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Abstract

We develop a mixed formulation for incompressible hyper-elastodynamics based on a continuum 

modeling framework recently developed in [41] and smooth generalizations of the Taylor-Hood 

element based on non-uniform rational B-splines (NURBS). This continuum formulation draws a 

link between computational fluid dynamics and computational solid dynamics. This link inspires 

an energy stability estimate for the spatial discretization, which favorably distinguishes the 

formulation from the conventional mixed formulations for finite elasticity. The inf-sup condition is 

utilized to provide a bound for the pressure field. The generalized-α method is applied for 

temporal discretization, and a nested block preconditioner is invoked for the solution procedure 

[42]. The inf-sup stability for different pairs of NURBS elements is elucidated through numerical 

assessment. The convergence rate of the proposed formulation with various combinations of mixed 

elements is examined by the manufactured solution method. The numerical scheme is also 

examined under compressive and tensile loads for isotropic and anisotropic hyperelastic materials. 

Finally, a suite of dynamic problems is numerically studied to corroborate the stability and 

conservation properties.
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1 Introduction

1.1 Motivation and literature survey

Over the past few decades, significant progress has been achieved in the finite element 

modeling of solid mechanics problems. A central topic is to devise a numerical scheme that 

works well in the incompressible limit. Under the small-strain assumption, this issue is well-

understood, and it boils down to interpolating the displacement and pressure with elements 
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that satisfy the Ladyzhenskaya-Babuška-Brezzi (LBB) or the inf-sup condition [4]. Under 

large strains, most materials exhibit volume-preserving behavior, which makes it imperative 

to appropriately handle the incompressibility constraint. In fact, the nonlinear nature of large 

strain analysis, together with the kinematic constraint, makes the numerical analysis of 

incompressible materials quite challenging. Classical treatments of this class of problems 

include the F-projection method [10, 12, 28], the enhanced assumed strain method (EAS) 

[53, 51], and the mixed u/p formulation [55].

The F-projection and EAS methods share some similarities. Both methods are developed 

based on the multiplicative split of the deformation gradient; the geometrically linear 

versions of the two methods are linked with the mixed finite element method [4, 23]. 

Nevertheless, there are drawbacks of both. For the F-projection method, its assembly routine 

requires a nonlocal matrix inversion if the projection is onto a continuous finite element 

space. For example, when using the higher-order NURBS within the F-projection method, 

one needs to invert a “mass” matrix defined over a patch of elements to obtain the projection 

in each call of the element assembly routine [12, Appendix C]. In our opinion, this makes its 

implementation quite complex and unappealing. It has long been known that the EAS 

method suffers from mesh instability or the hourglass mode [56] and hence necessitate 

further refinements to numerical technologies for the hourglass control. The penalty nature 

of the pure displacement formulation inevitably induces an ill-conditioned stiffness matrix, 

which imposes a severe constraint on the choice of linear solvers.

The mixed u/p formulation introduces a pressure-like variable as the Lagrange multiplier for 

the incompressibility constraint in the strain energy [55]. The resulting scheme necessitates 

interpolating the displacement and pressure fields independently. Performing a linearization 

of this formulation provides a justification for the use of inf-sup stable elements [3]. Yet, for 

nonlinear problems, linearized stability is often insufficient to guarantee nonlinear stability 

[20]. It remains unclear whether there is any a priori nonlinear stability estimate for the 

mixed u/p formulation.

In the meantime, the stabilized finite element method, as a technique initially developed for 

computational fluid dynamics, has been extended to solid mechanics based on various 

variational formulations [1, 6, 34, 41, 45, 49, 58]. Using the stabilized formulation allows 

one to interpolate physical quantities with equal-order interpolations. This feature gives 

practitioners maximum flexibility in mesh generation and numerical implementation, and 

allows for low-order elements which are more robust than their higher-order counterparts. 

Equal-order interpolations always give an optimal constraint ratio [24, Chapter 4], which 

may be regarded as another appealing feature for incompressible elasticity. The stabilization 

term can be interpreted as a subgrid scale model within the variational multiscale framework 

[25, 27, 41, 45]. The design of the subgrid scale model involves tunable parameters and 

relies on numerical experiences. Oftentimes, the choice of the subgrid scale model has a 

crucial impact on the solution quality. Readers are referred to [58] for a discussion on the 

design of the subgrid scale model for inelastic calculations. This issue partly motivates this 

work, in which we aim to design a stable numerical formulation for incompressible 

hyperelasticity that does not rely on subgrid scale numerical models with tunable 

parameters.
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1.2 Overview of the proposed method

It is well-known that a finite element scheme is based on the formulation (i.e., the variational 

principle) and the discrete function spaces (i.e., the elements). Both components need to be 

properly accounted for in the design of numerical schemes. In this work, we introduce a 

mixed variational formulation different from the existing mixed u/p formulation [55]. In the 

classical formulation, the momentum balance equations are coupled with an algebraic 

equation of state, which relates the pressure with J, the determinant of the deformation 

gradient [21, Chapter 8]. In the incompressible limit, this relation reduces to J = 1. In the 

new mixed formulation, the momentum equations are coupled with the differential mass 

equation written in terms of the pressure primitive variable set. The volumetric behavior is 

reflected through the so-called isothermal compressibility factor [41]. In the incompressible 

limit, this term approaches zero, and the mass equation degenerates to the divergence-free 

constraint for the velocity field. Although J = 1 is equivalent to the divergence-free 

constraint for the velocity field at the continuum level, they lead to different schemes at the 

discrete level. Based on the new mixed formulation, an a priori energy stability estimate can 

be obtained, and the inf-sup condition leads to a bound for the pressure solution. We regard 

these estimates as critical numerical properties embedded in the formulation that guarantee 

reliable results.

It should be pointed out that there are some existing formulations [19, 30, 43] that bear some 

similarity to ours, the key difference being that the Cauchy stress was expressed in a rate 

form in prior formulations. It is known that the rate constitutive equations are not built from 

free energies and cannot account for reversible elastic behavior [52]. Therefore, prior 

formulations cannot have an a priori energy stability estimate. Additionally, the rate 

constitutive equation requires special numerical considerations [29]. We aim to address these 

issues through the proposed formulation.

The choice of elements plays an equally critical role in numerical design for large-strain 

elasticity problems. Here, we attempt to provide a numerical technique that can be 

conveniently and robustly extended to the higher-order regime. The NURBS elements have 

been shown to enjoy superior robustness for large strain analysis [9, 37]. We adopt the same 

set of NURBS basis functions for the description of the geometry and approximation of the 

displacement field, aligning the proposed numerical formulation with the paradigm of 

isogeometric analysis [26]. The unique concept of k-refinement in isogeometric analysis 

allows one to generate higher-continuity basis functions without proliferation of degrees of 

freedom. In contrast, the p-refinement strategy elevates the polynomial degree without 

changing the continuity, and it leads to an inhomogeneous proliferated nodal structure. 

However, it should be pointed out that in the setting of mixed finite elements, although the k-

refinement leads to a pair of velocity-pressure elements that enjoy nearly the optimal 

constraint ratio [24, Chapter 4], it has been observed that such element types are not always 

inf-sup stable [46]. To remedy this issue, it has been proposed to use subdivision technology 

to generate a NURBS analogue for the Q1-iso-Q2 element [11, 32, 46]. In this work, we 

adopt an alternative approach, the inf-sup stable smooth generalizations of the Taylor-Hood 

element. In our opinion, the Taylor-Hood element is more convenient for implementation, 

especially in the parallel setting. We numerically assess the inf-sup stability for different 
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combinations of the p- and k-refinements for generating the Taylor-Hood elements. It will be 

observed that the elements pass the numerical test if the polynomial degree is elevated at 

least once by the p-refinement to generate the discrete velocity space. Using the above new 

mixed formulation and the stable smooth generalizations of the Taylor-Hood element offer a 

new approach for incompressible large strain elastodynamics with several appealing 

features: it is well-behaved in the incompressible regime, the semi-discrete formulation 

respects energy stability, it does not involve tunable parameters or subgrid scale numerical 

models, it can achieve improved accuracy, especially for stress calculations, by employing 

higher-order smooth basis functions.

