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Abstract

Background: Acute myeloid leukemia (AML) is a fatal hematopoietic malignancy and has a prognosis that varies with
its genetic complexity. However, there has been no appropriate integrative analysis on the hierarchy of different AML
subtypes.

Methods: Using Microwell-seq, a high-throughput single-cell mRNA sequencing platform, we analyzed the cellular
hierarchy of bone marrow samples from 40 patients and 3 healthy donors. We also used single-cell single-molecule
real-time (SMRT) sequencing to investigate the clonal heterogeneity of AML cells.

Results: From the integrative analysis of 191727 AML cells, we established a single-cell AML landscape and identified
an AML progenitor cell cluster with novel AML markers. Patients with ribosomal protein high progenitor cells had a
low remission rate. We deduced two types of AML with diverse clinical outcomes. We traced mitochondrial mutations
in the AML landscape by combining Microwell-seq with SMRT sequencing. We propose the existence of a phenotypic
“cancer attractor” that might help to define a common phenotype for AML progenitor cells. Finally, we explored the
potential drug targets by making comparisons between the AML landscape and the Human Cell Landscape.

Conclusions: We identified a key AML progenitor cell cluster. A high ribosomal protein gene level indicates the poor
prognosis. We deduced two types of AML and explored the potential drug targets. Our results suggest the existence of
a cancer attractor.
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© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: xhan@zju.edu.cn; huanghe@zju.edu.cn; ggj@zju.edu.cn
†Junqing Wu, Yanyu Xiao, Jie Sun, Huiyu Sun and Haide Chen contributed
equally to this work.
1Center for Stem Cell and Regenerative Medicine, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310058, China
2Institute of Hematology, The First Affiliated Hospital, Zhejiang University
School of Medicine, Hangzhou 310003, China
Full list of author information is available at the end of the article

Wu et al. Journal of Hematology & Oncology          (2020) 13:128 
https://doi.org/10.1186/s13045-020-00941-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s13045-020-00941-y&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:xhan@zju.edu.cn
mailto:huanghe@zju.edu.cn
mailto:ggj@zju.edu.cn


Introduction
Acute myeloid leukemia (AML) is a hematopoietic ma-
lignancy with recurrent genetic abnormalities [1, 2].
New therapeutic options such as targeted therapies and
monoclonal antibodies may improve the long-term sur-
vival in patients with AML [3, 4]. However, the progno-
sis of AML remains poor in some patients, suggesting its
genetic and cellular complexity [5–7]. Therefore, it is of
great importance to understand the major hierarchy and
cellular compositions in different individuals with AML.
Flow cytometry is widely used for exploring cell het-

erogeneity in leukemia; however, it is limited to the
choice of surface markers [8]. Bulk population sequen-
cing can probe into the cell genome and transcriptome,
but misses the information of individual cells. Moreover,
integrative analyses of samples from different patients
with leukemia prove difficult, due to a lack of assay
consistency and precision. The advances in single-cell
techniques have made systematic analyses of leukemia
cells possible [9, 10]. Several studies have applied single-
cell analysis to normal and malignant hematopoietic
cells [11–13]. However, because of the limited scales and
technical consistency in these studies, an overall picture
of AML and the common hierarchy among different pa-
tients have not yet been described.
One hallmark of cancer is the reprogramming of en-

ergy metabolism to fuel cell growth and division [14].
Ribosome biogenesis is an energy-demanding process,
and it has been proposed that ribosomal proteins (RPs)
have an effect on tumorigenesis [15]. A previous study
reported that RPs exhibited strong dysregulation in par-
ticular cancer types, such as breast cancer, melanoma,
and thyroid carcinoma [16]. Some RPs are involved in
the specification of hematopoietic lineages, and their al-
terations lead to hematologic disorders, like Diamond-
Blackfan anemia, Chromosome 5q deletion syndrome,
and Shwachman-Diamond syndrome [17, 18]. However,
there is a lack of knowledge on the dysregulation of RPs
in AML.
Mitochondrial mutations can suggest clonal relation-

ships [19]. They may preserve information about cell
lineage relationships at single-cell resolution [20]. How-
ever, no study has examined single-cell mitochondrial
mutations in AML to explore the relationship between
clonotype and phenotype.
Herein using Microwell-seq, we analyzed 191727 sin-

gle cells of bone marrow mononuclear cells (BMMCs)
from 40 de novo AMLs and 8561 single cells of BMMCs
from three normal donors [21]. To investigate the cellu-
lar and molecular changes after AML treatment, we
followed-up four patients after they received chemother-
apy. We demonstrated a global transcriptional hetero-
geneity and a lack of clear cell fate boundaries in AML
samples. We showed that an AML progenitor cell

cluster was associated with a dysregulation of RPs and
revealed that patients with RP high progenitor cells had
a low remission rate. We deduced two types of AML
with diverse clinical outcomes. We suggested the exist-
ence of a phenotypic “cancer attractor” that might help
to define a common phenotype for AML progenitor cells
by combining Microwell-seq with SMRT sequencing. Fi-
nally, we investigated the potential targets by making
comparisons with the Human Cell Landscape. These
datasets have deepened our understanding and might
open a way for novel diagnostic and therapeutic strat-
egies in AML.

Results
Analysis of normal BMMC hierarchy
To gain insights into the heterogeneity of normal and
malignant hematopoiesis, we first profiled the hetero-
geneity in normal BMMCs. We used Microwell-seq on
three healthy donors and established the analysis pipe-
line (Fig. S1A) [21]. We performed t-Distributed sto-
chastic neighbor embedding (t-SNE) analysis of
individuals (Fig. S1B and Supplementary Table 1). The t-
SNE map of 8561 normal BMMCs of three healthy do-
nors is shown in Fig. 1a, b. According to the gene ex-
pression patterns, we identified lymphoid, erythroid, and
myeloid lineages (Fig. 1a, c and Supplementary Table 2)
[22, 23]. Neutrophils are divided into three main types,
neutrophil A, B, and C, along with three extended types,
neutrophil D, E, and F (Fig. S2A and Supplementary
Table 2). The related marker genes are shown in Fig.
S2B, C.
To perform lineage trajectory analyses, we integrated an-

other 2000 hematopoietic stem/progenitor cells (HSPCs)
and 2719 peripheral blood mononuclear cells (PBMCs)
from our previous study to get a total of 13280 healthy cells
[24]. Using partition-based graph abstraction (PAGA), we
revealed distinct developmental branches and built a tran-
scriptional landscape for normal human hematopoiesis
(Fig. 1d-f and Supplementary Table 3). The expression
levels of marker genes change in the myeloid path, in con-
formity to the t-SNE analyses above (Fig. 1g).

