct an overcomplete dictionary that contains bases spanning the space of 

Gaussian quantile functions plus a large number of Beta cumulative density 

functions. For each subject, use regularization to choose a sparse set among these 

dictionary elements.

2. Take the union of all selected dictionary elements across subjects, and find a 

subset that simultaneously preserves the information in each empirical quantile 

function to a specified level, as measured by the cross-validated concordance 

correlation coefficient.

3. Orthogonalize this subset using Gram-Schmidt, apply wavelet denoising to 

regularize the orthogonal basis functions, and then re-standardize.

We refer to the set of basis functions resulting from this procedure as quantlets. We describe 

these steps in detail and then discuss their properties. See Figure 2 for an overview of the 

entire procedure, for which each step is given as follows.

Form overcomplete dictionary: Suppose that L2(Π(P)) is a Banach space such that 

{Q: p ∈ P ℝ measurable s.t. ‖Q‖2 =(∫Q(p)|2dΠ(p))1/2 < ∞}, where Π is a uniform density 

with respect to the Lebesgue measure. We define the first two basis functions to be a 

constant basis ξ1(p) = 1 for p ∈ [0, 1] and standard normal quantile function ξ2(p) = Φ−1(p). 

These orthonormal bases span the space of all Gaussian quantile functions, with the first 

coefficient corresponding to the mean and the second coefficient the variance of the 

distribution. We form an overcomplete dictionary that includes these along with a large 

number of dictionary elements constructed from Beta cumulative density functions (CDF). 

The shape of the Beta CDF is able to follow a “steep-flat-steep” shapes that we have 

observed characterize the features of empirical quantile functions in a wide array of 

applications, so has the potential for e cient representation.

The individual dictionary elements ξk(p) are given by

ξk(p) = PN⊥
Fθk(p) − μθk

σθk
= PN⊥ ∫

0

1
I(u ≤ p) − μθk /σθkdFθk(u) , (2)

where Fθk(p) is the CDF of a Beta(θk) distribution for some positive parameters θk = {ak, 

bk}, μθk = ∫0
1Fθk(u)du and σθk

2 = ∫0
1 Fθk(u) − μθk

2du are the centered and scaled values of 

these distributions for standardization, respectively, and PN
⊥ indicates the projection 

operator onto the orthogonal complement to the Gaussian basis elements ξ1(p) and ξ2(p), 

with PN⊥{f(p)} = f(p) − ξ1(p)∫0
1f(p)ξ1(p)dp − ξ2(p)∫0

1f(p)ξ2(p)dp. Put together, the set 

DO = {ξ1, ξ2} ∪ ξk:θk ∈ Θ  comprises an overcomplete dictionary family on Θ ⊂ ℝ+
2 . In 

practice, to fix the number of dictionary elements, we choose a grid on the parameter space 

to obtain Θ = θk = ak, bk k = 3
KO

 by uniformly sampling on Θ ⊂ (0, J)2 for some sufficiently 
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large J, and choosing KO to be a large integer (e.g. we use KO = 12, 000 in this paper). 

Details of how to select Θ can be found in the Supplementary materials. If desired, this 

dictionary can be arbitrarily expanded to include any other basis functions on [0, 1] that one 

might think could capture salient features of the given data set.

The use of a large dictionary of Beta CDF in this step is supported by the following theorem, 

that demonstrates that any quantile function whose first derivative is absolutely continuous 

can be represented by a conical combination of Beta CDFs.

Theorem 2.1. Let Q(p) be a quantile defined on p ∈ [0, 1], Fk,n(p) be a beta cumulative 

distribution function defined as Fk, n(p) = ∫0
p Γ(n + 2)

Γ(k + 1)Γ(n − k + 1)xk(1 − x)n − kdx, and q(p) be 

the first derivative of Q(p). Define

Qn(p) = ∑
k = 0

n
ck, n∫0

p Γ(n + 2)
Γ(k + 1)Γ(n − k + 1)xk(1 − x)n − kdx = ∑

k = 0

n
ck, nFk, n(p),

where ck,n = αk/(n + 1), αk = q(k/n) and 0 ≤ x ≤ 1. Suppose that q(x): [0, 1] ℝ be 
continuous function for the sufficiently small δ > 0, that there exists a constant C such that 
‖q‖∞ = supx∈[0,1] |q(x)| ≤ C, and that ck,n → ck for each k, where ck is some constant. Then 
for any p ∈ [0, 1]

lim
n ∞

Qn(p) = Q(p) .

This theorem provides justification for using a dictionary containing many Beta CDF to 

represent the empirical quantile functions, and supports the notion that given a large enough 

dictionary, the linear combination of beta CDFs should be sufficient for representing each 

individual’s empirical quantile function.

Sparse selection of dictionary elements: For each i, we use regularization via 

penalized likelihood to obtain a sparse set of dictionary elements to represent each subject’s 

empirical quantile function. While other choices of penalty could be used, here we use the 

Lasso (Tibshirani 1996), minimizing

Qi(p) − ∑
k ∈ DO

ξk(p)Qik
O

2

2 + λi ∑
k ∈ DO

Qik
O

1,
(3)

for a fixed positive constant λi, where the choice of each λi is determined by cross 

validation and Qik
O are basis coefficients for the elements of DO. The standardization of the 

basis functions ensures they are on a common scale which is important for the regularization 

method. By using the regularization methods, we obtain different sets of selected dictionary 

elements for each subject, denoted by Di = ξk ∈ DO:Qik
O ≠ 0 . Taking the union across 

subjects, we obtain a unified set of dictionary elements denoted by DU = ∪i = 1
n Di, which 

we construct to always include the Gaussian basis functions ξ1 and ξ2.

Yang et al. Page 8

J Am Stat Assoc. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finding near-lossless common basis: The above sparse selection is done for each 

subject i, however, we would like to use a common basis across all subjects to fit the 

quantile functional regression model. The unified set of dictionary elements DU is likely to 

be very redundant, with some of the dictionary elements selected for many subjects’ 

empirical quantile functions and many others selected for only a few subjects, and not all 

necessary. We would like to find a common basis set DC that is as sparse as possible while 

retaining virtually all of the information in the original empirical quantile functions. We call 

such a basis near-lossless, which we define more precisely below.

As a measure of losslessness, we use the leave-one-out concordance correlation coefficient 

(LOOCCC), ρ(i). This quantifies the ability of a basis set D(i)
U  that has been empirically 

constructed using all samples except the ith one to represent the observed quantile function

ρ(i)

=
Cov Qi( ⋅ ), ∑k ∈ D(i)

U ξk( ⋅ )Qik
U

Var Qi( ⋅ ) + Var ∑k ∈ D(i)
U ξk( ⋅ )Qik

U + E Qi( ⋅ ) − E ∑k ∈ D(i)
U ξk( ⋅ )Qik

U 2 , (4)

where Cov, Var and E are taken with respect to Π and Qik
U  are basis coefficients 

corresponding to the elements ξk contained in the set D(i)
U .

