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Abstract

We discuss the multivariate (2L-variate) correlation structure and the asymptotic distribution for 

the group-sequential weighted logrank statistics formulated when monitoring two correlated event-

time outcomes in clinical trials. The asymptotic distribution and the variance-covariance for the 

2L-variate weighted logrank statistic are derived as available in various group-sequential trial 

designs. These methods are used to determine a group-sequential testing procedure based on 

calendar times or information fractions. We apply the theoretical results to a group-sequential 

method for monitoring a clinical trial with early stopping for efficacy when the trial is designed to 

evaluate the joint effect on two correlated event-time outcomes. We illustrate the method with 

application to a clinical trial and describe how to calculate the required sample sizes and numbers 

of events.
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1 Introduction

Event-time outcomes are commonly used for evaluating the effect of a test intervention 

compared with a control. In some disease areas, e.g. HIV, oncology or cardiovascular 

disease, several event-time outcomes are used as the primary endpoints to more completely 

characterize the effect of an intervention on participants. Clinical trials with more than one 

primary endpoint can be designed to evaluate effects for all of the outcomes (i.e. co-primary 

endpoints) or to evaluate effects for at least one outcome (i.e. multiple primary endpoints). 

However, clinical trials with multiple event-time outcomes can be expensive and resource 

intensive as they often require large numbers of participants, collection of massive amounts 

of data, and long duration of follow-up. The use of group-sequential designs has the 

potential to improve efficiency, i.e. offering potentially fewer required trial participants, 

shortening the duration of clinical trials, and thus reducing the costs. Several authors have 

discussed group-sequential designs for multiple continuous or binary endpoints (e.g., Tang et 

al. 1989; Cook and Farewell 1994; Jennison and Turnbull 2000; Kosorok et al. 2004; Hung 

et al. 2007; Glimm et al. 2009; Tamhane et al. 2010, 2012; Asakura et al. 2014). Group-

sequential theory and methods for single event-time outcomes have been studied (e.g., 

Tsiatis 1982; Slud and Wei 1982; Gordon and Lachin 1990; Gu and Lai 1991; Tsiatis et al. 

1995; Lin et al. 1996; Lai and Shih 2004; Gombay 2008; Wu and Xiong 2017), and 

extended for multiple event-time outcomes (e.g., Wei and Lachin 1984; Pocock et al. 1987; 

Wei et al. 1990; Lin 1991; Cook and Farewell 1994) and for paired event-time data (e.g., 

Murray 2000; Andrei and Murray 2005; Jung 2008). Despite the extensive literature in 

group-sequential methods, there is a lack in the theory regarding the asymptotic structure of 

the weighted logrank statistics when group-sequentially comparing multiple event-time 

outcomes. Absence of this theory slows implementation and applying the group-sequential 

methodologies and creates challenges in calculating the power and the required sample size 

for multiple event-time outcomes.

We discuss a fundamental theory and methodology for group-sequential designs based on 

the weighted logrank statistic when monitoring several correlated event-time outcomes in 

clinical trials. We focus on bivariate event-time data rather than multivariate event-times, and 

consider a scenario where both events are non-fatal, as an extension of the existing method 

(Sugimoto et al. 2013). When considering the asymptotic distribution of the group-

sequential logrank statistics, and the two martingale components with event-time outcomes 

are correlated on the different time axes, it is difficult to directly apply standard martingale 

theory for survival analysis, such as Rebolledo’s central limit theorem. We overcome this 

challenge by combining a martingale approach and Ito’s formula, and provide an asymptotic 

formula for group-sequential bivariate logrank statistic. We then apply the asymptotic result 

to group-sequential designs to evaluate a joint effect on both outcomes. We illustrate the 

design methodology with a clinical trial example.