The remainder of the work is organized as follows. In Section 2, we state the governing 

equations and weak formulation for hyper-elastodynamics. In Section 3, the numerical 

scheme is presented and its numerical properties are analyzed. Following that, we 

numerically assess the inf-sup stability of different pairs of mixed NURBS elements. The 

elements that pass the test are used in the simulations for benchmark problems in Section 4. 

We draw conclusions in Section 5.

2 Hyper-elastodynamics

2.1 The initial boundary-value problem

Let ΩX and Ωx
t  be bounded open sets in ℝd with Lipschitz boundaries, wherein d represents 

the number of spatial dimensions. The motion of the body is described by a family of 

smooth mappings parameterized by the time coordinate t,

φt( ⋅ ) = φ( ⋅ , t):ΩX Ωxt = φ ΩX, t = φt ΩX , ∀t ≥ 0,
X x = φ(X, t) = φt(X), ∀X ∈ ΩX .

In the above, x represents the current position of a material particle originally located at X, 

which implies φ(X,0) = X. The displacement and velocity of the material particle are defined 

as

U : = φ(X, t) − φ(X, 0) = φ(X, t) − X, V : = ∂φ
∂t X = ∂U

∂t X
= dU

dt .

In this work, we use d(·)/dt to denote a total time derivative. The spatial velocity is defined 

as v: = V ∘ φt−1. Analogously, we define u: = U ∘ φt−1. The deformation gradient, the 

Jacobian determinant, and the right Cauchy-Green tensor are defined as

F : = ∂φ
∂X , J : = det (F), C: = FT F .

We F  define and C as

F : = J− 1
3F, C: = J− 2

3C,
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which represent the distortional parts of F and C. We denote the thermodynamic pressure of 

the continuum body as p and the density as ρ. The mechanical behavior of an elastic material 

can be described by a Gibbs free energy G(C, p). It is shown in [41] that the Gibbs free 

energy can be additively split into an isochoric part and a volumetric part,

G(C, p) = Gicℎ(C) + Gvol(p) .

The constitutive relations for the density ρ, the isothermal compressibility factor βθ, and the 

deviatoric part of the Cauchy stress can be described in terms of the Gibbs free energy as 

follows,

ρ(p): =
dGvol

dp
−1

, βθ(p): = 1
ρ

dρ
dp = −

∂2Gvol
∂p2 /

∂Gvol
∂p , σdev: = J−1F(ℙ:S)FT ,

wherein the projector ℙ and the fictitious second Piola-Kirchhoff stress S are defined as

ℙ: = I − 1
3C−1 ⊗ C, S: = 2

∂ ρ0G
∂C

= 2
∂ ρ0Gicℎ

∂C
,

I is the fourth-order identity tensor, and ρ0 is the density in the referential configuration. 

Interested readers are referred to [41] for a detailed discussion of the governing equations 

and the constitutive relations. It is known that ρJ = ρ0 due to mass conservation in the 

Lagrangian description. We can therefore introduce ρ(J) = ρ0/J as an alternative way of 

defining the density in the Lagrangian framework. In fact, we will adopt this choice in the 

following discussion. Under the isothermal condition, the energy equation is decoupled, and 

it suffices to consider the following equations for the motion of the continuum body,

0 = du
dt − v,  in Ωx

t , (1)

0 = βθ(p)dp
dt + ∇x ⋅ v  in Ωx

t , (2)

0 = ρ(J)dv
dt − ∇x ⋅ σdev + ∇xp − ρ(J)b,  in Ωx

t . (3)

In the above system, the equation (1) describes the kinematic relation, and the equations (2) 

and (3) describe the conservation of mass and the balance of linear momentum. The 

boundary Γx
t = ∂Ωx

t  can be partitioned into two non-overlapping subdivisions: 

Γx
t = Γx

g, t ∪ Γx
ℎ, t, wherein Γx

g, t is the Dirichlet part of the boundary, and Γx
ℎ, t is the Neumann 

part of the boundary. Boundary conditions can be stated as

u = g,  on Γx
g, t, v = dg

dt ,  on Γx
g, t, σdev − pI n = h,  on Γx

ℎ, t . (4)
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Given the initial data u0, p0, and v0, the initial conditions can be stated as

u(x, 0) = u0(x), p(x, 0) = p0(x), v(x, 0) = v0(x) . (5)

The equations (1)–(5) constitute an initial-boundary value problem for elastodynamics.

Remark 1.—It is known that J = 1 is equivalent to ∇x·v = 0 due to the identity dJ/dt = 

J∇x·v. However, the usage of ∇x·· v = 0, or more generally the equation (2), is less frequent 

to see in the classical solid mechanics community with few exceptions [15, 49]. A reason is 

that the constraint J = 1 is fitted into the elastostatic model, and the usage of v inevitably 

necessitates an elastodynamic model, which needs additional considerations in the numerical 

formulation. Another reason could be the missing link between βθ and the strain energy. The 

constitutive relation for βθ allows compressible materials and is recently derived in [41].

Remark 2.—It is worth pointing out that there is a different variational formulation 

recently developed [5, 6, 15]. It contains an additional set of kinematic relations for F, JF −T, 

and J. For polyconvex constitutive models, one is able to symmetrize the formulation and 

obtain an interesting connection of it with the entropy variable concept.

Since the above system looks different from the existing theory for hyperelasticity, we give 

an example of the constitutive model here. Let I1 and I2 designate the first and second 

invariants of the right Cauchy-Green tensor, that is,

I1: = trC, I2: = 1
2 ( trC)2 − tr C2 .

For isotropic materials, the isochoric part of the free energy can be conveniently expressed in 

terms of I1: = J−2/3I1 and I2: = J−4/3I2. The Mooney-Rivlin model can be expressed as

Gicℎ(C) =
c1

2ρ0
I1 − 3 +

c2
2ρ0

I2 − 3 ,

where c1 and c2 are parameters that have the same dimension as pressure. The volumetric 

part of the Gibbs free energy can be built as a Legendre transformation of the Helmholtz 

volumetric free energy [41]. Here, we give an example

Gvol(p) = κ
ρ0

1 − e− p
κ , (6)

which is transformed from the energy proposed in [38]. In (6), κ designates the bulk 

modulus. This free energy leads to the relation

ρ(p) = ρ0e
p
κ , βθ(p) = 1/κ .

As the bulk modulus κ approaches infinity, the material becomes incompressible, and we 

have Gvol(p) = p/ρ0 in the limit. This volumetric energy leads to ρ(p) = ρ0 and βθ(p) = 0.
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2.2 Reduction to the small-strain theory

Assuming the strain is infinitesimally small, we have ∇x = ∇X and ρ(J) = ρ0. We also assume 

that Gvol adopts the form given in (6). Then the mass equation (2) can be written as

0 = 1
κ

dp
dt + d

dt ∇x ⋅ u = d
dt

p
κ + ∇x ⋅ u (7)

Integrating the above relation in time results in

0 = p
κ + ∇x ⋅ u, (8)

with a proper choice of the reference value for the pressure. Assuming further that the we 

are seeking a static equilibrium solution, the momentum equation (3) becomes

∇x ⋅ σdev − ∇xp = ρ0b . (9)

The equations (8)–(9) constitute the classical mixed formulation for the small strain 

elastostatics [24, Chapter 4].