This measure ρ(i) ∈ [0, 1], with ρ(i) = 1 indicating the basis set D(i)
U  is sufficiently rich such 

that there is no loss of information about Qi(p) in its corresponding projection. One 

advantage of this measure over other choices such as mean squared error is that it is scale-

free, in the sense that it is invariant to the scale of the quantile functions Qi and the basis 

functions ξk. Aggregating across subjects, we can compute ρ0 = mini{ρ(i)} or 

ρ = mean i ρ(i)  to summarize the ability of the chosen basis to reconstruct the observed data 

set in its entirety, with ρ the average across all subjects and ρ0 the worst case. If ρ0 = 1, we 

say this basis is lossless, and if ρ0 > 1 – ϵ for some small ϵ then we say this basis is near-
lossless.

To find a sparse yet near-lossless basis set, we define a sequence of reduced basis sets 

D(i)c
U , C = 1, …, n − 1  that contain the Gaussian basis functions ξ1 and ξ2 plus all dictionary 

elements ξk(p) that are selected for at least C of the n − 1 empirical quantile functions, 

excluding the ith one, i.e. D(i)c
U = ξk, k: ∑i′ ≠ i = 1

n I Qi′k
O ≠ 0 ≥ C . We can construct plots of 

ρ0 or ρ vs. C to choose a value of C that leads to a sparse basis that can recapitulate the 

observed data at the desired level of accuracy (as shown below). Given this choice, we next 

compute the corresponding reduced basis set using all of the data 

Dc = ξk, k: ∑i = 1
n I Qik

O ≠ 0 ≥ C  containing K = KC basis coefficients. The left panel of 

Figure 3 contains this plot for our GBM data set. From this, we select C = 10 which leads to 

KC = 27 basis functions as this number of basis preserves a concordance of at least ρ0 = 

0.990 for each subject (ϵ = 0.01) and an average concordance of ρ = 0.998.
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Orthogonalization and Denoising: Next, we use Gram-Schmidt to orthogonalize the 

basis set DC to generate an orthogonalized basis set D⊥ = ψk
⊥(p), k = 1, …, K , where 

ψ1
⊥( ⋅ ), ψ2

⊥( ⋅ ) = ξ1( ⋅ ), ξ2( ⋅ ) , comprise the Gaussian basis and ψk
⊥( ⋅ ), k = 3, …, K  are 

orthogonalized basis functions computed from and spanning the same space as the 

remaining bases in DC, indexed in descending order of their total percent variability (total 

energy) explained for the given data set. Specifically, suppose that Qik
⊥ , k = 1, …, K and i = 

1, …, n are the empirical coefficients corresponding to the elements of D⊥, ordered as in 

DC. We compute the percent total energy for basis k as 

ℰk = ∑i = 1
n Qik

⊥ 2/∑i = 1
n ∑k = 1

k Qik
⊥ 2, and then relabel ψk, k = 3, …, K to be in descending 

order of ℰk.

In practice, we have observed that the first number of orthogonal basis functions are 

relatively smooth, but the later basis functions can be quite noisy, sometimes with high-

frequency oscillations. As we do not believe these oscillations capture meaningful features 

of the empirical quantile functions, we regularize the orthogonal basis functions using 

wavelet denoising to adaptively remove these oscillations. For a choice of mother wavelet 

function φj,l(p) = 2j/2φ(2jp − l) with integers j, l, we construct the wavelet shrunken and 

denoised basis function ψk
†(p) (Donoho, Johnstone, Kerkyacharian and Picard 1995), given 

by

ψk
†(p) = ∑

j = 0

J
∑
l = 1

Lj
dk, j, l

† φj, l(p), (5)

where L is a grid of size L = 210 = 1024 for our GBM data, 

dk, j, l = ∫ ψk
⊥(p)φj, l(p)dp = ψk

⊥, φj, l , dk, j, l
† = dk, j, l if  dk, j, l > σ 2logL and dk, j, l

† = 0 If 

dk, j, l ≤ σ 2logL. We use an empirical estimator for σ that is the median absolute deviation 

of the wavelet coefficients at the highest frequency level J. Details for denoising are 

described in Section 1.1 of the supplement.

After applying the denoising method to all of the orthogonal basis functions in the set D⊥ to 

get D† = ψk
†(p), k = 1, …, K , we re-standardize these basis functions by 

ψk(p) = ψk
†(p) − μk

† /σk
† for k = 3, …, K with μk

† = ∫0
1ψk

†(p)dp and σk
† = ∫0

1 ψk
†(p) − μk

† 2dp

such that ∫0
1ψk(p)dp = 0 and ∫0

1ψk(p)ψk(p)dp = 1 for k = 3, …, K.

We refer to the resulting basis set D = ψk(p), k = 1, …, K  as the quantlets, which we use as 

the basis functions in our quantile functional regression modeling. Figure 4 contains the first 

16 quantlet basis functions from the GBM data set.

Properties of quantlets: These quantlets have numerous properties that makes them 

useful for modeling in our quantile functional regression framework.
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• Empirically defined: The empirical quantile functions for different applications 

can have very different features and characteristics. Given their derivation from 

the observed data, the quantlets are customized to capture the features underlying 

the given data set, giving them advantages over pre-specified bases like splines, 

wavelets, or Fourier series.

• Near-losslessness: By construction, the set of quantlets are at least near-lossless 
in the sense that the basis is sufficiently rich to almost completely recapitulate 

the empirical quantile functions Qi(p). As a result, we can project the empirical 

quantiles into the space spanned by the quantlets with negligible error, and thus it 

is reasonable to consider modeling the quantlet coefficients for the empirical 

quantile functions as observed data.

• Regularity: The denoising step tends to remove any wiggles or high frequency 

noise from the orthogonal basis functions ψk
⊥(p), leading to visually pleasing yet 

adaptive basis functions that are relatively smooth and regular. We have found 

these tend to be more regular looking than other empirically determined basis 

functions like principal components (compare Figure 4 to Supplementary Fig 5).

• Sparsity: The procedure we have defined to construct the quantlets tends to also 

produce a basis set that is relatively low dimensional and thus a sparse 

representation. We have found these basis functions to have similar sparsity to 

principal component bases, measured by computing the average LOOCCC ρ for 

quantlets and analogously for principal components (i.e. computing the principal 

components leaving out the ith sample, and then estimating ρ(i) measuring the 

losslessness of the resulting basis set) – see Figure 3B and Figure 5C. Using a 

low dimensional basis enhances the computational speed of our procedure and 

reduces the uncertainty in the quantile functional regression coefficients βa(p), as 

can be seen in our sensitivity analyses (Supplementary Table 5).

• Interpretability: Unlike principal components, the quantlets have some level of 

interpretability in that the first two basis functions define the space of all 

Gaussian quantile functions (see Figure 4). For Gaussian data, only the first two 

basis functions will be needed, while comparing with dimensions k = 3, …, K 
provides a measure of the degree of non-Gaussianity in the distribution. The 

remaining quantlets for k ≥ 3 are not necessarily interpretable since they are 

empirically determined, but by our observation for many data sets the next two 

quantlets capture some sense of skewness and some sense of heavy-tailedness 

like kurtosis.