This paper is organized as follows: in Sect. 2 we describe how the group-sequential 

weighted logrank statistic is applied to bivariate event-time data in a clinical trial. In Sect. 3, 

we discuss the asymptotic distribution with an explicit variance-covariance form for the 

bivariate version of group-sequential weighted logrank statistic, fundamental for 

determining the information fraction for each outcome and evaluating the probability of 
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rejecting the null hypotheses. In Sect. 4, we apply the asymptotic result to a group-sequential 

clinical trial evaluating the joint effect on the co-primary endpoints. We outline how both or 

one of the outcomes are monitored and evaluated. In Sect. 5, we summarize the findings and 

discuss their implications.

2 Group-sequential bivariate event-time data and the logrank statistic

Consider designing a randomized group-sequential clinical trial comparing two interventions 

evaluating bivariate event-time outcomes. Suppose that up to the planned maximum number 

of participants nL will be recruited during an entry period and followed to observe the 

bivariate survival outcomes. Further, suppose interim analyses are planned with the pre-

specified maximum number of analyses L. Let nℓ and τℓ be the cumulative total number of 

participants and the analysis time at the ℓth interim analysis, respectively, with n1 ≤ ⋯ ≤ nL 

and τ1 < ⋯ < τL, and let [0, τA] be a period on which the trial recruiting is performed or 

which is planned in advance. The group index of intervention is denoted by j = 2 if the ith 

participant belongs to the test group and j = 1 otherwise. Let n1ℓ and n2ℓ denote the numbers 

of participants assigned to the control and test interventions at the ℓth analysis, respectively 

(nℓ = n1ℓ + n2ℓ), where the fractions nj1/n1,… , njL/nL may be often assumed to be 

approximately equal in each intervention. For i = 1,… , nL and k = 1, 2, let Oi be the ith 

participant’s entry time into the trial, let Tik
∗  be the ith participant’s underlying continuous 

event time for the kth outcomes, and let Ci be the ith participant’s underlying censoring time 

common for the two outcomes, where Oi is the origin time of Tik
∗  and Ci and is usually 

generated from the uniform distribution on the entry period [0, τA], the bivariate time (Ti1
∗ , 

Ti2
∗ ) follows the joint survival distribution denoted by

Sj(t, s) = P (t < Ti1
∗ , s < Ti2

∗ ∣ gi = j),

gi is the ith group index of intervention, and all of the Ci’s follow the identical survival 

distribution C(t) = P(t < Ci) independently of (Ti1
∗ , Ti2

∗ ). Thus, the ith right-censoring time 

occurring at the ℓth analysis is Ci
(ℓ), where

Ci
(ℓ) = min(Ci, max(τℓ − Oi, 0)) .

We will assume no dropouts where we observe Ci = τL – Oi because of well-controlled trial. 

Suppose that Ti1
∗  and Ti2

∗  are non-competing event-times, that is neither event-time is 

censored by the occurrence of the other event, which is typical in the case of non-fatal events 

(Sugimoto et al. 2013). For simplicity on notation, we write O1 ≤ ⋯ ≤ Onℓ ≤ τℓ, although we 

assume that Oi and Oi′ for i ≠ i′ are mutually independent. Hence, we have a series of 

cumulative data set denoted by {(Ti1
(ℓ), Ti2

(ℓ), Δi1
(ℓ), Δi2

(ℓ), gi)}i = 1
nℓ , ℓ = 1,…, L, where 

Tik
(ℓ) = min(Tik

∗ , Ci
(ℓ)) and Δik

(ℓ) = 1{Tik
∗ < Ci

(ℓ)} are the ith observable time and censoring 

indicator for the kth outcome at the ℓth analysis, respectively, and 1{ ⋅ } is the indicator 
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function. The information of (Tik
(ℓ), Δik

(ℓ)) is also represented by the counting process 

Nik
(ℓ)(t) = 1{Tik

(ℓ) ≤ t, Δik
(ℓ) = 1} and the at-risk process Y ik

(ℓ)(t) = 1{Tik
(ℓ) ≥ t}. Denote their sums 

on the group j and the kth outcome by

Njk
(ℓ)(t) = ∑

i = 1

nℓ
1{gi = j}Nik

(ℓ)(t), Y jk
(ℓ)(t) = ∑

i = 1

nℓ
1{gi = j}Yik

(ℓ)(t),

N•k
ℓ t = N1k

ℓ t + N2k
ℓ t  and Y •k

ℓ t = Y 1k
ℓ t + Y 2k

ℓ t .