Remark 3.—For elastodynamics, one may instinctively add an inertial term to (9) and 

couple it with (8). However, numerical simulations indicate that this system is probably ill-

posed. It is suggested to couple (9) with (7) rather than (8) for dynamic calculations [49]. A 

potential mathematical explanation is that (8) does not provide the proper coercive structure 

in the dynamic setting. This point will be further clarified in Proposition 1.

2.3 Weak formulation

Henceforth, we restrict our discussion to fully incompressible materials. Let us denote the 

trial solution spaces for the displacement, velocity, and pressure in the current domain as Su, 

Sv, and Sp, respectively. The Dirichlet boundary condition defined on Γx
g  is properly built 

into the definitions of the Su and Sv. Let Vv and Vp denote the corresponding test function 

spaces. The mixed formulation on the current configuration can be stated as follows. Find 

y(t): = u(t), p(t), v(t) T ∈ SU × SP × SV  such that for t ∈ [0, T],

0 = Bk(ẏ, y): = du
dt − v, (10)

0 = Bp wp; ẏ, y : = ∫Ωxt
wp∇x ⋅ vdΩx, (11)

0 = Bm wv; ẏ, y : = ∫Ωxt
wv ⋅ ρ(J)dv

dt + ∇xwv:σdev − ∇x ⋅ wvp − wv ⋅ ρ(J)b

dΩx − ∫Γxℎ, twv ⋅ hdΓx,
(12)
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for ∀ wp, wv ∈ Vp × Vv, with y(0) = {u0,p0,v0}T. Here u0, p0, and v0 are the ℒ2 projections 

of the initial data onto the trial solution spaces. It is worth pointing out that although the 

material is fully incompressible, we still use ρ(J) = ρ0/J in (12), since the resulting discrete 

scheme cannot guarantee pointwise satisfaction of J = 1. In the above and henceforth, the 

formulations for the kinematic equations, the mass equation, and the linear momentum 

equations are indicated by the superscripts k, p and m, respectively. The equations (10)–(12) 

constitute the weak form of the problem. Performing integration by parts and using the 

localization argument, one can show the equivalence between the weak-form problem and 

the initial-boundary value problem. Let us define the following quantities on the material 

frame of reference via a pull-back operator:

W P(X, t): = wp φt(X), t , W V (X, t): = wv φt(X), t , P(X, t): = p φt(X), t ,

B(X, t): = b φt(X), t , H(X, t): = h φt(X), t , G(X, t): = g φt(X), t .

Correspondingly, the trial solution spaces are denoted as SU, SP  and SV ; the test function 

spaces are denoted as VP  and VV . The weak formulation can be alternatively stated as 

follows. Find Y (t): = U(t), P(t), V (t) T ∈ SU × SP × SV  such that for t ∈ [0, T],

0 = Bk(Ẏ , Y ): = dU
dt − V , (13)

0 = Bp W P ; Ẏ , Y : = ∫ΩX
W P ∇XV : JF −T dΩX, (14)

0 = Bm W V ; Ẏ , Y : = ∫ΩX
W V ⋅ ρ0

dV
dt + ∇XW V : JσdevF −T − ∇XW V

: JF −T P − W V ⋅ ρ0BdΩX − ∫ΓX
HW V ⋅ HdΓX .

(15)

for ∀ W P , W V ∈ VP × VV , with Y (0) = {U0,P0,V0}T. Here U0, P0, and V0 are the ℒ2

projections of the initial data onto the spaces SU, SP , and SV  respectively.

3 Numerical formulation

In this section, we discuss the numerical procedures for the solution of the incompressible 

hyper-elastodynamics based on the weak formulation given in Section 2.3.

3.1 Spline spaces on the parametric domain

We start by reviewing the construction of B-splines and NURBS basis functions. Given the 

polynomial degree p and the dimensionality of the B-spline space n, the knot vector can be 

represented by Ξ := {ξ1, ⋯·,ξn+p+1}, wherein 0 = ξ1 ≤ ξ2 ≤ ⋯ ≤ ξn+p+1 = 1. With the knot 
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vector, the B-spline basis functions of degree p, denoted as Ni
p for i = 1,·⋯, n, can be defined 

recursively. The definition starts with the case of p = 0, in which the basis functions are 

defined as piecewise constants,

Ni0(ξ) =
1  if ξi ≤ ξ < ξi + 1,
0  otherwise. 

For p ≥ 1, the basis functions are defined through the Cox-de Boor recursion formula,

Ni
p(ξ) =

ξ − ξi
ξi + p − ξi

Ni
p−1(ξ) +

ξi + p + 1 − ξ
ξi + p + 1 − ξi + 1

Ni + 1
p−1 (ξ) .

The NURBS basis functions of degree p are defined by the B-spline basis functions and a 

weight vector {w1, ⋯, wn} as

Ri
p(ξ): =

wiNi
p(ξ)

∑j = 1
n wjNj

p(ξ)
.

If we ignore the repetitive knots, the knot vector can be defined by a vector {ζ1,·⋯·, ζm} 

representing the distinctive knots and a vector {r1,·⋯·, rm} recording the corresponding knot 

multiplicities. In this work, we consider open knot vectors, meaning r1 = rm = p + 1. We 

further assume that ri ≤ p for i = 2,·⋯, m − 1. At the point ζi, the B-spline basis functions 

have αi := p − ri continuous derivatives. The vector

α: = α1, α2, ⋯, αm−1, αm = −1, α2, ⋯, αm−1, − 1

is referred to as the regularity vector. We adopt the notation 

α − 1: = α1, α2 − 1, ⋯, αm−1 − 1, αm = −1, α2 − 1, ⋯, αm−1 − 1, − 1 .When αi takes the 

value −1, the basis functions are discontinuous at ζi. The spaces Nα
p and ℛα

p are defined as

Nα
p: = span Ni

p
i = 1
n

, ℛα
p: = span Ri

p
i = 1
n

.

The notations Nα
p and ℛα

p are used to indicate that αi = α for i = 2,⋯, m − 1, meaning the 

spline function spaces have continuity Cα. The construction of multivariate B-spline and 

NURBS basis functions follows a tensor-product manner. Consider a unit cube Ω: = (0, 1)d, 

which is referred to as the parametric domain. Given pl, nl for l = 1,·⋯, d, we denote the knot 

vectors as Ξl = {ξ1,l,·⋯·, ξnl+pl+1,l}. Associated with each knot vector, the univariate B-

spline basis functions Nil, l
pl  for il = 1,·⋯, nl are defined. Consequently, the tensor-product B-

spline basis functions can be defined as
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Ni1, ⋯, id
p1, ⋯, pd ξ1, ⋯, ξd : = Ni1, 1

p1 ξ1 ⊗ ⋯ ⊗ Nid, d
pd ξd ,  for i1 = 1, ⋯, n1, ⋯, id = 1, ⋯, nd .

Given the weight vectors {w1,l, ⋯,wn,l} for l = 1,·⋯,d, the univariate NURBS basis functions 

Ril, l
pl  are defined. Correspondingly, the multivariate NURBS basis functions are defined as

Ri1, ⋯, id
p1, ⋯, pd ξ1, ⋯, ξd : = Ri1, 1

p1 ξ1 ⊗ ⋯ ⊗Rid, d
pd ξd , for i1 = 1, ⋯, n1, ⋯, id = 1, ⋯, nd .

The tensor product NURBS space is denoted as

ℛα1, ⋯, αd
p1, ⋯pd : = ℛα1

p1 ⊗ ⋯ ⊗ ℛαd
pd = span Ri1, ⋯, id

p1, ⋯, pd
i1 = 1, ⋯, id = 1
n1, ⋯, nd

.