2.4 Quantlet-based Modeling in Quantile Functional Regression

Given the ith empirical quantile function Qi(pj) evaluated at pj = j/(mi + 1), j = 1, …, mi, 

constructed from the order statistics Yi(j), j = 1, …, mi, and a quantlet basis set 

D = ψk(p), k = 1, …, K  derived as described in Section 2.3, we write a quantlet basis 

expansion Qi pj = ∑k = 1
k Qik* ψk pj  with Qik*  being the kth empirical quantlet basis function 

for subject i. For this paper, we will assume that K < mini(mi), with the understanding that K 
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≪ mini(mi) for an extremely large number of applications, including our GBM data. 

Extensions of this framework to sparse data settings for which mi < K for some i are 

tractable and of interest, but given the length and complexity of this paper and the additional 

challenges raised by this sparse case, we will leave it to future work.

With Qi = Qi p1 , …, Qi pmi  a row vector containing the ith empirical quantile function and 

Ψi a K × mi matrix with element Ψi(k, j) = ψk(pj), we can compute the 1 × K vector of 

empirical quantlet coefficients Qi* = Qi1* , …, QiK*  by Qi* = QiΨi
−, where Ψi

− = Ψi
T ΨiΨi

T −1

is the generalized inverse of Ψi. Based on the near-lossless property of the quantlets by 

design, Qi* contains virtually all of the information in the raw data Qi, and thus we model 

these as our data. Concatenating Qi* across the n subjects, we are left with a n × K matrix 

Q*, and consider obtaining estimates and inference on the quantiles and parameters of 

model (1) on any desired grid of p of size J, by Q(P) = Q*Ψ and B(P) = B*Ψ with Ψ a K × 

J matrix with elements ψk(pj), where B* an A × K matrix of corresponding quantlet-space 

regression coefficients.

The Wasserstein distance between cumulative distribution functions (Bickel and Freedman 

1981) is defined as L(F, G) = infU,V ‖U – V‖m for F and G two distribution, where all pairs 

of random variables (U, V) are followed from F and G, respectively. Following Bellemare, 

Dabney and Munos (2017), the infimum is attained by the inverse transformation of a 

random variable P uniformly distributed on [0, 1]. i.e., L(F , G) = ∫0
1 F−1(p) − G−1(p) mdp. 

The quantile functional regression model of (1) is a framework for the Wasserstein distance 

with m = 2, minimizing the empirical risk ∑i = 1
n ∫0

1 Qi(p) − ∑a = 1
A xiaβa(p) 2dp. Based on the 

matrix notation, we rewrite the empirical risk for the Wasserstein loss function as

tr Q*Ψ − XB*Ψ Q*Ψ − XB*Ψ T , (6)

where X is an n ×A matrix with X(i, a) = xia. It follows from the corresponding normal 

equation XTQ*ΨΨT = XTXB*ΨΨT that the minimizers B* = XTX −1XTQ* is seen to be a 

point estimator in a quantile functional regression framework like ours. This partially 

motivates our approach of performing the regressions on the quantile scale.

We can also consider regressing on the covariates in the quantlet space model

Q* = XB* + E*, (7)

where E* an n×K matrix of quantlet space residuals. From (7), we can relate this quantlet-

space model back to the original quantile functional regression model (1) through the 

quantlet basis expansions βa(p) = ∑k = 1
K Bak* ψk(p) and Ei(p) = ∑k = 1

K Eik* ψk(p). The rows of 

E* are assumed to be independent and identically distributed mean-zero Gaussians, with 

Ei* N 0, Σ* , where Ai. or A.i denotes the ith row or column of the matrix A. Here, we 

assume Σ* = diagk σk
2 , which enables us to fit in parallel the models for each column, 
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Q . k* = XB . k* + E . k* , k = 1, …, K, and yet accommodate correlation across p since modeling 

in the quantlet space induces correlation in the original data space, with the covariance 

operator for Ei(p) given by Σ(p, p′) = cov{Ei(p), Ei(p′)} = Ψ(p)Σ*Ψ(p′), where Ψ(p) = 

(ψ1(p), …, ψK(p))T. The empirical nature of the derived quantlets makes this structure well-

equipped to capture the key correlations across p in the observed data, as shown for our real 

data set (See Supplementary Figure 9). If desired, one could model Σ* as an unconstrained 

K×K matrix, which would provide additional flexibility in the precise form of Σ but at a 

potentially much greater computational cost.

2.5 Bayesian Modeling Details

This model could be fit using vague conjugate priors for the regression coefficients, 

Bak* N 0, τ2  for some extremely large τ2. This could be called a quantlet-no sparse 

regularization approach. It would result in virtually no smoothing of βa(p) relative to the 

naive (one-p-at-a-time) quantile functional regression model, but it would still account for 

correlation across p in the residual errors, so may have inferential advantages over the naive 

approach. We can further improve performance by inducing regularity and smoothness in the 

quantile functional regression parameters βa(p), which we accomplish through regularization 

or shrinkage priors, as is customary for Bayesian functional regression models.

In order to fit model in the quantlet space model using a Bayesian approach, we also need to 

specify priors on the variance components {σk
2, k = 1, …, K}. We place a vague proper 

inverse gamma prior on each diagonal element σk
2 given by σk

2  inverse-gamma(ν0/2, ν0/2), 

where ν0 is some relatively small positive constants. Other relatively vague priors could also 

be used. If one wanted to allow Σ* to be unconstrained, an Inverse Wishart prior could be 

assumed for the K × K matrix. The likelihood function is given Q . k* N XB . k* , σk
2I  in the 

projected space for each k = 1, …, K.

We fit the quantlet space model in (7) using Markov chain Monte Carlo (MCMC). Let Q . k*

and B . k*  be the kth column vector of Q* and B*, respectively. For each quantlet basis k = 1, 

…, K, we sample the ath covariate effect from f Bak* |Q*, B( − a)k* , σk
2 , where B( − a)k*  is a 

vector of length A − 1 containing all covariate effects except the ath of B* in model (7) for 

the kth quantlet coefficient. We repeat this procedure for all covariates, a = 1, …, A and 

quantlet basis function k = 1, …, K. This distribution is a mixture of a point mass at zero and 

a normal distribution, with normal mixture proportion αak and the mean and variances of the 

normal distribution μak and vak given by

Bak* ≡ Baℎk, l* αaℎk, lN μaℎk, l, vaℎk, l + 1 − αaℎk, l I0

where αaℎk, l, μaℎk, l and vaℎk, l are given by

αaℎk, l = P γaℎk, l = 1 Qk, k* , B( − a)k* , σk
2 = Oaℎk, l/ Oaℎk, l + 1 ,
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μaℎk, l = Baℎk, l* 1 + Vaℎk, l/τaℎk, l
−1, vaℎk, l = Vaℎk, l 1 + Vaℎk, l/τaℎk, l

−1,

Oaℎk, l =
πaℎ

1 − πaℎ
1 + Vaℎk, l/τaℎk, l −1/2exp 1

2ζaℎk, j
2 Vaℎk, l/τaℎk, l

1 + Vaℎk, l/τaℎk, l
,

ζaℎk, l = βaℎk
* /Vaℎk, l

1/2 , Vaℎk, l = ∑
i = 1

n
xia2 /σk

2
−1

,

and Baℎk, l*  is frequentist estimator mentioned in Subsection 2.5. For each quantlet basis k = 

1, …, K, we sample σk
2 from its complete conditional

P σk
2 B . k* , Q . k* , X  Inverse  Gamma ν0 + n /2, ν0 + SSE Bk* /2 ,

where SSE B . k* = Q . k
* T I − X XTX −1XT Q . k* . (See Subsection 1.2 of the supplement for 

details of MCMC).