Also, let λjk(t) and Λjk(t) be the marginal hazard function and its cumulative function for the 

kth event time Tik
∗  in the group j, respectively. Denote the marginal hazard ratio for the kth 

outcome between the two groups by ψk(t) = λ2k(t)/λ1k(t) and let ψ(t) = (ψ1(t), ψ2(t))T.

We are interested in testing sequentially either hypothesis H0
cp = H01 ∪ H02 (for joint effect) 

or H0
mp = H01 ∩ H02 (for at least one effect) using the weighted log-rank statistics, where H0k 

is the single null hypothesis for the kth outcome, “ψk(t) = 1 for all t”. For the bivariate 

event-time outcome with L maximum analyses, we have a set of 2L group-sequential 

weighted logrank statistics,

Z = (Z1(τ1), …, Z1(τL), Z2(τ1), …, Z2(τL))T

composed of

Zk(τℓ) = nℓUk
(ℓ)(τℓ) ∕ V kk

0(ℓ)(τℓ), k = 1, 2, ℓ = 1, …, L

where nℓUk
(ℓ)(t) is the weighted logrank process accompanied with the analysis time τℓ,

Uk
(ℓ)(t) = ∫0

t
Hk

(ℓ)(s){dΛ1k
(ℓ)(s) − dΛ2k

(ℓ)(s)},

V kk
0(ℓ)(t) is the conditional variance of nℓUk

(ℓ)(t) under the null hypothesis H0k,

V kk
0(ℓ)(t) = ∫0

t
Hk

(ℓ)(s)2 1 −
dN•k

(ℓ)(s) − 1

Y •k
(ℓ)(s) − 1

dΛ1k
(ℓ)(s)

nℓ
−1Y 2k

(ℓ)(s)
+

dΛ2k
(ℓ)(s)

nℓ
−1Y 1k

(ℓ)(s)
.

Also, Λjk
(ℓ)(t) = ∫0

tdNjk
(ℓ)(s) ∕ Y jk

(ℓ)(s) is the Nelson-Aalen estimator at the ℓth analysis for the 

kth outcome in the group j, Hk
(ℓ)(s) is the following function including the weight W k

(ℓ)
 of 

the class K (Fleming and Harrington 1991)

Sugimoto et al. Page 4

Lifetime Data Anal. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hk
(ℓ)(s) = nℓ

−1W k
(ℓ)(s)Y 1k

(ℓ)(s)Y 2k
(ℓ)(s) ∕ Y •k

(ℓ)(s),

W k
(ℓ)(s) = f(S•k

(ℓ)(s)) or W k
(ℓ)(s) = f(nℓ

−1Y •k
(ℓ)(s)), f(·) is a nonnegative bounded continuous 

function with bounded variation on [0, 1], and S•k
(ℓ)(s) is the Kaplan-Meier estimator for the 

kth outcome in the pooled sample at the ℓth analysis time τℓ. A well-known fact is that the 

logrank and Prentice-Wilcoxon statistics use W k
(ℓ)(s) = 1 and W k

(ℓ)(s) = S•k
(ℓ)(s−), 

respectively, where s_ is a time just prior to s. The weight W k
(ℓ)

 should be selected 

effectively to detect a clinically significant difference. If there is no prior assumption on a 

specific difference in the clinical significance, the logrank statistic may be adopted, which 

can be interpreted as detecting the difference in the mean hazard rate. Also, one can consider 

an optimality for testing using a special weight into the design, if pilot data or registry 

database are available.