3.2 Semi-discrete formulation and a priori estimates

In this work, we always consider three-dimensional problems (i.e. d = 3). Two discrete 

function spaces Sℎ and Pℎ can be defined on Ω = (0, 1)3 as

Sℎ: = ℛα1 + b, α2 + b, α3 + b
p + a,p + a, p + a × ℛα1 + b, α2 + b, α3 + b

p+a, p + a, p + a × ℛα1 + b, α2 + b, α3 + b
p+a, p + a, p + a ,

Pℎ: = ℛα1, α2, α3
p, p, p ,

where 1 ≤ a and 0 ≤ b ≤ a are integers. We assume that the referential configuration of the 

body can be exactly parametrized by a geometrical mapping ψ:Ω ΩX. The discrete 

functions on the referential domain are defined through the pull-back operators,

Sℎ: = w:w ∘ ψ ∈ Sℎ , Pℎ: = q:q ∘ ψ ∈ P .

This pair of elements can be viewed as a generalization of the Taylor-Hood element [22], 

where the polynomial degree and the continuity can achieve arbitrarily high order. With the 

discrete function spaces Sℎ and Pℎ defined, we define the trial solution spaces for the 

displacement, pressure, and velocity on the referential configuration as

SUℎ = Uℎ:Uℎ( ⋅ , t) ∈ Sℎ, t ∈ [0, T ], Uℎ( ⋅ , t) = G on ΓX
G ,

SPℎ = Pℎ:Pℎ( ⋅ , t) ∈ Pℎ, t ∈ [0, T ] ,

SV ℎ = V ℎ:V ℎ( ⋅ , t) ∈ Sℎ, t ∈ [0, T ], V ℎ( ⋅ , t) = dG
dt  on ΓX

G .
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Given the displacement Uℎ ∈ SUℎ, one may obtain φh = Uh(X,t) + X. Consequently, the trial 

solution spaces for the displacement, pressure, and velocity on the current configuration can 

be defined as

Suℎ = uℎ:uℎ ∘ φℎ ∈ Sℎ, t ∈ [0, T ], uℎ( ⋅ , t) = g on Γx
g ,

Spℎ = pℎ: pℎ ∘ φℎ ∈ Pℎ, t ∈ [0, T ] ,

Svℎ = vℎ:vℎ ∘ φℎ ∈ Sℎ, t ∈ [0, T ], vℎ( ⋅ , t) = dg
dt  on Γx

g ,

and the test function spaces are defined as

Vpℎ = wpℎ:wpℎ ∘ φℎ ∈ Pℎ, t ∈ [0, T ] ,

Vvℎ = wvℎ:wvℎ ∘ φℎ ∈ Sℎ, t ∈ [0, T ], wvℎ( ⋅ , t) = 0 on Γx
g .

The semi-discrete formulation can be stated as follows. Find 

yℎ(t): = uℎ(t), pℎ(t), vℎ(t) T ∈ Suℎ × Spℎ × Svℎ such that for t ∈ [0,T],

0 = Bk ẏℎ, yℎ : = duℎ
dt − vℎ, (16)

0 = Bp wpℎ; ẏℎ, yℎ : = ∫Ωxt
wpℎ∇x ⋅ vℎdΩx, (17)

0 = Bm wvℎ; ẏℎ, yℎ : = ∫Ωtt
wvℎ ⋅ ρ Jℎ

dvℎ
dt + ∇xwvℎ:σdev − ∇x ⋅ wvℎpℎ − wvℎ

⋅ ρ Jℎ bdΩx − ∫Γxℎ, twvℎ ⋅ hdΓx,
(18)

for ∀ wpℎ, wvℎ ∈ Vpℎ × Vvℎ, with yh(0) := {uh0,ph0,vh0}T. Here uh0, ph0, and vh0 are the ℒ2

projections of the initial data onto the finite dimensional trial solution spaces. In the 

following, we demonstrate that the above semi-discrete formulation is embedded with 

energy stability and momentum conservation properties. The properties guarantee that the 

numerical solutions preserve critical structures of the original system. In contrast, to the best 

of the authors’ knowledge, there is no such stability estimate for the conventional mixed u/p 
formulation [55] or the formulations based on rate constitutive equations [19, 30, 43].
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Proposition 1 (A priori energy stability estimate).—For fully incompressible 

materials, assuming the boundary data g is time independent, we have

d
dt∫ΩX

1
2ρ0 V ℎ

2
+ ρ0Gicℎ Cℎ dΩX = ∫ΩX

ρ0V ℎ ⋅ BdΩX + ∫ΓX
V ℎ ⋅ HdΓX . (19)

Proof. Since the Dirichlet boundary data g is independent of time, one is allowed to choose 

wph = ph in (17) and wuh = vh in (18), and this leads to the following,

0 = Bp pℎ; ẏℎ, yℎ + Bm vℎ; ẏℎ, yℎ
= ∫Ωxt

pℎ∇x ⋅ vℎdΩx + ∫Ωxt
vℎ ⋅ ρ Jℎ

dvℎ
dt + ∇xvℎ:σdev − ∇x ⋅ vℎpℎ − vℎ ⋅ ρ Jℎ bdΩx − ∫Γxℎ, tvℎ ⋅ hdΓx

= d
dt∫ΩX

1
2ρ0 V ℎ 2dΩX + ∫ΩX

d
dtFℎ:

d ρ0Gicℎ Cℎ
dF − V ℎ ⋅ ρ0BdΩX − ∫ΓX

V ℎ ⋅ HdΓX .

Rearranging terms in the above equality leads to

d
dt∫ΩX

1
2ρ0 V ℎ

2
+ ρ0Gicℎ Cℎ dΩX = ∫ΩX

ρ0V ℎ ⋅ BdΩX + ∫ΓX
V ℎ ⋅ HdΓX .

Remark 4.—For compressible materials, one may analogously obtain a stability bound 

where a pressure-squared term enters into the integral on the left-hand side of (19). This 

gives a mathematical reason for the success of equal-order interpolations when the material 

is compressible. However, we do not favor this type of ‘energy’ estimates because the 

pressure-squared term does not carry physical meanings. To remedy this issue, an entropy 

variable can be introduced by leveraging the convexity of the volumetric energy, and a 

physically relevant entropy stability is expected [39, 40, 50]. This is beyond the scope of this 

work and remains an area of future research.

Proposition 2 (Semi-discrete momentum conservation).—Considering the pure 

Neumann boundary condition, we have the following conservation properties of the semi-

discrete formulation,

d
dt∫ΩX

ρ0V ℎdΩX = ∫ΩX
ρ0BdΩX + ∫ΓX

HdΓX,

d
dt∫ΩX

ρ0φℎ × V ℎdΩX = ∫ΩX
ρ0φℎ × BdΩX + ∫ΓX

φℎ ×HdΓX .

Proof. The above conservation properties are direct consequences of choosing wvℎ = ei and 

wvℎ = ei × φℎ respectively in (18), where ei is a unit vector in the i-th direction. ◻

Due to the incompressibility, the pressure force does not contribute to the energy. Therefore, 

the energy stability estimate (19) does not involve the pressure field. The inf-sup condition 
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needs to be utilized to provide a bound for the pressure field. We assume that there exists a 

positive constant β such that

inf
pℎ ∈ Spℎ

sup
vℎ ∈ Svℎ

∫Ωxpℎ∇x ⋅ vℎdΩx
vℎ 1 pℎ 0

≥ β, (20)

wherein k ∥·∥0 and ∥·∥1 denote the ℒ2 and ℋ1 norm over Ωx. Using the semi-discrete 

equation (18), the above inequality implies

β‖pℎ‖0 ≤ sup
vℎ ∈ Svℎ

∫Ωxpℎ∇x ⋅ vℎdΩx
‖vℎ‖1

= sup
vℎ ∈ Svℎ

∫Ωxρ Jℎ vℎ ⋅
dvℎ
dt + ∇xvℎ:σdev − ρ Jℎ vℎ ⋅ bdΩx + ∫Γxℎ, tvℎ ⋅ hdΓx

‖vℎ‖1
.