Identifying the progenitor cell cluster of de novo AMLs
We then moved on to understand the cellular hier-
archy in AMLs. Forty newly diagnosed patients were
recruited for Microwell-seq analysis (Supplementary
Table 4). AML cell groups were less distinct when
compared with those of healthy bone marrow. The
presence of significant transcriptome variation and
lack of cell cluster boundaries were the most com-
monly shared phenotypes among single-cell data from
different patients (Fig. S3, S4). To gain an integrative
view of the different AML samples, we removed the
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batch effect and generated an overall t-SNE map with
40 patients and 3 healthy donors (Fig. 2a, b, S5A, and
Supplementary Table 5). The AML cell landscape
contains 20 clusters. The clusters of neutrophil,

monocyte, erythroid cells, and lymphoid cells were
shared by both normal and AML BMMCs. However,
there was a cloudy cluster at the center with no func-
tional maker genes (Fig. 2c).

Fig. 1 Analysis of normal BMMC hierarchy. a, b t-SNE analysis of normal BMMCs. Clusters and individuals are labeled in different colors and
numbers. c Violin plots of differentially expressed genes. The horizontal axis shows the clusters. d, e PAGA analysis of normal BMMCs, PBMCs, and
HSPCs. Clusters and samples are labeled in different colors and numbers. f Trajectory analysis of BMMCs, PBMCs, and HSPCs. g Heatmap of marker
genes in neutrophil and monocyte pathways. Black and white represent high and low expression levels, respectively
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The genetic network demonstrates that this cluster has
a close relationship with myeloid cells (Fig. 2d), and the
correlation analysis suggests a resemblance to HSPC

(Fig. 2e). Therefore, we named it AML progenitor cell
cluster. Using a single-cell mapping pipeline, we esti-
mated its similarity to immune cells in the Human

Fig. 2 Identifying the progenitor cell cluster of de novo AMLs. a, b t-SNE analysis of AML and normal BMMCs. Twenty clusters, 40 patients, and 3
normal donors are labeled in different colors and numbers. c t-SNE analysis of BMMCs. AML and normal cells are labeled in different colors.
Different cell types are surrounded by dotted lines. d Connection network map of the clusters. Each cluster is represented by three octagons.
Clusters correspond to those in a. e Correlation matrix of clusters in normal and AML cells. Red and blue represent high and low correlations,
respectively. The X- and Y-axis represent the AML and normal cell. f Single-cell blast results of AML cells. Each row represents cells in AML. Each
column represents one cell type in HCL reference. The length of cell type bar represents the cluster number. Red and gray represent high and
low correlations, respectively
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Cell Landscape (HCL) (http://bis.zju.edu.cn/HCL/
index.html) [25]. Unlike the normal cells in Fig. S5B,
the AML progenitor cell cluster was not able to
match any normal human hematopoietic or non-
hematopoietic cells (Fig. 2 f). This phenomena was
also obvious when taking the normal BMMCs as indi-
vidual references (Fig. S5C, D).

Characterizing the single-cell gene expression patterns of
AML progenitor cell cluster
Since the AML progenitor cells were similar to the
HSPCs, we further used the volcano plot to explore the
genes with similar expression levels. When compared to
the myeloid cells, AML progenitor cells and HSPCs had
many upregulated genes in common, especially the

Fig. 3 Characterizing the single-cell gene expression patterns of AML progenitor cell cluster. a Volcano plot of DEGs between progenitor cells (HSPCs
and AML progenitor cells) and myeloid cells. Yellow represents the common genes shared by both HSPCs and AML progenitor cells. Gray represents
the unique genes in HSPCs or AML progenitor cells. Orange represents the common ribosomal protein (RP) genes shared by both HSPCs and AML
progenitor cells. The dots on the right represent the higher expressed genes in progenitor cells, and those on the left represent lower. b Metascape GO
analysis for viewing top enrichment terms in AML progenitor cells. Color shows the p value. c Heat map of top DEGs among HSPCs, AML progenitor
cells, and myeloid cells. Cell type and individual are indicated by the colored bars. Individual includes the AML patients and HSPC donors. d–g Violin
plots of DEGs among HSPCs, AML progenitor cells, and myeloid cells. The genes are related to hematopoietic development (d), primitive state (e), AML
(f), and other solid tumors (g) in previous studies. h VIPER plot of activated (red) and repressed (blue) TFs in AML progenitor cells. The gene expression
signature is rank-sorted from the one most downregulated to the one most upregulated in the AML progenitor cells vs. HSPCs. The column on the
right shows the activity level
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ribosomal protein (RP) genes (Fig. 3a and Supplemen-
tary Table 6). To confirm our results, we compared
three projects of the Cancer Genome Atlas (TCGA) con-
taining AMLs and one Gene Expression Omnibus
(GEO) series containing normal samples. Among the RP
genes detected in our study and public databases, the ex-
pression levels of 71 RP genes were higher in at least 1
TCGA project, and 53 RP genes were higher in all the 3
TCGA projects (Fig. S6a). Using Metascape analysis, we
illustrated that AML progenitor cells had a high tran-
scription activity (Fig. 3b, Fig. S7A).
Despite this similarity, there are also differentially

expressed genes (DEGs) among HSPCs, AML progenitor
cells and myeloid cells (Fig. 3c). The gene expression
patterns revealed that the AML progenitor cells were in
the intermediate state from HSPCs to differentiated
myeloid cells. Specifically, the expression levels of
GATA2, SPI1 (PU.1), and MPO in AML progenitor cells
were in the middle (Fig. 3d). GATA2 and SPI1 (PU.1)
are key genes in hematopoietic development, and MPO
is the myeloid marker gene [26]. However, some genes
involved in the primitive state are expressed highest in
the AML progenitor cells, such as SOX4, FOS, and
ITM2A (Fig. 3e) [27–29]. Further, CD99, CFD, RACK1,
FTL, B2M, and ADA are overexpressed in AML pro-
genitor cell cluster, and previous studies found a rela-
tionship between these genes and AML (Fig. 3f) [30–35].
The AML progenitor cells also highly expressed genes
such as TMSB10, SH3BGRL3, MGST1, MRPL33, and
MARCKSL1, which were associated with solid tumors
but not previously reported in AML (Fig. 3g) [36–40].
All these highly expressed genes were confirmed by
TCGA (Fig. S6B, C).
We performed VIPER (Virtual Inference of Protein-