3 Asymptotic structure of the group-sequential bivariate logrank statistic

Asymptotic results regarding the univariate statistic Zk(τℓ) and its group-sequential version 

(Zk(τ1), …, Zk(τL))T have been developed well (e.g., Andersen et al. 1993, X.2). For 

example, Lin (1991) shows that Z converges to a multivariate normal distribution with zero 

means and discuss the estimated variance-covariance matrix, although an explicit form for 

the asymptotic covariance of Z is not provided. Andrei and Murray (2005) provide a more 

detailed expression for the asymptotic covariance among weighted logrank statistics, but it is 

in the context of paired event-time data on the same time axes. To the best of our knowledge, 

a computable explicit form for the asymptotic variance-covariance of Z is not available in 

the literature. Extending the result for Z when L = 1, i.e. for fixed-sample design (Sugimoto 

et al. 2013), we provide the result of the asymptotic distribution of Z with an explicit 

variance-covariance structure for group-sequential design (Theorem 1).

We next provide details for expressing an asymptotic distribution of Z. The limit forms of 

Hk
(ℓ)(t) and nℓ

−1Y jk
(ℓ)(s) are different among the analysis time points as the censoring 

distributions vary with each analysis-time τℓ. Let Hk
(ℓ)(t), yjk

(ℓ)(t) and y•k
(ℓ)(t) denote the limit 

forms of Hk
(ℓ)(t), njℓ

−1Y jk
(ℓ)(t) and nℓ

−1Y •k
(ℓ)(t), respectively. Denote ajℓ = njℓ ∕ nℓ for the sample 

rate of participants assigned to the group j at the ℓth analysis and γℓ = nℓ ∕ nL for the sample 

size ratio between the ℓth and final analyses. Let 
P

 denote the convergence in probability. 

We assume the following regularity conditions.

Condition 1. For each j, ℓ, 0 < ajℓ < 1 is satisfied, where ajℓ is a constant such that 

ajℓ
P ajℓ as nℓ → ∞.

Condition 2. For each ℓ, 0 < γℓ ≤ 1 is satisfied with γ1 ≤ ⋯ ≤ γL, where γℓ is a 

constant such that γℓ
P γℓ as nL ∞.
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Condition 3. For each j, k, ℓ, yjk
(ℓ)(t) > 0 on [0, τℓ] is satisfied with 

τℓ = sup{t :yjk
(ℓ)(t) > 0}, where yjk

(ℓ) is a deterministic function such that, as njℓ → ∞,

sup
t ∈ [0, τℓ]

njℓ
−1Y jk

(ℓ)(t) − yjk
(ℓ)(t) P 0 .

Under our setting, the convergences provided in Conditions 1-2 and Condition 3 are derived 

by the law of large numbers and Glivenko-Cantelli theorem, respectively. Hence, we have 

γℓ = E(γℓ), ajℓ = E(ajℓ) and y•k
(ℓ)(t) = a1ℓy1k

(ℓ)(t) + a2ℓy2k
(ℓ)(t). Note that ajℓ permits changing on 

the analysis time τℓ, but each ajℓ should be fixed at the design stage to control Type I error 

rate. The type of convergence in Condition 1 is usually replaced with the non-probabilistic 

version based on an allocation proceduce. Condition 3 provides limt τℓ + 0 yjk
(ℓ)(t) = 0, 

which means that all at-risk individuals are once censored at the ℓth analysis time τℓ.

Let Cℓ(t) be the survival function of censoring times Ci
(ℓ) when the analysis time is τℓ. Under 

the independent censoring assumption, we can easily show that

yjk
(ℓ)(t) = Cℓ(t−)Sjk(t−) and y•k

(ℓ)(t) = Cℓ(t−)S•k
(ℓ)(t−), (1)

where Sjk(t) = P (t < Tik
∗ ∣ gi = j) is the marginal survival function of Tik

∗  assigned to the 

group j, and S•k
(ℓ)(t) = a1ℓS1k(t) + a2ℓS2k(t). Hence, given the condition that bivariate event-

time outcomes are non-fatal, for t ≤ τℓ, we have

Hk
(ℓ)(t) = W k

(ℓ)(t)Cℓ(t−)a1ℓS1k(t−)a2ℓS2k(t−)
S•k

(ℓ)(t−)
, (2)

where W k
(ℓ)(t) is either f(S•k

(ℓ)(t−)) or f(y•k
(ℓ)(t)) corresponding to the selection of W k

(ℓ)
 in the 

class K, so that Hk
(ℓ)(t) is a deterministic continuous function of bounded variation. In 

particular, when considering a typical group sequential trial, we will assume that participants 

are recruited uniformly on [0, τA], followed up with no dropouts and then will be analyzed 

at the times t = τ1,…,τL. Then we can specify the censoring survival distribution as