If we further assume that ρ(Jh) is uniformly bounded, using the Cauchy-Schwarz inequality, 

we may get

‖pℎ‖0 ≤ C ‖
dvℎ
dt ‖L2 Ωx + ‖σdev‖L2 Ωx + ‖b‖L2 Ωx + ‖h‖L2 Γxℎ ,

with C being a constant. Therefore, given the velocity, the deformation state, and the 

external forces, the pressure field is bounded. We note that the assumption on the 

boundedness of the density cannot be rigorously justified based on the current numerical 

formulation. It is anticipated that this issue can be resolved by invoking the structure-

preserving discretization technique [13], which results in discrete solutions with pointwise 

divergence-free velocity field. With the exact satisfaction of the incompressibility constraint, 

the density remains as a constant.

Remark 5.—The linearization of J − 1 = 0 results in a divergence operator acting on the 

virtual displacement field. This fact has been frequently used to justify the usage of inf-sup 

stable elements in the two-field variational principle [3]. However, we feel this may not be a 

good interpretation. First, the linearization argument cannot recover the compressible case 

(8). Second, the solvability of the Newton-Raphson procedure does not provide a bound for 

the solution.

3.3 Temporal discretization

We invoke the generalized-α method [31] for the temporal discretization of the weak form 

problem (10)–(12). The time interval [0, T] is divided into a set of nts subintervals of size 

Δtn := tn+1 − tn delimited by a discrete time vector tn n = 0
nts . The solution vector and its first-

order time derivative evaluated at the time step tn are denoted as yn and ẏn. The fully discrete 

scheme can be stated as follows. At time step tn, given ẏn, yn, the time step size Δtn, and the 

parameters αm, αf, and γ, find ẏn + 1 and yn+1 such that for ∀ wp, wv ∈ Vp × Vv,
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Btn + αf
k ẏn + αm, yn + αf = 0, (21)

Btn + αf
p wp; ẏn + αm, yn + αf = 0, (22)

Btn + αf
m wv; ẏn + αm, yn + αf = 0, (23)

yn + 1 = yn + Δtnẏn, + γΔtn ẏn + 1 − ẏn , (24)

ẏn + αm = ẏn + αm ẏn + 1 − ẏn , (25)

yn + αf = yn + αf yn + 1 − yn . (26)

The choice of parameters αm, αf and γ determines the accuracy and stability of the temporal 

scheme. Importantly, the high-frequency dissipation can be controlled via a proper 

parametrization of these parameters, while maintaining second-order accuracy and 

unconditional stability (for linear problems). For the above first-order dynamic problems, the 

parametrization is

αm = 1
2

3 − ϱ∞
1 + ϱ∞

, αf = 1
1 + ϱ∞

, γ = 1
1 + ϱ∞

,

wherein ϱ∞ ∈ [0,1] denotes the spectral radius of the amplification matrix at the highest 

mode [31]. Setting ϱ∞ = 1 recovers the mid-point rule. For nonlinear structural dynamics, 

the mid-point rule is observed to have a pile-up effect for the energy error and often leads to 

diverged results for long-time simulations. In this study, the value of ϱ∞ is fixed to be 0.5.

Remark 6.—Interested readers are referred to [8] for the parametrization of αm, αf, and γ 
for second-order structural dynamics. A recent study shows that using the generalized-α 
method for first-order structural dynamics enjoys improved dissipation and dispersion 

properties and does not suffer from overshoot [33]. Moreover, using a first-order structural 

dynamic model is quite propitious for the design of an FSI scheme [41].

Remark 7.—It is tempting to apply the discrete energy-momentum methods [54] to the 

semidiscrete system. Those algorithms yield fully discrete systems that inherit the energy 

stability and momentum conservation properties and are thence particularly well-suited for 

transient analysis. For problems we are interested in, the solution may be driven to a static 

equilibrium by external forces, and the stress formula in the energy-momentum methods will 

become ill-defined. Because of this, we retain the generalized-α method in this work.
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3.4 A Segregated predictor multi-corrector algorithm

The equations (21)–(26) constitute a system of nonlinear algebraic equations to be solved in 

each time step, and we invoke the Newton-Raphson method with consistent linearization. At 

time step tn+1, the solution vector yn+1 is solved by means of a predictor multi-corrector 

algorithm. We denote yn+1(l) := {un+1,(l), Pn+1,(l), vn+1,(l)}T as the solution vector at the 

Newton-Raphson iteration step l = 0,·⋯ ,lmax. The residual vectors evaluated at the iteration 

stage l are denoted as

R(l): = R(l)
k , R(l)

p , R(l)
m T

,

R(l)
k : = Rk ẏn + αm, (l), yn + αf, l ,

R(l)
p : = Rp ẏn + αm, (l), yn + αf, l ,

R(l)
m : = Rm ẏn + αm, (l), yn + αf, (l) .

The consistent tangent matrix associated with the above residual vectors is

K(l) =

K(l), u.
k O K(l), v.

k

K(l), u.
p O K(l), v.

p

K(l), u.
m K(l), ṗ

m K(l), v.
m

,

wherein

K(l), u.
k : = αm

∂R(l)
k ẏn + αm, (l), yn + αf, (l)

∂u̇n + αm
= αmI,

K(l), v̇
k : = αfγΔtn

∂R(l)
k y. n + αm, (l), yn + αf, (l)

∂vn + αf
= − αfγΔtnI,

I is the identity matrix, and O is the zero matrix. The above diagonal structure of the two 

blocks can be utilized to construct a block factorization of K(l), with which the solution 

procedure of the linear system of equations in the Newton-Raphson method can be 

consistently reduced to a two-stage algorithm [41, 49]. In the first stage, one obtains the 

increments of the pressure and velocity at the iteration step l by solving the following linear 

system,
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K(l), v̇
m + αfγΔtn

αm
K(l), u.

m K(l), ṗ
m

K(l), v̇
p + αfγΔtn

αm
K(l), u̇

p O

Δv. n + 1, (l)
Δṗn + 1, (l)

= −
R(l)

m − 1
αm
K(l), u̇

m R(l)
k

R(l)
p − 1

αm
K(l), u̇

p R(l)
k

. (27)

In the second stage, one obtains the increments for the displacement by

Δu. n + 1, (l) = αfγΔtn
αm

Δv. n + 1, (l) − 1
αm
R(l)

k . (28)

To simplify notations in the following discussion, we denote

A(l): = K(l), v̇
m + αfγΔtn

αm
K(l), u̇

m , B(l): = K(l), ṗ
m , C(l): = K(l), v̇

p + αfγΔtn
αm

K(l), u̇
p

.
(29)

Readers are referred to the Appendix of [42] for the explicit formulas of the block matrices 

in (29).

Remark 8.—In [41], it was shown that R(l)
k = 0 for l ≥ 2 for general predictor multi-

corrector algorithms; in [45], a special predictor is chosen so that R(l)
k = 0 for l ≥ 1. In our 

experience, setting R(l)
k = 0 for l ≥ 1, regardless of the predictor chosen, simplifies the 

implementation and does not deteriorate the convergence rate of the Newton-Raphson 

solution procedure.

Based on the above discussion, a predictor multi-corrector algorithm for solving the 

nonlinear algebraic equations in each time step can be summarized as follows.

Predictor stage: Set:

yn + 1, (0) = yn, y. n + 1, (0) = γ−1
γ y. n .