2.6 Posterior Inference

After obtaining posterior samples for all quantities in the quantlet space model (7), these 

posterior samples are transformed back to the data space using βa
(m)(p) = ∑k = 1

K Bak
* (m)ψk(p), 

m = 1, …, M where M is the number of MCMC samples after burn in and thinning. From 

these posterior samples, various Bayesian inferential quantities can be computed, including 

point wise and joint credible bands, global Bayesian p-values, and multiplicity-adjusted 

probability scores, as detailed below. These can be computed for βa(p) itself or any 

transformation, functional, or contrast involving these parameters.

Point and joint credible bands: Pointwise credible intervals for βa(p) can be 

constructed for each p by simply taking the α/2 and 1 – α/2 quantiles of the posterior 

samples. Use of these local bands for inference does not control for multiple testing, 

however. Joint credible bands have global properties, with the 100(1 – α)% joint credible 

bands for βa(p) satisfying P L(p) ≤ βa(p) ≤ U(p) ∀p ∈ P ≥ 1 − α. Using a strategy as 

described in (Ruppert, Wand and Carroll 2003), we can construct joint bands by

Ja, α(p) = βa(p) ± q(1 − α) St⋅Dev βa(p) , (8)

where βa(p) and St.Dev βa(p)  are the mean and standard deviation for each fixed p taken 

over all MCMC samples. Here the variable q(1−α) is the (1−α) quantile taken over all 

MCMC samples of the quantity
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Za(m) = max
p ∈ P

βa(m)(p) − βa(p)
St⋅Dev βa(p)

.

SimBaS and GBPV: Following Meyer et al. (2015) we can construct Ja,α(p) for multiple 

levels of α and determine for each p the minimum α such that 0 is excluded from the joint 

credible band, which we call Simultaneous Band Scores (SimBaS), Pa,SimBaS(p) = min {α : 

0 ∉ Jα(p)}, which can be directly estimated by

Pa, SimBaS(p) = M−1 ∑
m = 1

M
I

βa(p)
St⋅Dev βa(p)

≤ Za(m) .

These can be used as local probability scores that have global properties, effectively 

adjusting for multiple testing. For example, we can flag all {p : Pa,SimBaS(p) < α} as 

significant. From these we can compute Pa,Bayes =minp{Pa,SimBaS(p)}, which we call global 
Bayesian p-values (GBPV) such that we reject the global hypothesis that βa(p) ≡ 0 whenever 

Pa,Bayes < α.

Probability scores for distributional moments: As mentioned in Section 2.1, 

distributional moments can be constructed as straightforward functions of the quantile 

function, and thus from posterior samples of quantile functional regression parameters one 

can construct posterior samples of these moments for various levels of covariates X. 

Denoting β(m)(p) = β1
(m)(p), …, βA

(m)(p)
T

 for each MCMC sample m = 1, …, M, posterior 

samples of distributional moments conditional on X are given by

μX
(m) = ∫

0

1
XTβ(m)(p)dp

σX
2(m) = ∫

0

1
XTβ(m)(p) − μX

(m) 2dp,

ξX
(m) = ∫

0

1
XTβ(m)(p) − μX

(m) 3/σX
3(m)dp, and

φX
(m) = ∫

0

1
XTβ(m)(p) − μX

(m) 4/σX
4(m)dp .

(9)

The conditional expectations of other basic statistics are similarly derived. We can construct 

posterior probability scores to assess differences of moments between groups or specific 

levels of continuous covariates as follows. For each posterior sample, we compute the 

appropriate moment from the formulas in (9) for two covariate levels, X1 and X2, and 

compute the difference, e.g. for the mean Δm = μ1m – μ2m. Then, we define the posterior 

probability score for the comparison as:

Pμ1 − μ2 = 2min{M−1 ∑
m = 1

M
I Δm > 0 }, M−1 ∑

m = 1

M
I Δm < 0 }
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In assessing a dichotomous covariate xa, we compare xa = 0 and xa = 1 while holding all 

other covariates at the mean, while when assessing a continuous covariate we compute 

differences for two extreme values of xa, with the corresponding probability scores for the 

respective moments denoted Pa,μ, Pa,σ, Pa,ξ, or Pa,φ.

Summarizing Gaussianity: As mentioned above, the first two quantlets form a complete 

basis for the space of Gaussian quantile functions, so by comparing the first two coefficients 

to the remainder one can obtain a rough measure of “Gaussianity” of the predicted 

distribution for a given set of covariates X. One measure that can be computed is 

∑k = 1
2 Xβak

2/∑k = 1
K Xβak

2, which will be on [0, 1], with a value of 1 precisely when the 

predicted quantile function is completely determined by the first two (Gaussian) bases and 

smaller scores indicating greater degrees of non-Guassianity.

Predicted PDF and CDF: To some researchers, distribution functions or probability 

density functions are more intuitive than quantile functions, and given their one-to-one 

relationship, it is possible to construct CDF or PDFs from the posterior samples as follows. 

CDFs can be constructed by simply plotting p vs. E Q(p) |X, Y , and given posterior samples 

of the predicted quantile functions on an equally spaced grid 0 < p1, …, pJ < 1, one can 

estimate predicted pdf for a set of covariates as described in Section 1.3 of the supplement.

Following is our recommended sequence of Bayesian inferential procedures.

1. Compute the global Bayesian p-value Pa,Bayes for each predictor or contrast.

2. For any covariates for which Pa,Bayes < α, characterize the differences:

2a. Flag which probability grid points p are different using PSimBas(p) < α.

2b. Compute moments; assess which moments differ according to the 

covariates.

2c. Assess whether the degree of Gaussianity appears to differ across 

covariates.

3. If desired, compute the predicted densities or CDFs for any set of covariates.

3. SIMULATION STUDY

We conducted a simulation study to evaluate the performance of the quantile functional 

modeling framework and the use of quantlet basis functions. We generated random samples 

for four groups of subjects whose mean quantile function was assumed to be from a skew 

normal distribution

f(x) = 2
ωϕ x − η

ω Φ α x − η
ω (10)

with the respective values of (η, ω, α) being (1, 5, 0), (3, 5, 0), (1, 6.5, 0), and (9.11, 7.89, 

−4), which correspond to a N(1, 5), N(3, 5), N(1, 6.5), and a skewed normal with mean 1, 

variance 5, and skewness −0.78 denoted by SN(1, 5, −0.78). Panels A and E of Figure 5 
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below show the densities and quantile functions, respectively, corresponding to these 

distributions.