Cℓ(t) =
1, 0 ≤ t ≤ τℓ − min(τℓ, τA)
(τℓ − t) ∕ min(τℓ, τA), τℓ − min(τℓ, τA) < t ≤ τℓ,
0, τℓ < t

(3)

(recall τA is the length of the entry period planned in advance). Hence, we have

γℓ = min(τℓ, τA) ∕ τA (4)

under the censoring assumption (3), because it is the averaged ratio of the number of 

participants recruited until the analysis time τℓ.
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Suppose that Z∗ = (Z1
∗(t1), …, Z1

∗(tL), Z2
∗(t1), …, Z2

∗(tL))T follows 2L-variate normal 

distribution N(Dnμ, Σ) with mean vector

Dnμ = Dn
μ1
μ2

= ( n1μ11, …, nLμ1L, n1μ21, …, nLμ2L)T

and variance-covariance matrix

Σ =
Σ11 Σ12
Σ21 Σ22

=

σ1111 ⋯ σ111L σ1211 ⋯ σ121L
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

σ11L1 ⋯ σ11LL σ12L1 ⋯ σ12LL
σ2111 ⋯ σ211L σ2211 ⋯ σ221L

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
σ21L1 ⋯ σ21LL σ22L1 ⋯ σ22LL

,

where Dn = diag( n1, n2, …, nL, n1, n2, …, nL), μk = (μk1,…,μkL)T and Σkk′ = (σkk′ℓℓ′)ℓ,ℓ′. 

That is, for k, k′ = 1, 2 and ℓ, ℓ′ = 1.…, L, the elements of means and covariances for Zk
∗(tℓ)

and Zk′
∗ (tℓ′) are written as

E(Zk
∗(τℓ)) = nℓμkℓ = nℓ

mk
(ℓ)(τℓ)

V kk
0(ℓ)(τℓ)

,

Cov(Zk
∗(τℓ), Zk′

∗ (τℓ′)) = σkk′ℓℓ′ =
V kk′(τℓ, τℓ′ ∣ τℓ, τℓ′)

V kk
0(ℓ)(τℓ)V k′k′

0(ℓ′)(τℓ′)
,

where we assume that the elements mk
(ℓ), V kk

0(ℓ) and Vkk′ are defined by

mk
(ℓ)(t) = ∫0

t
Hk

(ℓ)(x){dΛ2k(x) − dΛ1k(x)},

V kk
0(ℓ)(t) = ∫0

t
Hk

(ℓ)(x)2
dΛ1k(x)

a2ℓy2k
(ℓ)(x)

+
dΛ2k(x)

a1ℓy1k
(ℓ)(x)

,

V kk(t, s ∣ τℓ, τℓ′) =
γℓ ∧ ℓ′
γℓ ∨ ℓ′∫0

t ∧ s
Hk

(ℓ)(x)Hk
(ℓ′)(x)

dΛ1k(x)

a1ℓ ∨ ℓ′y1k
(ℓ ∨ ℓ′)(x)

+
dΛ2k(x)

a2ℓ ∨ ℓ′y2k
(ℓ ∨ ℓ′)(x)

,

V 12(t, s ∣ τℓ, τℓ′) =
γℓ ∧ ℓ′
γℓ ∨ ℓ′∫0

t∫0
s
H1

(ℓ)(x)H2
(ℓ′)(y)Cℓ ∧ ℓ′(x ∨ y)