Multi-corrector stage: Repeat the following steps for l = 1, …, lmax:

1. Evaluate the solution vectors at the intermediate stages:

yn + αf, l = yn + αf yn + 1, (l − 1) − yn , y. n + αm, (l) = y. n + αm y. n + 1, (l − 1) − y. n .

2. Assemble the residual vectors R(l)
m  and R(l)

p  using yn+αf,(l) and y. n + αm, (l).

3. Let ‖R(l)‖l2 denote the l2-norm of the residual vector. If either one of the following 

stopping criteria
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‖R(l)‖l2
‖R(0)‖l2

≤ tolR, ‖R(l)‖l2 ≤ tolA,

is satisfied for two prescribed tolerances tolR, tolA, set the solution vector at the time step 

tn+1 as yn+1 = yn+1,(l−1) and y. n + 1 = y. n + 1, (l − 1), and exit the multi-corrector stage; 

otherwise, continue to step 4.

4. Assemble the tangent matrices (29).

5. Solve the following linear system of equations for Δṗn + 1, (l) and Δv. n + 1, (l),

A(l) B(l)
C(l) O

Δv. n + 1, (l)
Δṗn + 1, (l)

= −
R(l)

m

R(l)
p . (30)

6. Obtain Δu. n + 1, (l) from the relation (28).

7. Update the solution vector as

yn + 1, (l) = yn + 1, (l) + γΔtnΔy. n + 1, (l), y. n + 1, (l) = y. n + 1, (l) + Δy. n + 1, (l) .

and return to step 1. In our experience, the choice of the linear solver for (30) critically 

impacts the overall numerical efficiency and robustness, especially for three-dimensional 

problems. Linear solvers based on algebraic factorizations (such as incomplete LU) are 

prone to fail due to the appearance of a zero sub-matrix O in (30), which may lead to zero-

pivoting. Hence, an iterative solution procedure for (30) is specifically designed based on a 

nested block preconditioning technique. Readers are referred to [42] for more details.

4 Numerical results

In this section, we perform numerical investigations using the proposed scheme. Unless 

otherwise specified, we use p+a+1 Gauss quadrature points in each direction, the pressure 

function space is generated by the k-refinement to achieve the highest possible continuity, 

and we choose tolR = 10−8 and tolA = 10−8 as the stopping criteria in the predictor multi-

corrector algorithm.

4.1 Numerical Inf-Sup test

The inf-sup condition for the discrete problem states that there exists a constant β 
independent of the mesh size such that

inf
qℎ ∈ Spℎ

sup
vℎ ∈ Svℎ

∫Ωx ∇x ⋅ vℎqℎdΩx
vℎ 1 qℎ 0

= βℎ ≥ β > 0.
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We examine the inf-sup condition for the proposed discrete spaces Svℎ and Spℎ using the 

numerical inf-sup test [4, 7]. Let NA and MÃ denote the velocity and pressure basis 

functions on the current configuration where A and Ã are the node number. The following 

matrices are defined.

D: = DAB
i , DAB

i : = ∫Ωx
∇xNA ⋅ eiMBdΩx,

W: = QAB , WAB: = ∫Ωx
MAMBdΩx,

V: = VAB
ij , VAB

ij : = ∫Ωx
NANB + ∇xNA ⋅ ∇xNBdΩxδij .

We consider the following eigenvalue problem: Find γiℎ and ψi such that

DV−1DTψi = γiℎWψi .

The value of βh is determined as the square root of the smallest non-zero eigenvalue. The 

regularity vector α = {−1,α, ⋯ ,α,−1} is the same in all three directions. The numerical 

integration is performed by the Gauss quadrature rule with p + a + 2 quadrature points in 

each direction to ensure accuracy. The eigenvalues are calculated by the SLEPc package 

[18]. The trend of βh is examined as we progressively refine the mesh for 0 ≤ b ≤ a. We 

consider a curved geometry for the domain, which is exactly represented by NURBS and 

illustrated in Figure 1. The computed values of βh for p = 2, 3, and 4 with 0 ≤ b ≤ a ≤ 2 are 

presented in Figure 2. It can be observed that βh approaches zero with mesh refinement 

when a = b. To confirm this observation, we investigate the cases of a = 3 and a = 4 with p 

fixed to be 2, with results reported in Figure 3. Again, we observe that βh shows a clear trend 

of approaching zero with mesh refinement only when a = b. To further validate this finding, 

we also study a unit cube for the domain, which allows us to start the test with p = 1. Again, 

the same trend of βh is observed. Based on the collected results, we make the following 

salient observations. For the smooth generalizations of the Taylor-Hood element, if the 

velocity space is generated by pure k-refinement (i.e., a = b), the resulting element pair is not 
inf-sup stable. If the velocity space is generated by pure p-refinement from the pressure 

space (i.e., b = 0), the smallest eigenvalues are bounded below from zero. Also, if a ≥ 2, the 

velocity spaces generated with 1 ≤ a − b also pass the numerical inf-sup test. This suggests 

that one may still perform k-refinement to increase the regularity of the velocity space if it is 

followed by a p-refinement of order at least one.

4.2 Convergence studies

In this example, we investigate the convergence behavior of the proposed numerical scheme. 

We consider an incompressible Neo-Hookean material model
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G(C, p) =
c1

2ρ0
I1 − 3 + p

ρ0
.

The geometrical domain is a unit cube with dimension 1m × 1m × 1m. The modulus c1 is 

chosen as 1 Pa, and the density ρ0 is 1 kg/m3. The analytic forms of the displacement and 

pressure fields on the referential configuration adopt the following forms,

U(X, t) = c
L0
T0

2t2
sin(γ YL0

sin γ ZL0
0
0

, P(X, t) = d
M0
L0T0

4t2sin β X
L0

sin β YL0
sin β ZL0

.

In this example, the reference values are chosen as L0 = 1 m, M0 = 1 kg, T0 = 1 s; both β and 

γ are chosen to be 2π rad; c and d are non-dimensional parameters that take the value 0.2. 

On the faces Y = Z = 0 m and Y = Z = 1 m, the body is fully clamped, and traction boundary 

conditions are applied on the rest faces. For the simulations in the convergence study, we use 

tolR = 10−10 and tolA = 10−12 as the stopping criteria in the predictor multi-corrector 

algorithm. Two different time step sizes are used to ensure that the temporal error does not 

pollute the spatial convergence rate. The relative errors of the displacement and pressure 

fields are reported in Figure 4 for varying values of p with a = 1, b = 0. We notice 

immediately that all the errors decrease with the optimal rates. In Figure 5, we report the 

convergence rates for a = 2, which resembles a smooth generalization of the spectral element 

[57]. In Figure 5 (a), we note that the increase of the value of a does not improve the 

convergence rate, regardless of the value of b. Yet, the velocity error is smaller than that of 

the a = 1 case. From Figure 5 (b), we can see that the pressure errors are almost 

indistinguishable for a = 1 and a = 2

4.3 Three-dimensional compression of a block

In this example, we examine the performance of the new formulation using the benchmark 

problem initially designed in [44]. On the boundary faces X = Y = Z = 0, we apply 

symmetry boundary conditions, and we disallow horizontal displacement on the top surface. 

A ‘dead’ load with magnitude 3.2 × 108 Pa is applied on a quarter portion of the top surface, 

which assumes the negative Z-direction in the referential configuration. The block is initially 

stress free with zero displacement. The surface traction load is applied as a linear function of 

time and reaches the prescribed magnitude at time T = 1 s. We adopt an incompressible Neo-

Hookean model given by the following energy function,

G(C, p) =
c1

2ρ0
I1 − 3 + p

ρ0
.