For each group j = 1, …, 4, we generated the random process Qij(p) for i = 1, …n subjects, 

taking 1024 samples from the corresponding skewed normal distribution, with 

p ∈ P = [1/1025, …, 1024/1025], and some correlated noise ϵij(p) added to allow some 

random biological variability in the individual subjects’ distributions. That is, Yij(p) = βj(p)

+ϵij(p), where ϵij(p) follows an Ornstein-Uhlenbeck process such that Cov(ϵij(p), ϵij(p′)) = 

0.9|p−p′|.

After constructing the empirical quantile function Qij(p) by reordering Yij(p) in p, the 

quantile functional regression model we fit to these data was

Qij(p) = ∑
a = 1

4
Xijaβa(p) + ϵij(p), (11)

with covariates defined such that Xij1 = 1 is for the intercept and Xija = δj=a for a = 2, 3, 4 

group indicators for groups 2–4. Note that with this parameterization, the means of the four 

groups are, respectively, β1(p), β1(p) + β2(p), β1(p) + β3(p), and β1(p) + β4(p), and by 

construction β2(p) represents a location offset, β3(p) a scale offset, and β4(p) a skewness 

offset. Panel E of Figure 5 displays the true mean quantiles for each group and panel F the 

true values for these quantile functional regression coefficients.

We constructed a quantlet basis set for this data set as described above, with some results 

summarized in panels B, C, and D of Figure 5. The union set DU = ∪i = 1
n Di included 2, 

868 basis functions, and we chose a common set, DC, that retained 10 basis functions, 

which resulted in a near-lossless basis set with ρ0 = 0.997 (see KC = 10 in panel B). After 

orthogonalization, denoising, and re-standardization, the set of quantlets had sparsity 

properties similar to principal components (see panel C), and the fitted quantlet projection 

almost perfectly coincided with the observed data for all of the empirical quantile functions 

(panel D). Supplemental Figure 4 contains a plot of these 10 quantlet basis functions.

We applied several different approaches to these data: (A) naive quantile regression method 

(separate classical quantile regressions for each p by using rq function in quantreg R 

package (Koenker 2005)), (B) naive quantile functional regression approach (separate 

functional regressions for each subject-specific quantile p), (C) principal components 

method (quantile functional regression using PCs as basis functions), (D) quantlet without 

sparse regularization, (E) quantlet with sparse regularization, and (F) Gaussian model 

(quantlet approach but keeping only the first two coefficients). The naive quantile regression 

method (A) ignores all intrasubject correlation in the data and estimates the population 
quantile conditional on covariates, not the subject-specific quantile conditional on covariates 

desired in this quantile functional regression setting, but it is included here since it is an 

approach some researchers might try in this setting. In each case, the MCMC was run for 2, 

000 iterations, keeping every one after a burn-in of 200. The results are shown in 

Supplementary Figure 8. We compared the methods in terms of the area within the joint 

Yang et al. Page 17

J Am Stat Assoc. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



credible region and the corresponding integrated coverage rate, defined respectively as 

A(a) = ∫0
1|Ja, α

upper(p) − Ja, α
lower(p) 2dp and C(a) = ∫0

1I Jlower(p) ≤ βa(p) ≤ Ja, α
upper(p) dp, where 

Ja, α
upper(p) and Ja, α

lower(p) are the upper and lower joint credible bands, respectively.

To investigate the degree of monotonicity afforded by the model, we constructed predicted 

quantile functions for a broad range of covariate values, and computed the degree of ϵ-

monotonicity, defined to be Pϵ
ℳ(X) = ∫0

1I Q(p |X) − maxp′ < p Q(p |X) > ϵ dp for some ϵ 

considered negligibly small in the context of the scale of Y in the current data set. We report 

the empirical rates of the ϵ-monotonicity as 1 − n−1∑i = 1
n Pϵ

ℳ Xi . This empirical summary 

measure can be used to assess if a given model produces predictors with significant non-

monotonicities across p or not.

Table 2 reports A(a) and C(a) for all quantile functional coefficients. Methods A-E all had 

good coverage properties, but use of the basis functions in modeling (C, D, E) clearly led to 

tighter joint credible bands than the naive quantile regression and naive quantile function 

regression methods that did not borrow strength across p, as expected, and the use of sparse 

regularization (E) led to tighter bands than the quantlet method with no shrinkage (D). 

Supplementary Figure 8 demonstrates the wiggliness and extremely wide joint credible 

bands of the naive methods. Note also that for the coefficient with significant skewness 

β4(p), the Gaussian model (F) had extremely poor coverage, while for the coefficients 

corresponding to the Gaussian groups, the quantlet model (E) had performance no worse 

than the Gaussian method. This is encouraging, suggesting that when the quantile functions 

are Gaussian there is not much loss of efficiency from using a richer quantlet basis set.

Supplementary Figure 10 depicts the simultaneous band scores PSimBaS(p) for the two 

contrast functions associated with the scale effect β3(p) and skewness effect β4(p), with 

regions of p for which PSimBaS(p) < 0.05 are flagged as significantly different. As seen in 

Supplementary Figure 10, we expect to flag the tails in the scale effect and a broad region in 

the middle and in the extreme tails for the skewness effect. Note how the quantlet method 

with sparse regularization (E) flagged a larger set of regions than the other approaches, 

especially (B). In all cases, the global adjusted Bayesian p-values PBayes = min {Pmap(p)} 

were less than 0.0005; hence, the null hypothesis βa(p) ≡ 0 was rejected in all models.

We computed posterior probability scores to compare the mean, standard deviation, and 

skewness for each pair of distributions (Table 3), and Supplemental Table 2 contains the 

posterior means and credible intervals for each summary. We see that the basis function 

methods (C-E) all flagged the correct differences, while the naive quantile functional 

regression approach (B) had major type I error problems in the moment tests and the 

Gaussian method (F) unsurprisingly was unable to detect differences in skewness. As an 

additional comparison, we also applied the so-called feature extraction approach (G), which 

involved first computing the moments from the set of values for each subject and then 

performing statistical test comparing these across the groups. Encouragingly, we found these 

results were near identical to those found using our quantile functional regression with 

quantlets(E), suggesting that our unified functional modeling approach does not lose power 
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relative to feature extraction approaches when the distributional differences are indeed 

contained in the moments.

Constructing predicted quantile functions for a wide range of predictors and assessing ϵ-

monotonicity, we found that the all predicted quantile functions from the quantlet-based 

methods were monotone, while the naive quantile functional regression method had ϵ-

monotonicity of 25.8% and 96.8% for ϵ = 0.001 and 0.01, respectively, demonstrating that 

quantlet basis functions encouraged the predicted quantile functions to be monotone in p.