activity by Enriched Regulon) analysis in order to suggest
transcription factor (TF) activity in AML progenitor
cells [41]. It uses the expression of genes that are regulated
by a given TF as an accurate reporter of its activity. Among
the top differentially expressed TFs in myeloid cells in
comparison to HSPCs, TFs involved in hematopoietic de-
velopment, such as SPI1, KLF5 and JDP2, were activated
(Fig. S7B) [42, 43]. However, TFs involved in malignancy,
such as SMARCC1, HOXA9, and HOXB3, were active in
AML progenitor cells (Fig. 3h) [44–46].
FLT3 is overexpressed in both mutated and non-

mutated malignant cells with FLT3-ITD being one of the
most common mutations in AML [26, 47]. We selected
the mutated and non-mutated cases of various expression
levels and found that FLT3 was mainly accumulated in
AML progenitor and proliferating cell clusters (Fig. S7C).
Altogether, we identified a high transcriptional activity

progenitor cell group in AMLs and presented cellular
hierarchies of BMMCs in healthy and AML state at the
single-cell level.

Intratumoral heterogeneity in AML progenitor cells
predicts prognosis
Despite common characteristics, AML progenitor cells
vary among patients (Fig. S5A). We subdivided the com-
mon AML progenitor cell cluster to characterize the po-
tential heterogeneity. With respect to the top marker
genes, we clustered AML progenitor cell cluster into 16
clusters and summarized them into four groups (Fig. 4a,
Supplementary Table 7). C1, 2, 3, 4, and 11 were RP
gene high clusters. The rest included neutrophil-like,
monocyte-like, and myeloid cell-like clusters (Fig. 4a, b).
Generally speaking, our clustering is consistent with the
French–American–British (FAB) classification; however,
it is more detailed and is better at revealing the func-
tional states of AML progenitor cells based on single-
cell transcriptomic data. For example, the cells belonging
to M5 patients can be divided into four clusters, C5, C9,
C12, and C14 (Fig. S8A).
Enrichment analysis using Metascape analysis revealed

that different clusters had different functional prefer-
ences. In RP gene high clusters, C1 and C2 were active
in regulating the actin cytoskeleton. C4 was related to
the P53 pathway. C11 was rich in cancer proteoglycans.
In neutrophil-like clusters, C5 and C15 were related to
the IL-17 signaling pathway and translational misregula-
tion in cancer. C7 and C8 were rich in MYC targets (Fig.
4c, Fig. S8B, C). Moreover, the cycling cells also varied
among the clusters, indicating the different proliferating
states (Fig. S8D).
We used the weighted correlation network analysis

(WGCNA) to explore the gene regulatory network in
AML progenitor cells and identified 18 modules accord-
ing to the co-expression patterns (Fig. S8E). Among
these, one module was dominated by RP genes (Fig.
S8F). We presented the network of this module using
genes with top weighted connectivity. All the RP genes
in this module could be found in RP gene high clusters
(Fig. 4d). Besides their role in transcription, the genes in
this module were equally strongly related to tumor-
associated terms, suggesting their roles in AML progres-
sion (Fig. 4e).
We subsequently investigated whether the cell propor-

tion of specific clusters predict prognosis. Twenty-five
patients with IA as the first regimen were tracked.
Among these, 18 patients were in remission after the
first regimen. The AML progenitor cells of 16 out of 18
patients were mostly distributed in neutrophil-like,
monocyte-like, and myeloid cell-like clusters. Seven pa-
tients of the 25 were not in remission after the first regi-
men. The AML progenitor cells of four of these seven
patients were mostly in the RP gene high clusters (Fig.
4f, Fig. S8G). We supposed that the progenitor cells in
RP gene high clusters may possess limited differentiation
ability leading to the lower rate of remission. In addition,
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we summarized a list of DEGs in these clusters (Supple-
mentary Table 8).
We attempted to classify all AML samples from a

single-cell perspective. We found that individual t-SNE

maps could be grouped into two types based on the pro-
portion of cells in the AML progenitor cluster (C1), with
a 50% boundary. In type I, cluster 1 was the largest clus-
ter containing more than 50% of total cells (median

Fig. 4 Intratumoral heterogeneity in AML progenitor cells predicts prognosis. a Subdivision t-SNE analysis of AML progenitor cells. Sixteen clusters are
classified into four groups and are labeled in different colors and numbers. b Relative proportion analysis of four cell groups in a. Cells of different FAB
subtypes are labeled in different colors. c Metascape KEGG pathway analysis for viewing enrichment terms in 16 clusters. Color shows the p value. d
Visualization of the network with the genes of top weighted connectivity in the RP gene module. The circles represent the RP genes, while the colors
show the genes in different clusters. e Metascape GO analysis for viewing top enrichment terms in the RP gene module. Color shows the p value. The
terms in blue are associated with ribosome biogenesis, and in red are tumor-related. f Pie charts displaying cell distribution of AML progenitor cells of
16 clusters belonging to four cell groups. The patient ID is on the top of each chart. The subtype is on the bottom
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proportion, 80.77%, average proportion, 77.81%). Type II
patients had smaller C1 (median proportion, 30.50%,
average proportion, 31.66%) (Fig. S3, S4 and Supplemen-
tary Table 1). Patient 2, 3, 4, 5, 6, 8, 9, 12, 14, 15, 21, 22,
24, 29, 30, and 34 were classified into type I patients,
and the rest were type II patients. This grouping ap-
peared to be independent of known AML subtypes (FAB
or World Health Organization classification) given that
we found both type I and II patients in every AML sub-
type (Supplementary Table 4) [48, 49].
During prognosis evaluation, we found that the elderly

tended to be type I patients, and it seemed more difficult
for the type I patients to reach complete remission (CR)
(Fig. S8H). Excluding the patients who were lost to
follow-up, the CR rate was 55.56% (5/9) for type I, and
84.21% (16/19) for type II after the second regimen (p <
0.05, Hypergeometric test). The 1-year survival rate was
53.3% for type I and 70.0% for type II (Fig. S8I). Al-
though there was no statistical significance (p = 0.198,
log-rank test), we found that more type I patients died
shortly after diagnosis, even before the initiation of
treatment.
Altogether, we found that a high expression levels of

RPs in AML progenitor cells was a predictor of poor prog-
nosis providing a new perspective for the classification of
AML.