×
A1(dx, dy)

a1ℓ ∨ ℓ′y11
(ℓ)(x)y12

(ℓ′)(y)
+

A2(dx, dy)

a2ℓ ∨ ℓ′y21
(ℓ)(x)y22

(ℓ′)(y)
,

Aj(dx, dy) = Sj(dx, dy) + Sj(x, dy)dΛj1(x)
+ Sj(dx, y)dΛj2(y) + Sj(x, y)dΛj1(x)dΛj2(y),

Sj(dx, dy) = Sj(x, y) − Sj(x−, y) − Sj(x, y−) + Sj(x−, y−),

Sj(dx, y) = Sj(x, y) – Sj(x_, y), Sj(x, dy) = Sj(x, y) – Sj(x, y_), x ⋁ y = max(x, y) and x ⋀ y = 

min(x, y). The forms provided in (4), (1) and (2) are applied into these elements mk
(ℓ), V kk

0(ℓ)
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and Vkk′. Under Conditions 1 and 3, it is well-known that the univariate weighted logrank 

statistic can be normally approximated (e.g., Fleming and Harrington 1991, Theorem 7.2.1). 

We have the following asymptotic result for the group-sequential weighted logrank statistic 

Z with correlated two outcomes.

Theorem 1 Suppose that Conditions 1-3 are satisfied (ajℓ ∈ (0, 1), rℓ ∈ (0, 1], 

τℓ = sup{t :y1k
(ℓ)(t)y2k

(ℓ)(t) > 0}), and that Sj(t, s), j = 1, 2 are continuous on (0, τL] × (0, τL]. 

Suppose that f(·) is a nonnegative bounded continuous function with bounded variation on 

[0, 1]. For sufficiently large nℓ’s (n1 ≤ ⋯ ≤ nL), the distribution of the 2L-variate weighted 

logrank statistic Z can then be approximated by N(Dnμ, Σ). That is, as nL ≥ ⋯ ≥ n1 → ∞, 

Z − Dnμ converges in distribution to Z* – Dnμ distributed as N(0, Σ), where μ converges in 

probability to μ, μ = (μ1
T, μ2

T)T, μk = (μk1, …, μkL)T, μkℓ = mk
(ℓ)(τℓ) ∕ V kk

0(ℓ)(τℓ),

mk
(ℓ)(t) = ∫0

t
Hk

(ℓ)(x){dΛ2k(x) − dΛ1k(x)},

and 0 is the 2L-dimensional zero vector.

This proof is provided in Appendix A. By conducting simulation stduies to evalaute the 

finite sample behavior for Theorem 1, we found that the asymptotic distribution works well 

in most practical situations if the event rate or sample size is not so small.

Several authors (e.g., Wei and Lachin 1984; Lin 1991) have indicated that the proof can be 

completed by the multivariate central limit theorem and the Cramér-Wald device, leading to 

asymptotic normality, but the asymptotic form of the variance-covariance was not clearly 

defined. The asymptotic form of variance-covariance as described in Theorem 1 has not 

been provided in the context of comparing independent groups with respect to several 

possibly correlated co-primary endpoints. In fact, when two martingale components with 

event-time outcomes are correlated on the different time axes as in this context, it is difficult 

to directly apply standard martingale theory, such as Rebolledo’s central limit theorem, for 

survival analysis (Fleming and Harrington 1991) considering how the covariance of 

martingale components converges. As a reference to overcome the problem, we provide our 

solution based on a martingale approach through the proof of Theorem 1 in Appendix A.

Based on the result of Theorem 1 that the distribution of the weighted logrank statistics, Z, 

can be approximated by N(Dnμ, Σ), we can consider a group-sequential design and the 

asymptotic power for the testing procedure. In our setting, the distribution parameters of the 

mean vector μ and the diagonal block matrix Σkk of Σ are determined by the setting of the 

marginal survival distributions Sjk(t), the censoring survival distributions Cℓ(t), and the 

sample rates ajℓ (k = 1, 2, j = 1, 2, ℓ = 1,…, L). In fact, the proportions γ1,…,γL of sample 