The material properties are chosen as ρ0 = 1.0×103 kg/m3 and c1 = 8.0194×107 Pa. We 

simulate the problem with a fixed time step size Δt = 5.0 × 10−3 s. We fix the values of a and 

b to 1 and 0 in this example. For comparison purposes, we also simulate the problem with 

the variational multiscale (VMS) formulation [41] using equal-order interpolations. As a 
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classical benchmark problem, the primary quantity of interest is the displacement at the 

upper center point (i.e. the point at X = Y = 0, Z = 1 in the reference configuration). In 

Figure 6 (b), the compression levels at this point calculated by different methods are 

illustrated. For the coarsest mesh (two elements per side), the stable element with p = 2 gives 

a very good prediction of the compression level. It is interesting to note that the equal-order 

interpolation using the Q1/Q1 element with the VMS formulation gives a fairly good result 

for a finer mesh with four elements per side. Using a mesh with 8 elements per side, both 

stable elements give indistinguishable results in comparison with the reference value. In 

Figure 7, we further compare the pressure profiles at the current configuration calculated by 

the proposed formulation as well as the VMS formulation. The pressure profile calculated by 

a fine mesh (6×1923 linear tetrahedral elements using the VMS formulation with equal-order 

linear interpolations) is depicted to serve as a reference solution profile. Using the same 

VMS formulation, the pressure field calculated by 6 × 483 linear tetrahedral elements is 

demonstrated in Figure 7 (b), which clearly shows a very poor approximation quality. In our 

experience, the VMS formulation using low-order elements always requires mesh 

convergence studies to deliver trustworthy stress calculations, and oftentimes this procedure 

eventually demands very high mesh resolutions. Using the proposed mixed formulation with 

2 elements per side and varying values of p, it can be observed that the calculated pressure 

fields are always in good agreement with the reference solution profile. The increase of the 

polynomial degree p improves the solution quality. For the case of p = 2 with 20 elements 

per side, the calculated result captures the major feature of the pressure field and confirms 

the convergence of the pressure field.

4.4 Tensile test of an anisotropic fiber-reinforced hyperelastic soft tissue specimen

In this example, we examine the performance of the proposed formulation for an 

incompressible anisotropic hyperelastic material, which has been designed to describe 

arterial tissue layers with distributed collagen fibers [14]. We note that this material model 

used in the compressible regime may lead to non-physical deformations [17, 47], and 

remedies for this issue have been proposed recently [16]. The geometry set-up and the 

material model are summarized in Table 1. The groundmatrix is modeled as an isotropic 

Neo-Hookean material, with c1 being the shear modulus. The ith family of collagen fibers is 

modeled by an exponential function Gicℎ
fi . The unit vector ai characterizes the mean 

orientation of the fiber, and κd is a dispersion parameter that characterizes the distribution of 

the collagen fibers. In this study, we assume the mean orientation of the two families of 

fibers has no component in the radial direction and is completely determined by φ, the angle 

between the fiber orientation and the loading direction. For a circumferential specimen, the 

tensile load is along the circumferential direction and φ = 49.98°; correspondingly, for an 

axial specimen, the value of φ is 40.02°. We consider only one-eighth of the specimen by 

applying symmetry boundary conditions. On the loading surface, a master-slave relation is 

enforced for the nodes to ensure that the surface moves only in the loading direction. The 

loading traction is applied gradually and reaches 2 N in 200 seconds. We simulate the 

problem with a fixed time step size Δt = 2.0 × 10−2 s. Three different meshes are used for the 

proposed formulation (See Table 2). In Figure 8, the load-displacement curves calculated by 

the three different meshes for the circumferential and axial specimen are plotted. It is hard to 
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distinguish the results in Figure 8 (a). In Figure 8 (b), we provide a detailed comparison near 

the tensile load 0.35 N. The curve obtained from mesh 3 is still very close to the reference 

solid line, indicating improved accuracy with increasing polynomial degree. For comparison 

purposes, we present the stress results calculated by the VMS formulation [41] with linear 

tetrahedral elements using two different spatial resolutions (see Table 2). From Figures 9 and 

10, we observe that the essential feature of the Cauchy stress is captured in mesh 2, although 

there are slight oscillations near the corners. The results calculated from the mesh 1 and 

mesh 3 are almost indistinguishable, indicating that increasing the polynomial degree 

improves the accuracy of the stress results. In contrast, the stress is poorly resolved in the 

mesh 4 due to the low-order elements. The results of mesh 5 illustrate that mesh refinement 

helps improve the quality of the stress results. Yet, one can still observe a discontinuous 

pattern and oscillations of the stress profile. Notice that the meshes 2, 3, and 4 have about 

the same number of degrees of freedom (see Table 2). The striking differences in the results 

again demonstrate the superior approximation properties in stress calculations when using 

higher-order elements within the proposed provably stable formulation.

4.5 Three-dimensional beam bending

In this example, we present a three-dimensional beam vibration problem to evaluate the 

performance of the elastodynamics formulation in a bending dominated scenario [5]. The 

problem configuration as well as the material properties are illustrated in Table 3. The beam 

is fully clamped at the base, and the other faces are specified by zero tractions. The body is 

initially stress free with zero displacement. The vibration is initiated through an initial 

velocity

V (X, 0) = V 0
Z
L0

, 0, 0
T

, V 0 = 5
3m/s.

This initial condition leads to an oscillatory motion of the beam. For the simulations, we 

choose p = 1, a = 1, and b = 0 for the discrete function spaces. The numerical results show 

the deformation state of the beam calculated from the two different meshes are 

indistinguishable, suggesting a coarse mesh with Δx = L0/2 is capable of accurately 

describing the beam dynamics (Figure 11). Since the boundary data is time independent and 

the body force and surface tractions are zero, the total energy of the beam is conserved 

according to Proposition 1. We observe that the total energy is well-preserved up to T = 10 s 

(Figure 12 (a)). From the periodic pattern of the kinetic and potential energies, we obtain an 

average period of the oscillation is 0.9018 s. To better illustrate the energy conservation, we 

plot the relative errors of the energy in Figure 12 (b), using three different spatial meshes. 

Interestingly, the error of the total energy achieves its maximum value when the beam 

reaches its largest deformation. For the coarsest mesh (Δx = L0/2), the error accumulates 

slightly over time, and we can see that the relative error reaches about one percent at around 

9.5 s. We also observe that the spatial mesh refinement helps reduce the error of the total 

energy. For the meshes with Δx = L0/4 and Δx = L0/6, we do not observe a pile-up effect of 

the energy error. Also, the magnitude of the relative error is reduced with mesh refinement. 

In comparison with the previously published results [2, 36], the new formulation enjoys a 

better discrete energy conservation property.
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4.6 A spinning annular disk

In this example, we study a spinning annular disk with zero traction boundary condition 

imposed on all boundary faces. In Figure 13 (a), the geometrical setting is illustrated. The 

inner radius of the disk is 0.5 m, the outer radius is 1.5 m, and the thickness is 1 m. The 

material of the disk is Neo-Hookean with density ρ0 = 10 kg/m3 and shear modulus c1 = 7.5 

Pa. Both the geometrical and material settings follow the benchmark example in [35]. The 

initial displacement is zero, and the spinning motion is initiated by an initial angular velocity 

of 1 rad/s in the x-y plane, that is

V (X, 0) = −V 0
Y
L0

, V 0
X
L0

, 0
T

, V 0 = 1m/s .