Clinical implication of AML progenitor cells from
diagnosis to relapse
The cellular hierarchy of leukemia cells changes from
diagnosis to relapse. We applied the Microwell-seq to
four individuals both before and after treatment regi-
mens (Fig. S3, S9 and Supplementary Table 1). P-extra 1
and 2 were in CR. The BMMCs of P-extra 1 were col-
lected before the second regimen, while those of P-extra
2 were collected during myelosuppression after the first
regimen. P20 was in relapse while P04, with myelomo-
nocytic leukemia, was in partial remission with normal
neutrophil and abnormal monocyte levels after
the regimen.
Using uniform approximation and projection (UMAP),

we visualized cells before and after treatment, and sum-
marized the findings in a bar plot. We took N02 as nor-
mal control. Circos plot showed the relationship among
different states. Heatmap revealed the highly variable
genes.
As in remission, most cells in P-extra 1-post overlap

with normal cells (Fig. 5a and Supplementary Table 9).
This was equally confirmed by cell number count, as the
amount of AML progenitor and proliferating cells re-
duced, and neutrophils increased (Fig. 5b). The circos
plot revealed a correlation among the three states (Fig.
5g). The clusters of myeloid cells at remission were
linked to those in normal, while the AML progenitor

cells deviated from the normal. Log-normalized data of
highly variable genes were plotted on the heatmap.
Interestingly, the RP and primitive genes were high at
diagnosis, but low after remission. The neutrophil genes
showed an opposite trend (Fig. 5j). For P-extra 2, al-
though the myelosuppression led to a high proportion of
lymphocytes, the results were similar (Fig. S10).
As in relapse, the progenitor cells of P20-post still dom-

inate the bone marrow (Fig. 5c, d and Supplementary
Table 9). In the circos plot, the progenitor cells at relapse
were still connected with the same cluster at diagnosis, in-
dicating an abnormality (Fig. 5h). The expression levels of
RP and primitive genes in P20-post remained high (Fig.
5k). In addition, we summarized the up- and downregu-
lated genes in AML progenitor cells at relapse (Supple-
mentary Table 10).
As in partial remission, the cells of P04-post were

partly mixed with those in normal, and the number of
progenitor cells declined slightly (Fig. 5e, f and Supple-
mentary Table 9). In the circos plot, there was a connec-
tion between normal and some P04-post clusters (Fig.
5i). The expression levels of RP and primitive genes in
P04-post were lower than those in P04-pre (Fig. 5l).
These results indicate that the expression levels of spe-

cific genes, especially the RP genes, can be used to evalu-
ate tumor progression. It also proves that Microwell-seq
is a useful tool for evaluating curative effects.

Resolving intratumoral heterogeneity in monocytic
leukemia AMLs
We then focused our analysis to one AML subtype, M5,
and integrated all the 15 monocytic leukemia data in our
study. Although standard induction chemotherapy in-
duces remission in most patients with AML, patients
with refractory disease show poor sensitivity to treat-
ment [50]. In our study, P06, P14, and P16 had refrac-
tory disease; the rest 12 were non-refractory patients.
The AML progenitor cells varied greatly across pa-

tients (Fig. S11A). We randomly selected 12000 cells in
refractory and non-refractory patients, and distinguished
unique clusters of refractory (C5) and non-refractory
(C13) patients (Fig. S11B-E, Supplementary Table 11).
Gene set enrichment analysis (GSEA) revealed that
MYC, SRC, RELA, the proto-oncogenes, and MTOR
were overexpressed in C5 in comparison to C13, sug-
gesting its malignant properties (Fig. S11F). According
to the TCGA, high expression levels of SRC and MTOR
are predictors of poor prognosis (Fig. S11G). Gene
Ontology (GO) analysis using EnrichR revealed other
enriched terms in C5 (Fig. S11H and Supplementary
Table 12). The TFs, such as CEBPG, GATA2, MAX, and
JUN, were active in C5, while CEBPE, GATA1, MAZ,
and JUND were active in C13 (Fig. S11I). All these
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Fig. 5 Clinical implication of AML progenitor cells from diagnosis to relapse. a, c, e UMAP analysis of normal and AML individuals before and
after treatment regimen. The AML individuals are in remission (P-extra 1, a), relapse (P20, c), and partial remission (P04, e). The normal sample is
N02. Colors represent clusters in left panels, and individuals in the right panels. b, d, f Relative proportion analysis of clusters in normal and AML
individuals. Cell types are labeled in different colors. g–i Circos plots showing the correlation of clusters. The similar clusters are connected by
lines. j–l Heatmap of differentially expressed marker genes. Each row represents marker genes of each cell type. Each column represents cells in
different status. Red and yellow represents high expression level while blue represents low levels
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differences could lead to differences in responses to
treatment.