4. QUANTILE FUNCTIONAL REGRESSION ANALYSIS OF GBM DATA

In our GBM case study, radiologic images consisting of pre-surgical T1-weighted post 

contrast MRI sequences from 64 patients were obtained from the Cancer Imaging Archive 

(cancerimagingarchive.net), along with measurements of certain covariates, including sex 

(21 females, 43 males), age (mean 56.5 years), DDIT3 gene mutation (6 yes, 58 no), EGFR 

gene mutation (24 yes, 40 no), GBM subtype (30 mesenchymal, 34 other), and survival 

status (25 less than 12 months, 39 greater than or equal to 12 months), where Tutt (2011) has 

pointed out that most people diagnosed with GBM survive only 12 to 15 months, so that we 

followed this and used 12 moments as the cutoff in our context. This cut-off is commonly 

referred to as an extreme discordant phenotype design (Nebert 2000) and is a well-

established grouping to enhance signals relevant to survival (Tyekucheva, Marchionni, 

Karchin and Parmigiani 2011).

Following Saha, Banerjee, Kurtek, Narang, Lee, Rao, Martinez, Bharath, Rao and 

Baladandayuthapani (2016), registration and inhomogeneity correction were conducted 

using Medical Image Processing and Visualization (MIPAV) software. Inhomogeneity 

correction known as nonparametric, nonuniform intensity normalization (N3) correction was 

conducted to remove the shading artifacts in MRI scans. Then, tumors were segmented in 3-

D by clinical experts using the Medical Image Interaction Toolkit. Images and their 3-D 

tumor masks were subsequently re-sliced for isotropic pixel resolution using the NIFTI 

toolbox in MATLAB. From these re-sliced images, the slice with largest tumor area in the 

T1-post contrast image was selected as the Regions of Interest (ROI) for analysis. We 

extracted the set of mi pixel intensities within the ROI for each patient i = 1, …, n = 64, 

where the number of pixels within the tumor ranged from 371 to 3421.

Model:.

We sorted the pixel intensities for each patient, yielding an empirical quantile function 

Qi(pij) on a grid of observational points pij = j/(mi + 1), j = 1, …, mi. We related these to the 

clinical, demographic, and genetic covariates using the following quantile functional 

regression model:

Qi(p) = βoverall (p) + xsex, iβsex (p) + xage, iβage(p) + xDDIT3, iβDDIT3(p)
+ xEGFR, iβEGFR(p) + xMesenchymal, iβMesenchymal(p) + xsurvival , iβsurvival 12(p)
+ Ei(p) .

(12)
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We constructed quantlets for these data using the procedure described in Section 2.3. After 

the first step, we were left with a union basis set DU containing 546 basis functions. The 

first panel of Figure 3 plots the near-losslessness parameters ρ0 and ρ against the number of 

basis coefficients KC in the reduced set. Based on this, we selected the combined basis set 

DC for C = 10, which contained KC = 27 basis functions and was near-lossless, with ρ0 = 

0.990 and ρ = 0.998. We then orthogonalized, denoised, and re-standardized the resulting 

basis to yield the set of quantlets, the first 16 of which are plotted in Figure 4. As shown in 

panel 2 of Figure 3, these quantlets yielded a basis with similar sparsity property as principal 

components computed from the empirical quantile functions.

After computing the quantlet coefficients for each subject’s empirical quantile function, we 

fit the quantlet-space version of model (12) as described above, obtaining 2, 000 posterior 

samples after a burn-in of 200, after which the results were projected back to the original 

quantile space to yield posterior samples of the functional regression parameters in 

model(12). MCMC convergence diagnostics were computed, and suggested that the chain 

mixed well (Supplementary Figure 17). From these, we constructed 95% point wise and 

joint credible bands for each βa(p) and computed the corresponding simultaneous band 

scores Pa,SimBaS(p) and global Bayesian p-values Pa,Bayes as described in Section 2.6.

Results:.

Figure 6 summarizes the estimation and inference for each of the covariates in the model. 

For each covariate there is one panel presenting the functional predictor βa(p) along with the 

point wise (grey) and joint (black) credible bands, and an indicator of which p are flagged 

such that βa(p) ≠ 0 (orange lines indicating Pa,SimBaS(p) < 0.05). The other panel contains 

density estimates for each covariate level (holding all others at the mean), computed as 

outlined in the supplementary materials, along with posterior probability scores 

summarizing whether the mean, variance or skewness appeared to di er across these groups. 

Supplementary Table 3 contains measures of the relative Gaussianness of the distributions 

for the various groups along with 95% credible intervals.

The global Bayesian p-values for testing βa(p) ≡ 0 for each covariate are in the 

corresponding figure panel headers, and reveal that for sex (p=0.016) and DDIT3 (p=0.012), 

the functional covariates are flagged as significant, and for the mesenchymal subtype 

(p=0.087) and survival (p=0.067) endpoints, there was some indication of a possible trend. 

We see that for sex, there was evidence of a mean shift (p=0.004) with females tending to 

have higher pixel intensities than males, especially in the upper tails of the distribution, and 

the female distribution appearing to be slightly more Gaussian than the males. For DDIT3, 

we see evidence of a mean and variance shift, with tumors with DDIT3 mutation tending to 

have higher intensities and greater variability than those without, especially in the upper tail 

of the distribution. The mesenchymal subtype, while not flagged as statistically significant in 

the global test, shows some tendency for a mean shift with the mesenchymal subtype 

tending to have higher distributional values and perhaps slightly more non-Gaussian 

characteristics. Follow-up studies can assess the significance of this upward shift in 

distribution of pixel intensities for female patients and DDIT3 mutated tumors.
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One cause of higher pixel intensities in MRI images of tumors is greater accumulation of 

fluid in body tissues, called edema, which can be an indicator of poor prognosis (Zinn, 

Majadan, Sathyan, Singh, Majumder, Jolesz and Colen 2011). Thus, it may be true that 

female patients and patients with DDIT3 mutations have tumors with greater edema, which 

is plausible given results in the literature showing DDIT3 mutation is associated with shorter 

survival time (Saha et al. 2016). Follow-up studies can assess the significance of this upward 

shift in distribution of pixel intensities (or the extent of tumor vascularisation) for female 

patients and DDIT3 mutated tumors. Since the gender has the specific effect on GBM 

(Colen, Wang, Singh, Gutman and Zinn 2014) and DDIT3 also plays a key role in resistance 

to therapy, due to its hypoxia-related activity (Ragel, Couldwell, Gillespie and Jensen 2007), 

and in GBM tumorogenesis (Ping, Deng, Wang, Zhang, Zhang, Xu, Zhao, Fan, Yu, Xiao et 

al. 2015), where DDIT3 is a p53 driven gene (Tivnan 2016) suggesting that this radiographic 

observation might be associated with p53 associated cell death (showing as lower T2, 

FLAIR or T1c signal), our findings have a strong connection with the results in the existing 

literature. In addition, we notice that the longer survival time tends to be shifted to the right, 

representing higher intensity and higher vascularisation. As pointed out by Gilbert (2016), 

one of the only effective therapeutic strategies for GBM is antiangiogeneic therapies, and it 

would make sense that patients with greater baseline vasculature would be more likely to 

respond to therapy, and thus experience improved survival times.