We choose the reference scales as L0 = 1 m, M0 = 1 kg, and T0 = 1 s. The geometry of the 

domain can be exactly parametrized by connecting four thick-walled cylinders shown in 

Figure 1 and adjusting the coordinates of the control points. Therefore, we have p = 2 for the 

discrete pressure function space. The geometry is C1 except at the four connecting surfaces 

where the continuity reduces to C0. We choose a = 1 and b = 0 for generating the discrete 

velocity function space. A coarse mesh is generated with 32 elements in the circumferential 

direction, 4 elements in the radial direction, and 4 elements in the axial direction; a fine 

mesh is generated with 64 elements in the circumferential direction, 8 elements in the radial 

direction, and 8 elements in the axial direction. The time step size is Δt = 2×10−4 s, and the 

problem in integrated up to T = 10.0 s. In Figure 13 (b), a snapshot of the simulated velocity 

in the annular disk is depicted. Due to the zero traction boundary condition and the zero 

body force, this problem serves as a benchmark for examining the energy stability as well as 

the momentum conservation properties. In Figure 14 (a), we can see that the kinetic energy 

and the total energy are nicely conserved. In Figure 14 (b), the relative errors of the total 

energy over time are plotted, which are uniformly smaller than 3×10−6. The exact value of 

the linear momentum is zero, and we see that the absolute errors are less than 1.5 × 10−13 in 

Figure 14 (c). The x- and y-components of the angular momentum are zero, with numerical 

values having absolute errors less than 10−13 (Figure 15). The analytic value of the z-

component of the angular momentum is 78.5 kg·m2/s, and we depict its relative error from 

the simulation with the coarse mesh. Note that the error of the z-component of the angular 

momentum is highly oscillatory and is bounded by 8 × 10−9. The numerical results 

corroborate the estimates given in Section 3.2.

5 Conclusions and future work

In this work, we presented a new numerical formulation for incompressible hyper-

elastodynamics. We have revealed that the proposed formulation possesses a physically 

compatible notion of numerical stability, and the inf-sup condition can be utilized to give a 

bound for the pressure. These properties favorably distinguish the proposed formulation 

from previously existing ones [19, 30, 43, 55]. We use smooth generalizations of the Taylor-

Hood element based on NURBS for the spatial discretization, aiming to provide a higher-

order method that is stable, robust, and implementationally convenient. The inf-sup stability 

for the elements is elucidated through numerical assessment. A variety of benchmark 
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examples are simulated to investigate the effectiveness of the method in different loading 

conditions and for different material models. In particular, two dynamic problems are 

studied to verify the numerical stability and conservation properties.

In addition to the superior accuracy in stress calculations, the adoption of NURBS elements 

makes the description of material anisotropy convenient because the mesh naturally aligns 

along the axial, circumferential, and radial directions. These attributes make the proposed 

formulation a promising candidate for biomedical problems. Based on the proposed 

formulation, the anisotropic arterial wall model will be further refined with detailed stress-

driven mass production and removal for individual constituents that comprise the tissue. This 

will lead to a three-dimensional patientspecific predictive tool for vascular growth and 

remodeling. On the theoretical side, the energy stability of the proposed formulation 

guarantees boundedness of the deformation state. This property makes the method a 

promising candidate in detecting the stability range for incompressible finite elasticity [48].
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Figure 1: 
The geometry of the thick-walled cylinder (left) and the control net with the control points’ 

coordinates as well as weights on the bottom plane surface (right). The NURBS basis 

functions in the circumferential direction are built from the knot vector {0,0,0,1,1,1}. The 

NURBS basis functions in the radial and axis direction are built from the knot vector 

{0,0,1,1}.
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Figure 2: 
The numerical inf-sup test for the thick-walled cylinder using (a) p = 2, (b) p = 3, and (c) p = 

4 with 0 ≤ b ≤ a = 2 and Nel elements in each direction.

Liu et al. Page 28

Int J Numer Methods Eng. Author manuscript; available in PMC 2020 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
The numerical inf-sup test for the thick-walled cylinder domain using p = 2 with (a) 0 ≤ b ≤ 

a = 3 and (b) 0 ≤ b ≤ a = 4 and Nel elements in each direction.
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Figure 4: 
The relative errors of (a) the displacement in L2 norm, (b) the pressure in L2 norm, (c) the 

displacement in H1 seminorm, and (d) the pressure in H1 seminorm, under h-refinement with 

a = 1 and b = 0.
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Figure 5: 
The relative errors of (a) the displacement in H1 seminorm and (b) the pressure in L2 norm, 

under h-refinement with p = 1 and varying values of a and b.
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Figure 6: 
Three-dimensional block compression: (a) geometry setting; (b) compression level in % 

versus the number of elements per side.
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Figure 7: 
Three-dimensional block compression: pressure profile in the current configuration with (a) 

the VMS formulation and 6 × 1923 linear tetrahedral elements, (b) the VMS formulation and 

6 × 483 linear tetrahedral elements, (c) p = 2, Δx = 1/2, (d) p = 4, Δx = 1/2, (e) p = 6, Δx = 

1/2, and (f) p = 2, Δx = 1/20.
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Figure 8: 
Three-dimensional tensile test: (a) computed load-displacement curves of the 

circumferential (red) and axial specimens (blue) using different meshes; (b) detailed 

comparison of the computed load-displacement curves near the tensile load 0.35 N.
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Figure 9: 
Three-dimensional tensile test: σzz for the axial specimen calculated by (a) mesh 1, (b) mesh 

2, (c) mesh 3, (d) mesh 4, and (e) mesh 5 on the deformed configurations at the tensile load 

1 N. See Table 2 for details of the meshes.
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Figure 10: 
Three-dimensional tensile test: σzz for the circumferential specimen calculated by (a) mesh 

1, (b) mesh 2, (c) mesh 3, (d) mesh 4, and (e) mesh 5 on the deformed configurations at the 

tensile load 1 N. See Table 2 for details of the meshes.
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Figure 11: 
Snapshots of the vibrating beam: The pressure field at different time steps using mesh size 

Δx = L0/2 and time step size Δt = 10−3T0. The deformation states at the corresponding time 

steps using mesh size Δx = L0/12 and time step size Δt = 10−4T0 are shown as the black grid. 

The light blue grid shows the mesh with size Δx = L0/2 at time t = 0.
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Figure 12: 
(a) The total, kinetic, and potential energies over time with Δx = L0/6; (b) The relative error 

of the total energy over time. The simulations are performed with p = 1, a = 1, b = 0, and Δt 
= 2 × 10−4T0. The reference value of the total energy E0 is chosen to be the total energy at 

time t = 0, which is 1.1 × 105 kg m2/S2.
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Figure 13: 
The three-dimensional spinning annular disk: (a) the geometrical setting and the initial 

condition; (b) a snapshot of the velocity field.
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Figure 14: 
(a) The total, kinetic, and potential energies over time using the coarse mesh scaled by E0 = 

29.27 J, which is the initial total energy; (b) The relative errors of the total energy over time 

for the two different meshes; (c) The x-, y-, and z-components of the linear momentum are 

plotted in the blue, red, and black colors respectively, and the results for the fine mesh and 

coarse mesh are plotted in solid and dashed lines respectively.
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Figure 15: 
(a) The x- and y-components of the angular momentum are plotted in the blue and red colors 

respectively, and the results for the fine mesh and coarse mesh are plotted in solid and 

dashed lines respectively; (b) The relative error of the z-component of the angular 

momentum over time for the coarse mesh.
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Table 2:

The number of elements nen, the number of elements in the radial direction nenr , and the number of equations 

neq in the system (30) for the five different meshes. Meshes 1 and 3 consist of NURBS element with p = 2; 

mesh 2 consists of NURBS element with p = 1; meshes 4 and 5 consist of linear tetrahedral elements. For 

meshes 1, 2, and 3, the values of a and b are fixed to be 1 and 0.

Mesh 1 2 3 4 5

nen 61440 120 120 5760 90000

nenr 8 1 1 2 5

neq 1785024 5091 7584 6396 75144
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