The association of genetic mutation with cellular
hierarchy by SMRT sequencing at single-cell level
For the limitation of coverage, the 3′ single-cell tran-
scriptome analysis failed to identify key mutations in
leukemia. We, therefore, integrated long-read sequen-
cing with the Microwell-seq experiment. We used
the targeted upstream primer and universal downstream
primer to amplify specific genes from single-cell cDNA
for SMRT sequencing, so that we could get both the
mutation sites and cell barcodes (Fig. 6a).
Previous studies reported that mtDNA mutations pro-

vide innate and natural barcodes to infer clonal associa-
tions [19, 51]. We chose MT-ND4, a mitochondrial
gene, for lineage tracing using SMRT sequencing. We
identified the heteroplasmic variants of MT-ND4 from
single cells of patient P25, P10, and P17. After filtration,
we got the average of 3406 reads aligned to the MT-
ND4 transcript reference. The average sequencing depth
for mutation sites was 3041. Among these, about 711
reads could be projected to the UMAP per sample. We
separated these cells into several subclones with respect

to their unique mutations (Fig. S12A-C). Monocle3/
UMAP was adopted to display the trajectories of mye-
loid, erythroid, and lymphoid lineages using Microwell-
seq (Fig. 6b, Fig. S12D-E and Supplementary Table 13).
Interestingly, these subclones exhibited poor correlation
with cell phenotypes. All the MT mutation subclones
were detected in different cell lineage clusters, suggest-
ing that multiple cell clones might contribute to the
AML hierarchy, and different cells might fall into a simi-
lar type of “attractor” in AML (Fig. 6c, Fig. S12D, E)
[52].
Theoretical studies suggested that complex networks

may exhibit ordered or stable dynamics, raising the pos-
sibility that the fates of cell may represent attractor
states [53]. Based on our observation of shared AML
progenitor stages among different patients and shared
single-cell transcriptome states among different MT mu-
tation cell clones, we proposed the existence of a “cancer
attractor”. To explore the transcriptional regulation net-
work (TRN) of this potential cancer attractor state, we
applied an algorithm for the reconstruction of accurate
cellular networks (ARACNe) and VIPER to form the
network [41, 54]. Fig. 6d-f shows the core genes of the
attractor networks of AML progenitor cells (D), AML

Fig. 6 The association of genetic mutation with cellular hierarchy by SMRT sequencing at the single-cell level. a Procedures for acquiring mutation
information from single cell, and the following analyses. b Trajectory analysis of P25 using UMAP/Monocle 3. Clusters are labeled in different colors
and numbers. c Clone projection of P25 using UMAP/Monocle 3. Clones are labeled in different colors. d-f Visualization of attractor networks with the
core genes of the AML progenitor cells (d), AML myeloid cells (e), and normal myeloid cells (f) in comparison to HSPCs
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(E) and normal (F) myeloid cells in comparison to
HSPCs in P25 patients. YBX1 and NFE2L2 were de-
tected in all the three networks, while CEBPD, SPI1,
GFI1, NCOR1, and ZNF780A were only in normal and
AML myeloid cell. CAMTA1, CEBPG, HOXA10, LRRF
IP1, and MAFB were shared by AML myeloid and pro-
genitor cell. Other genes in Fig. 6d, such as MYB,
RUNX2, and YY1, were unique in AML progenitor cells
of P25 and could be the determinants of its cancer at-
tractor. P10 and P17 also had their own attractor net-
works (Fig. S12F-I).

AML target searching based on the HCL
Since the HCL has been constructed, it triggered our in-
terests to explore the DEGs, which are high in AML but
low in other tissues at single-cell level (Fig. S13A) [25].

After the comparison of two databases, we got a list of
highly expressed genes in AML (Supplementary Table
14). Among the top 10 genes, FLT3 is well-known, and
POU4F1 has also been reported [55]. Moreover, half of
them are lncRNA. Others are PRSS21, CCL1, and
DNTT (Fig. 7a and Fig. S13B). Correlation analysis re-
vealed that these top 10 genes belong to two networks
along with their most relevant genes in AML (Fig. 7b).
The RP genes play important roles in both networks.
Further, we investigated the top 5 relevant protein-
coding genes in AML progenitor cluster which turned
out to be tumor or myeloid differentiation-related (Fig.
7c) [56–61].
Combined with the TCGA, we found that there were

three other genes that contributed to the malignancy
(Fig. 7d and Fig. S13C). MYB is a novel TF in cancers

Fig. 7 AML target searching based on the HCL. a Feature plots of genes in AML map and HCL. The left panel is the AML map and the right is
HCL. Gene expression levels are indicated by blue and yellow. b Correlation networks of the top 10 highly expressed genes and their most
relevant genes in AML. The top expressed genes are the core genes in blue. The most relevant genes are in green and purple (RPs). c The top
expressed AML genes and their most relevant protein-coding genes in AML progenitor cluster. d Feature plots of MYB, CCNA1, and RAB37 in
the AML map and the HCL. The left panel is AML map and the right is HCL. Gene expression levels are indicated by blue and yellow. e The
interacting gene analysis using pathway commons. The blue, red, and yellow lines represent the binding, expression-controlled, and state
change-controlled (modification) genes, respectively
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[62]. Although it could hardly be targeted directly, we
could pay attention to the interacting genes. CCNA1, a
cyclin, and RAB37, a GTPase, are less discussed. They
and their linked genes might also be potential targets
(Fig. 7e and Fig. S13D).
Altogether, we believe that the comparison of gene ex-

pression atlases between AML and normal HCL will be
helpful for the exploration of novel and specific targets.

Discussion
The emergence of the single-cell technologies permits
the dissection of cellular heterogeneity with genome,
epigenome, transcriptome, and proteome analyses [63,
64]. Advances in technology deepens our understanding
of the molecular mechanism underlying healthy and ma-
lignant hematopoiesis [65]. Previous studies have been
designed to study leukemia from diagnosis to prognosis
[12, 66–68]. However, limited scales and technical
consistency constrained them to draw a generalized pic-
ture of AML at the single-cell level. Herein using
Microwell-seq, a high-throughput single-cell mRNA se-
quencing platform, we collected data from a large num-
ber of cells and carried out an integrative analysis on up
to 40 patients.
Previous studies have reported the deregulation of

ribosomal proteins (RPs) in human malignancies [15].
RPs confer a selective advantage to malignant cells [16].
They have been associated with malignant cells through
extra ribosomal functions related to proliferation, DNA
repair, apoptosis, and cellular homeostasis [69]. In
addition, they play a critical role in the acquisition and
maintenance of cancer stem cell phenotype [70]. The
impairment of ribosome biogenesis leads to p53 induc-
tion and cell cycle arrest [71]. Innovative drugs, which
hinder ribosome biogenesis to stabilize p53, have shown
preclinical activity and are currently in early clinical de-
velopment in hematological malignancies [72]. In our
study, we found that the AML progenitor cells were
characterized by a high expression level of multiple RP
genes, which were involved in the p53 pathway. The dys-
regulation of transcriptome might lead to failure of
remission.
There were limitations and bias in the comparison

of the CR rate and survival rate in type I and II pa-
tients in our study. Our sample size was small, and
we were not able to track all the patients. Some pa-
tients chose other hospitals for better treatment, and
some patients, especially the elderly ones, go back
home without treatment, or died from other diseases
at the beginning of treatment, such as cerebral
hemorrhage and atrial fibrillation. The elderly patients
with good prognosis were more likely to receive con-
tinuous treatment, and this might lead to bias.