Sensitivity Analysis and Comparison:

Our results are presented for K = 27 basis functions, but to assess sensitivity to choice of K 

we also ran our model for a wide range of possible values of K, with Supplementary Table 5 

showing global Bayesian p-values for the entire range of potential values for K (from 546 to 

2), along with run time. The run time tracks linearly with K. Note that we get the same 

substantive results over the range of basis sizes, so results are quite robust to choice of 

number of quantlets. However, keeping more quantlets than necessary clearly adds to the 

uncertainty of parameter estimates, as indicated by the larger joint band widths. Also, 

keeping too few basis functions can lead to some missed results and also wider joint band 

widths. Moderate basis sets that are as parsimonious as possible while retaining the near-

lossless property seem to give the tightest credible bands and thus the greatest power for 

global and local tests. We also performed a sensitivity analysis on the parameter ν0 (inverse 

gamma prior) indicating the prior strength for the variance components and found that 

results for slightly larger or smaller values yielded nearly identical results. We lastly 

conducted a sensitivity analysis for lasso to see how selection of more or fewer dictionary 

elements via larger or smaller lasso parameters effects the ultimate number of quantlets. 

Choice of greater or fewer dictionary elements via larger or smaller lasso parameters still 

resulted in sparse sets of quantlet basis functions using the near-lossless criterion as can be 

seen in Figures 23 in Supplementary material. Also, from Figures 11, 21 and 22 in 

Supplementary material, we see that there are not dramatic changes on the final results.

To compare different methods with our quantlet with sparse regularization approach, we also 

applied to these data a quantlet approach with no sparse regularization and a naive quantile 

functional regression method modeling independently for each p (after interpolating onto a 

common grid). Posterior mean estimates, credible intervals, and other inferential summaries 
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are given in Supplementary Figure 11 and Table 6. Note that the quantlets method with 

sparse regularization tends to yield estimates that are smoother and with tighter joint 

credible bands than either the naive or the quantlets-no sparse regularization runs. As we can 

see in Figure 7 the differences between the quantlet and naive methods are substantial, and 

demonstrate the significant power gained by borrowing strength across p using the quantlet-

based modeling approach. The completely naive quantile functional regression approach 

gave nonsensical results for this application (Supplementary Figure 19).

Supplementary Figure 18 contains the predicted quantiles functions over a grid of covariate 

combinations for this model. Although the quantile functional regression using quantlets 

does not explicitly impose monotonocity in the predicted quantile functions, we see that the 

predicted quantile functions are all monotone non-decreasing. See Section 4 of the 

supplement for further details and discussion of monotonicity issues.

Table 4 contains posterior probability scores assessing differences in moments for these 

three methods, plus a feature extraction approach in which moments were first calculated 

from each subject’s samples and then statistically compared with a Bayesian regression fit. 

As in the simulations, we see that the naive quantile functional regression method appears to 

have type I error problems in the mean and variance. While our method (E) does not yield 

additional power when the distributional differences are captured by the moments (G), our 

approach does not give much power away in these settings and yet can detect distributional 

differences that are not contained in the moments, e.g. differences in specific extreme 

quantiles. Specifically, by the estimation and inference of our method, we can thoroughly 

understand the pixel intensity distribution for each of the covariates. For instance, for the 

male, (E) provide the insight that males have lower pixel intensities than females because the 

male effect, B(p) along with the point wise and joint credible band has a decreasing 

tendency from the first panel of Figure 6.

5. DISCUSSION

In this paper, motivated by a clinical imaging application in cancer, we have introduced a 

strategy for regressing the distribution of repeated samples for a subject on a set of 

covariates through a model we call quantile functional regression. We distinguish this model 

from other types of quantile regression and functional regression methods in existing 

literature, in that it is regressing the subject-specific quantile, not the population-level 
quantile, on covariates, and accounts for intrasubject correlation. We describe how it serves 

as a middle ground between two commonly-used strategies of (1) performing a series of 

regressions on arbitrary summaries of the distribution such as mean or standard deviation 

and (2) independent regression models for each quantile p in a chosen set. Our approach 

models a subject’s entire quantile function as a functional response, building in dependency 

across p in the mean and covariance using custom basis functions called quantlets that are 

empirically defined, near-lossless, regularized, sparse, and with some of the individual bases 

being interpretable. These basis functions have sparsity properties similar to principal 

components, but appear more regular and interpretable. They provide a flexible 

representation of the underlying quantile functions while containing a sufficient Gaussian 

basis as a subspace. The quantlets basis function that is successfully utilized to capture 

Yang et al. Page 22

J Am Stat Assoc. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distinct characteristics of the quantile function, consisting of the subspace spanned by the 

normal quantile and the subspace spanned by the mixture beta distributions. These quantlets 

are constructed based on a dictionary of Beta CDF, which can be shown to be sufficient for 

representing any quantile function with a first derivative that is uniformly continuous, and 

has numerous useful statistical properties including near-lossless representation, sparsity, 

regularity, and some interpretability.

We fit the quantile functional regression model using a Bayesian approach with sparse 

regularization priors on the quantlet space regression coefficients that smooths the regression 

coefficients and yields a broad array of Bayesian inferential summaries computable from the 

posterior samples of the MCMC procedure. For example, we can construct global tests of 

significance for each covariate using global Bayesian p-values, and then characterize these 

differences by flagging regions of p while adjusting for multiple testing, and obtaining 

probability scores for any moments or other summaries of the distributions.

In this paper, we have presented the quantile functional regression framework using a 

standard linear model with scalar covariates and independent Gaussian residual error 

functions, but as in other functional regression contexts the model can be extended to 

include other complex structures that extend the usability of the modeling framework. This 

includes functional covariates, nonparametric effects in the covariates xia, random effects 

and/or spatially/temporally correlated residual errors to accommodate correlation between 

subjects induced by the experimental design, and the ability to perform robust quantile 

functional regression to downweight outlying samples using heavier-tailed likelihoods. 

These types of flexible modeling components are available as part of the Bayesian functional 

mixed model (BayesFMM) framework that has been developed in recent years (Morris and 

Carroll 2006; Zhu, Brown and Morris 2011; Zhu, Brown and Morris 2012; Meyer et al. 

2015; Zhang, Baladandayuthapani, Zhu, Baggerly, Majewski, Czerniak and Morris 2016; 

Zhu, Versace, Cinciripini and Morris 2018; Lee, Miranda, Baladandayuthapani, Rausch, 

Fazio, Downs and Morris 2018). By linking the software developed here to generate the 

quantlets and fit quantile functional regression models with the BayesFMM software, it will 

be possible to extend the quantile functional regression framework to these settings and thus 

analyze an even broader array of complex data sets generated by modern research tools.