The combination of the next-generation sequencing
and the targeted long-read sequencing is able to iden-
tify the mutations at a single-cell level. The targeted
sequencing is for bulk sample, ignoring the clus-
ter heterogeneity. Single-cell next-generation sequen-
cing is harped by the coverage. It only sequences 150
bp from poly A, failing to identify mutations, which
usually locate thousands of bases away. Previous stud-
ies have combined long-read nanopore sequencing
with short-read based transcriptome profiling of bar-
coded single cells to track the clonal changes [73, 74].
Though nanopore sequencing provides high through-
put, the SMRT sequencing of PacBio sequences a
molecule multiple times to generate high-quality data
and has a better overall performance [75]. In our
study, SMRT sequencing was combined with
Microwell-seq, so that the mutations with barcodes
could be detected and associated with cell
transcriptome.
Mitochondrial mutations are usually heteroplasmic,

and the cell can tolerate a high percentage level of this
variant before the biochemical threshold is exceeded
[76]. Our study regarded the mtDNA mutation as the
clue of lineage tracing and found that the same pheno-
type contained multiple clones, implying that there were
certain key attractors responsible for determining the
switching between different states [77].
As Waddington’s landscape has explained, the at-

tractor state is regulated by underlying gene regula-
tory network [78]. Based on theory of gene regulatory
networks, cancer cells also represent attractor states
of the network dynamics [79]. Our study described
the gene regulatory networks of AML progenitor cells
and made comparisons with the normal and AML
myeloid cell. For therapeutic purposes, it gives us a
hint that drugs which help tumor cells exit from the
cancer attractor and entry into a benign attractor may
reduce tumor burden [80].
The treatment of AML has changed substantially in

recent years. New targeted drugs have emerged, includ-
ing midostaurin and gilteritinib to target FLT3, and ivo-
sidenib and enasidenib to target mutant isocitrate
dehydrogenase 1 and 2 [81]. The best responses to treat-
ment are seen when these agents are combined with
conventional chemotherapy [82]. Based on the compari-
son between AML map and HCL at a single-cell level,
we proposed CCNA1 and RAB37 as new potential drug
targets. They are highly expressed in only AML progeni-
tor cell cluster rather than other tissues. Cell cycle regu-
lators are considered attractive targets in cancer therapy
[83]. CCNA1 is a suitable immuno-therapeutic target for
future clinical trials, and generating donor-derived
CCNA1-specific T cells seems to be a possible approach
to prolonged disease remission in post-HSCT patients
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[84]. An aberrant expression of Rab proteins has been
reported in multiple cancer types [85]. The underlying
mechanism of RAB37 in lung cancer has been widely
discussed [86]. However, there has been no study in
AML. Moreover, transcription factors like MYB and
some lncRNAs have significantly different levels of ex-
pression between AML progenitor cells and normal tis-
sues. Even though they have barely been considered as
priority targets, focusing on their interacting proteins
might control their expressions [62, 87]. We hope
that our study will bring new insights into AML targeted
therapy.

Conclusions
In our study, we analyzed 191727 cells from 40 patients
with AML using Microwell-seq to establish a single-cell
AML landscape. We identified a malignant AML progeni-
tor cell cluster with novel AML markers. Patients with RP
high progenitor cells had a low remission rate. Based on
the AML landscape, we deduced two types of AML with
diverse clinical outcomes. We showed that a single-cell
analysis could be used to predict and evaluate the thera-
peutic effect. Finally, by combining Microwell-seq with
SMRT sequencing, we traced mitochondrial mutations in
the AML landscape and demonstrated a lack of associ-
ation between AML clones and the transcriptomic pheno-
types. Our results suggest that the existence of a
phenotypic “cancer attractor” might help to define a com-
mon phenotype for AML progenitor cells.

Methods
Patient samples and single-cell preparation
Samples were obtained from newly diagnosed patients
with AML at the 1st Affiliated Hospital of Zhejiang Uni-
versity. Patients with AML were diagnosed according to
the FAB classification. Patients diagnosed with other
leukemia types were excluded. Patients with no clinical
symptoms with blast cells in BM < 5%, hemoglobin con-
centration > 90 g/L, platelet > 100 × 109/L, and normal
white blood cells counts were considered to be in CR.
The patients were considered to be in partial remission
when the blast cells in BM < 20%, but > 5%. For relapse,
the blast cells in BM > 20% again after remission. In our
study, patients who were not in remission or partial re-
mission after the second regimen were considered to be
refractory patients. Cells were isolated from bone mar-
row aspirates by Ficoll Hypaque Solution (Haoyang In-
stitute of Biotechnology, Tianjin, China), and diluted to
≈ 200000/ml for Microwell-seq in DPBS.

Microwell-seq
After fabricating the microwell device and synthesizing
the barcoded beads, cells and beads were pipetted onto
the microwell array for lysis. Through reverse

transcription, exonuclease I treatment, cDNA amplifica-
tion, transposase fragmentation, and selective PCR, the
samples were ready for sequencing on Illumina Hiseq
system finally. For the protocol of Microwell-seq, please
refer to our previous articles [21].

Processing of the Microwell-seq data
Standard procedures for processing the Microwell-seq
datasets were performed using the protocols described
in the previously published paper [21]. Reads were
aligned to the Homo_sapiens GRCh38 genome. For cell
quality control, we only retained cells in which more
than 500 transcripts were expressed. Moreover, cells
with high proportion of transcript counts derived from
mitochondria-encoded genes were also excluded. We
used Seurat to perform clustering analysis of single-cell
data from different patients [88, 89]. The filtered digital
gene expression data was log2 (TPM/100 + 1) trans-
formed, and the number of UMI and the percentage of
mitochondrial gene content were regressed out. We cal-
culated around 2000 genes that exhibit the highest cell-
to-cell variation in the dataset for initial principal com-
ponent analysis (PCA). Subsequently, we performed
nonlinear dimensional reduction (t-SNE) analysis with
the presumed number of PCA by the PCElbowPlot func-
tion and JackStrawPlot function. Next, we used the
FindCluster function for clustering cells and applied de-
fault Wilcoxon rank sum test to find markers
expressed differently in each cluster.
Dealing with the huge datasets, we performed a linear

regression on all genes to eliminate batch effects (Scale-
Data function) and drew the 40 AMLs map using the
Python-based package Scanpy [90]. Taking into account
the gene expression in malignant cells largely set by
patient-specific factors, in order to explore the hetero-
geneity of AML progenitor cells, we first worked to re-
move features from a single patient. We first clustered
the malignant cells of each patient into many small sub-
groups without supervision at a high resolution and cal-
culated the average gene expression of the cells in each
subgroup as its expression characteristic. These sub-
groups were clustered into different modules using the
method of ward. We discarded D2 and those consisting
of only a single patient. Then, the main signature genes
of each remaining module were found using the function
FindAllMarkers in Seurat. We subsequently used the
500 more signature genes found to cluster all AML pro-
genitor single cells in Seurat according to the above
process. To reveal the heterogeneity in refractory and
non-refractory patients, we randomly selected 12000
cells in refractory and non-refractory patients. Seurat3
was used to integrate different datasets for comparative
analysis (https://satijalab.org/seurat/v3.0).
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PAGA analysis of cell clustering
We constructed a symmetrized kNN-like graph in order
to reveal the relationships among PBMC, BMMC, and
HSPC, using the approximate nearest neighbor search
with ForceAtlas2. We adopted the Louvain algorithm in
the implementation at suitable resolutions to determine
all partitionings of interest of the kNN-like graph [91].

Single-cell trajectory analysis
Using PAGA analysis, we estimated pseudotime. An ex-
tended version of diffusion pseudotime reference that
accounted for disconnected graphs was used. It con-
sisted in a simple modification of the original algorithm
that accounted for disconnected Eigen-subspaces of the
graph adjacency matrix, which resulted in multiple sub-
spaces of Eigen value 1 of the graph transition matrix.
We assigned an infinite distance to cells that resided in
disconnected clusters and computed distances among
cells within connected regions in the graph. For PAGA
path, it averaged all single-cell paths that passed through
the corresponding groups of cells and permitted the tra-
cing of gene expression changes along complex trajec-
tories at single-cell resolution [91].

Cell-cell interaction network
We built cell-cell correlation-based networks in order to
understand the relationships between different sub-
groups. The gene expression profiles for the AML map
were normalized to the total number of transcripts and
multiplied by 100000. We equally used pseudo-cells.
Each pseudo-cell was an average of 50 cells with most
genes detected from the same cell type. Using Pearson’s
correlation, we formed a correlation network between
these cells. Edges with r > 0.65 were considered signifi-
cant. The network was visualized using Cytoscape with
the “edge-weighted spring embedded” layout [92].

Correlation analysis
The gene expression profiles for the AML map were nor-
malized to the total number of transcripts and multiplied
by 100000. We used pseudo-cells to reduce the effects of
noise and outliers. Each pseudo-cell was an average of 20
cells randomly selected from the same cell type [93].
Then in order to compare the relationships of each cell
type, the MetaNeighbor analysis was performed [94].

Single-cell blast analysis
In our previous study, we employed the scHCL reference
and the normal bone marrow reference, which was built
in the same method of integrating the top 20 marker
genes for each normal bone marrow cluster to a gene list
and used the average expression values. Pearson’s corre-
lations between the sample cells and cell types were

calculated, and the highly correlated relationship were
shown by the heatmap.

Differential expression analysis
Differential expression tests were performed using
MAST, which fits a hurdle model to the expression of
each gene, consisting of logistic regression for the zero
process (i.e., whether the gene is expressed) and linear
regression for the continuous process (i.e., the expres-
sion level) [95]. In order to understand the characteris-
tics of the AML progenitor cell cluster, we first
compared AML progenitor cells and HSPCs to control
myeloid cells respectively, then compared each against
the remaining two to obtain cell type-specific genes.
Specifically, we used the regression formula “Expi =
nGene + Celltype”, where “Expi” is the standardized log2
(TP10K + 1) expression vector for gene i across all cells,
“Celltype” is a binary variable reflecting cell identity, and
“nGene” is the number of genes detected in each cell.
Cells were evenly downsampled across groups so that a
maximum of 10000 cells were tested for each cell type.
The discrete and continuous coefficients of the model
were both retrieved and p values were calculated using
the likelihood ratio test in MAST. Differential expression
coefficients and p values corresponding to the discrete
component were used for the heatmap and volcano plot
and subsequent analyses.

Gene expression difference analysis with TCGA high-
throughput (HT) sequencing data
We downloaded HT seq count datasets with 274 sam-
ples of “Primary Blood Derived Cancer−Bone Marrow”
in TCGA and 4 samples of “Healthy Bone Marrow” in
GSE118476 for gene expression difference analysis. The
R package DEseq2 was used to normalize the HT seq
count datasets; then, the R package ggplot2 and ggpubr
were used to perform Wilcoxon’s test and to add signifi-
cant difference indicators.

Gene co-expression network analysis
The gene expression profiles for AML progenitor cells
were normalized to the total number of transcripts and
multiplied by 100000. We then used pseudo-cells for
subsequent analyses. Each pseudo-cell was an average of
20 cells randomly selected from the same AML progeni-
tor cell sub-cluster. Thereafter, we inputed the expres-
sion matrix of these pseudo-cells into WGCNA to
calculate the gene co-expression network in tumor cells.
In order to acquire hub genes inside the module, we cal-
culated Module Membership and its p value for each
gene in the module, and selected genes with a module
membership > 0.6 and a p value < 0.01. Then, we
exported the topological overlap matrix of these hub
genes to Cytoscape. Using Cytoscape, we visualized the
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network with the “edge-weighted spring embedded”
layout.

Pre and post regimen comparison
We performed MetaNeighbor analysis in order to com-
pare the clusters pre- and post-treatment, and got the
area under the receiver operator characteristic curve
(AUROC) scores between cell types in different batches
based on the highly variable genes. We used 0.7 as
the AUROC score threshold to show the similarity. We
used the Circlize package to view the similarity of cell
types [96].