Our approach has been designed with relatively high dimensional data in mind, i.e. data for 

which there are at least a moderately large number of observations per subject (at least 50 or 

100). We are currently working on extensions of this method to handle lower dimensional 

data with fewer observations per subject, which requires a careful propagation of uncertainty 

in the estimators of the empirical quantile functions into the quantile functional regression. 

This propagation of uncertainty could also be done in larger sample cases like the one 

presented here, but given the substantial complexity and length already in this paper we 

leave this for future work. As mentioned in Section 5, we are currently working on 

extensions of this method to handle the empirical quantile estimator established by fewer/

massive observations because of the different tumor size and the imperfection of the image 

segmentation per subject and leave this for future work in this paper
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Also, in settings with enormous numbers of observations per subjects, e.g. millions to 

billions or more, the procedure described in this paper to construct the quantlets basis would 

be too computationally burdensome. Given that in those settings, it is unlikely that so many 

observations are needed to quantify the subject-specific quantile function, we have worked 

out algorithms to down-sample the empirical quantile functions in these cases in a way that 

engenders computational feasibility but is still near-lossless. This also will be reported in 

future work. Other data have measurements on many 1000s to 100,000s of subjects, which 

can be accommodated by computational adjustments of the procedure reported herein, but 

again we leave this for future work. In this paper, we focused on absolutely continuous 

random variables that have no jumps in the quantile functions. It is also possible to adapt our 

quantlet construction procedure to allow jumps at a discrete set of values, thus 

accommodating discrete valued random variables, but again this extension will be left for 

future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Characterizing tumor heterogeneity from distributional summaries of MRI pixel intensities: 

the two graphs include kernel density estimates and the raw empirical quantile functions as 

representations of tumor heterogeneity (pixel intensities within the tumor); black line: 

female patient without DDIT3 mutation; red line: male patient without DDIT3 mutation; 

blue line: female patient with DDIT3 mutation; and green line: male patient with DDIT3 

mutation. The images in other columns represent the T1-post contrast MRIs of the brains, 

with tumor boundaries indicated by black lines.
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Figure 2: 
Graphical illustration of the entire procedure for constructing the quantlets.
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Figure 3: 
Construction of Quantlet Bases. The concordance correlation for the GBM application: (A) 

minimum concordance (ρ0, red) and average (ρ, blue) across samples as function of KC, (B) 

ρ0 and ρ for quantlets basis and principal components, varying with the number of basis 

coefficients.
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Figure 4: 
First 16 quantlet basis functions for GBM data set.
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Figure 5: 
Simulated data in the skewed normal scenario and their quantlet representations:(A) density 

functions of the population, (B) the near-lossless criterion varying with the different number 

of basis functions, (C) the concordance correlation varying with the cumulative number of 

the quantlets, and compared with principal components (D) the relation between empirical 

quantile functions and quantlet fits, (E) mean quantile functions by group and (F) quantile 

functional regression coefficients.
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Figure 6: 
Posterior inference for functional coefficients for T1-post contrast image: for each covariate 

(6), the left panel includes posterior mean estimate, point and joint credible bands, GBPV in 

heading along with SimBas less then .05 (orange line), and the right panel includes predicted 

densities for the two levels of the covariate along with the posterior probability scores for the 

moment different testings.
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Figure 7: 
Comparison between quantlet and naive approaches for DDIT3 status for (A) quantlet 

approach with sparse regularization and (B) the naive one-p-at-a-time quantile functional 

regression approach.
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Table 1:

Types of regression based on response type and objective function.

Response (·)

Objective function Objective function

E((·)|X) F( ⋅ )
−1(p |X)

scalar Y classic regression quantile regression

function Y(t) functional regression functional quantile regression

quantile function Q(p) quantile functional regression* quantile functional quantile regression
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Table 2:

Results for Simulation 1: Area and coverage for the joint 95% confidence intervals: (A) naive quantile 

regression approach, (B) naive quantile functional regression approach, (C) principal component method, (D) 

quantlet space without sparse regularization,(E) quantlet space with sparse regularization, and (F) Gaussian 

quantlet space approach.

Type A B C D E F

β1(p) 2.693 (1.000) 1.533 (1.000) 1.010 (0.999) 1.088 (0.999) 0.941 (1.000) 0.961 (1.000)

β2(p) 3.998 (1.000) 2.160 (1.000) 1.454 (1.000) 1.533 (1.000) 1.360 (1.000) 1.392 (1.000)

β3(p) 3.903 (1.000) 2.169 (1.000) 1.467 (1.000) 1.574 (1.000) 1.350 (1.000) 1.419 (1.000)

β4(p) 3.751 (1.000) 2.186 (1.000) 1.441 (1.000) 1.515 (1.000) 1.359 (1.000) 1.369 (0.373)
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Table 3:

Simulation 1: Testing for conditional moment statistics in simulation: (A) naive quantile regression approach, 

(B) naive quantile functional regression approach, (C) principal component method, (D) quantlet space 

without sparse regularization, (E) quantlet space with sparse regularization, (F) Gaussian quantlet space 

approach, and (G) feature extraction approach, where the values in this table are the posterior probability 

scores derived by its corresponding method for each test (the first column).

H0 True A B C D E F G

μ1 = μ3 μ1 = μ3 0.000 0.000 0.193 0.214 0.191 0.214 0.205

μ2 = μ4 μ2 = μ4 0.000 0.000 0.449 0.462 0.438 0.462 0.438

σ1 = σ3 σ1 ≠ σ3 0.000 0.000 0.000 0.000 0.000 0.000 0.000

σ2 = σ4 σ2 = σ4 0.000 0.002 0.420 0.413 0.411 0.159 0.187

ξ1 = ξ3 ξ1 = ξ3 0.013 0.374 0.499 0.484 0.494 0.493 0.389

ξ2 = ξ4 ξ2 ≠ ξ4 0.000 0.000 0.000 0.000 0.000 0.505 0.000

J Am Stat Assoc. Author manuscript; available in PMC 2021 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yang et al. Page 37

Table 4:

Posterior probability score of difference tests for the GBM data set: (B) naive quantile functional regression 

approach, (E) quantlet space with sparse regularization, and(G) feature extraction approach, where the values 

in this table are the posterior probability scores derived by its corresponding method for each different test 

between treatment and reference groups in the top row.

Test μT = μR σT = σR ξT = ξR

Method B E G B E G B E G

Sex 0.000 0.004 0.028 0.000 0.120 0.064 0.346 0.510 0.547

Age 0.000 0.132 0.308 0.000 0.029 0.026 0.176 0.459 0.003

DDIT3 0.000 0.008 0.027 0.000 0.023 0.036 0.344 0.468 0.418

EGFR 0.000 0.213 0.453 0.000 0.272 0.403 0.368 0.493 0.467

Mesenchymal 0.000 0.022 0.040 0.000 0.234 0.433 0.071 0.425 0.191

Survival12 0.000 0.071 0.160 0.000 0.096 0.034 0.312 0.447 0.969
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