GSEA
GO Enrichment analysis of AML progenitor cell marker
genes was performed and presented using an online tool
called Metascape (http://metascape.org). Only the top
100 marker genes of AML progenitor cells and top 50
marker genes of AML progenitor sub-clusters with the
highest Wilcoxon test scores were chosen. The enrich-
ment of refractory signatures of C5 on the C13 signa-
tures was performed by GSEA. The GSEA was
implemented using JAVA downloaded from the Broad
Institute (http://software.broadinstitute.org/gsea). The
master regulator analysis was also performed by compar-
ing C5 against C13 using the msviper algorithm of the
VIPER package (http://bioconductor.org/packages/re-
lease/bioc/html/viper.html).

Survival analysis
The survival analysis of MYC, SRC, RELA, and MTOR
was conducted by using the c-BioPortal (http://www.
cbioportal.org) [97, 98]. The log-rank test was used to
analyze the overall survival rate of 200 AML samples
from TCGA. The samples were divided into subgroups
by mRNA expression Z-scores of targeted genes and the
p value was automatically calculated according to the
online instructions. The log-rank test was also used to
analyze survival rate of type I and II patients.

Long-read single-cell targeted SMRT sequencing
The upstream primer of MT-ND4 was ATGCTAAAAC
TAATCGTCCCA. The universal downstream primer was
TGGTATCAACGCAGAGTAC-s-G-s-T. We used SMRT
Portal, an analytical platform based on a small server in the
lab, after the amplification and sequencing, to get circular
consensus sequencing (CCS) of which quality scores were
above 0.9. Then, we used three linker sequences to further
filter the reads and got the reads including the section that
matched the sequence “ACGT******CGACTCACTA-
CAGGG (linker1 sequence) ******TCGGTGACACGATCG
(linker2 sequence) ************ TTTTTTTTTTTT (linker3
sequence)” for further analysis. Acquired reads were aligned
to transcript references that consisted only of the targeted

gene using minimap2 by the following parameters: -ax splice
-u b -C5 -N0. Only the well-mapped reads were reserved.
Mutations were called using GATK Mutect2 (version 3.8-1,
https://github.com/broadgsa/gatk-protected.git) and visual-
ized by IGV. Then, we projected different variants onto the
UMAP based on the corresponding cell barcode. We quanti-
fied the intersections of mitochondria mutations by the
Upset R package for mitochondria lineage inference. The in-
tersections of mitochondria mutations showed that cells were
separated by several sets of different variants [20].

Master regulator analysis
We deduced the TFs that were candidate drivers of dif-
ferent cell states using the msviper algorithm of the
VIPER package (http://bioconductor.org/packages/re-
lease/bioc/html/viper.html). We first used the ARACNe
to deduce the regulon associated with transcription fac-
tors in paired gene expression signatures for normal
myeloid cells and AML progenitor cells against HSPCs
(https://github.com/califano-lab/ARACNe-AP). The
msviper algorithm prioritized the transcription factors
that were the most likely determinants of an observed
differential expression signature related to state transi-
tion. Most obviously enriched VIPER-inferred transcrip-
tion factors for cell states in normal myeloid and AML
progenitor cells against HSPC were chosen to plot
the viper heatmap. For attractor network inference, we
noticed that the downstream targets of each deduced
transcription factor identified by ARACNe might not be
expressed differently. Therefore, we pruned it by remov-
ing non-differentially expressed downstream targets
(FDR > 0.05). Subsequently, for each attractor state, we
selected transcription factors containing the DEGs that
were the most highly differentially expressed. We ini-
tially calculated a gene score for each downstream target
by multiplying absolute log2(fold change) and −
log10(FDR). For the most obviously enriched VIPER-in-
ferred TFs (FDR < 0.05 and NES > 0), we removed a TF
from our analysis if its target gene scores were not
significantly higher than the gene scores of all the
other DEGs via a one-sided Wilcoxon’s non-
parametric test. This ensured that the remaining TFs
had downstream targets with gene scores significantly
higher than the gene scores of the DEGs that were
not part of each respective TF. Therefore, the
remaining TFs had downstream targets representing
the most highly DEGs. Then, we drew an attractor
network using the selected TFs whose Pearson’s cor-
relation coefficients were calculated using the above
ARACNe-inferred regulating relationship. Edges with
r > 0.3 were considered significant. The network was
visualized using Cytoscape with the “edge-weighted
spring embedded” layout.
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Comparison analysis with the HCL
We performed pseudo-cell processing on the AML pro-
genitor cells and HCL data. Each pseudo-cell was an
average of 20 cells randomly selected from the same cell
cluster. HCL data randomly sampled 50 cells per cluster
(clusters with less than 50 cells retained the original
cells). Then, we performed standardized CPM process-
ing and log1p processing. We used the FindMarkers
function and FindAllMarkers function in the R package
Seurat and analyze the DEGs of 102 HCL cell clusters
(Parameters: min.pct = 0.25, min.diff.pct = 0.25, logfc.-
threshold = 0.25). We extracted the top 20 marker genes
from each HCL cluster and filtered out this part of genes
in the gene set specifically expressed in AML progenitor
cells. Finally, we used the sc.pl.tsne function in Scanpy
to present the overall expression of specific genes in
AML and HCL.

Gene-gene correlation analysis and network
After the pseudo-cell processing above and filtering the
genes expressed in < 3 cells in AML dataset, we used the
Python package pandas to calculate the Pearson’s correl-
ation coefficients between genes. After the absolute-
value processing, we constructed a correlation matrix.
We used the “Circular Layout” in Cytoscape to visualize
the gene-gene correlation network in the top 10 DEGs
and the genes with the highest correlation coefficients in
AML BMMCs. The R package ggplot2 was used to
present the related top 5 protein-coding genes in AML
progenitor cluster.
Gene interaction network was conducted using the

Pathway Commons (http://www.pathwaycommons.org)
and Cytoscape. The TRN was conducted using the Path-
way Net (http://pathwaynet.princeton.edu). The minimum
relationship confidence was 0.5 and the maximum num-
ber of genes was 20.
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