sizes are determined by τ1,… ,τL and τA under the censoring assumption (3). On the other 

hand, in determining the non-diagonal block matrix Σ12 (and Σ21) of Σ, the assumption of 

the joint survival distributions Sj(t, s), j = 1, 2 are required. At the design stage of a trial, one 

convenient setting is to model Sj(t, s) by
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Sj(t, s) = C(Sj1(t), Sj2(s); θ) (5)

where C( ⋅ , ⋅ ) is a copula function (such as Clayton, Gumbel and Frank models), and the 

association parameter θ characterizes the level of dependence between Sj1(t) and Sj2(t) and 

is a one-to-one function of a dependence measure (Hsu and Prentice 1996)

ρj = Corr [Λj1(Ti1
∗ ), Λj2(Ti2

∗ )] = ∫0
∞∫0

∞
Sj(t, s)dΛj1(t)dΛj2(s) − 1 .

The mean vector μ and the diagonal block matrix Σkk depend on the assumptions of the 

censoring distribution and the hazard ratios ψ1(t) and ψ2(t). The weighted logrank statistic 

is nonparametric, so that it is reasonable to assume the exponential distribution for marginals 

Sj1(t) and Sj2(t) in one group. Given the hazard ratios independent of times, such as the 

proportional hazard hypothesis {ψk(t) ≡ ψk for t ∈ (0, τL], k = 1, 2} (μ = 0 if ψ1 = ψ2 = 1), 

the marginals Sj1(t) and Sj2(t) in one group may model those of another group. Hence, a 

typical design calculation may be based on four exponential marginals Sjk(t), j = 1, 2, k = 1, 

2 and the setting of the analysis times (τ1,…, τL), the entry period (τA), the dependence 

measures (ρ1, ρ2) and the selection of some copula function. Numerically, calculations 

included in μ, Σ and ρj can be sufficiently precisely by using the numerical integration 

method, such as the Trapezoidal rule or Simpson’s rule (e.g., Sugimoto et al. 2013).

In group-sequential designs, the concept of information fraction is important in determining 

the critical boundary to preserve overall Type I error rate. This can be generalized to a 

bivariate event-time setting by analogy to a single event-time outcome. The information at τℓ 
for each outcome can be characterized using an asymptotic form of the Fisher information, 

i.e., ℐkℓ = nℓV kk
0(ℓ)(τℓ), k = 1, 2, which corresponds to the information under the null 

hypothesis for the log of the hazard ratios (e.g., Jennison and Turnbull 2000; Yin 2012). As 

information is accumulated from τℓ to τL, the standardized internal time Rℐkℓ for each 

outcome is defined by the fraction of the maximum information of ℐkL, i.e., 

Rℐkℓ = ℐkℓ ∕ ℐkL. Theorem 1 provides that the components of Σ, under the null 

hypothesis of ψ1 = ψ2 = 1, are obtained as

V kk
0(ℓ)(t) = a1ℓa2ℓ∫0

t
W k

(ℓ)(x)2Cℓ(x)S•k(x)dΛ•k(x),

V kk′(t, s ∣ τℓ, τℓ′) = a1ℓ ∧ ℓ′a2ℓ ∧ ℓ′
γℓ ∧ ℓ′
γℓ ∨ ℓ′

×
∫0

t ∧ s
W k

(ℓ)(x)W k
(ℓ′)(x)Cℓ ∧ ℓ′(x)S•k(x)dΛ•k(x) if k = k′,

∫0
t ∫0

s
W k

(ℓ)(x)W k′
(ℓ′)(y)Cℓ ∧ ℓ′(x ∨ y)A•(dx, dy) if k ≠ k′,

where we have Λ•k(x) = Λ1k(x) = Λ2k(x), S•k(x) = S1k(x) = S2k(x) and A•(x, y) = A1(x, y) = 

A2(x, y) because ψ1 = ψ2 = 1. The result given for the single endpoint (e.g., Andersen et al. 

1993, X.2) is that the asymptotic correlation between group-sequential weighted logrank 

statistics
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Corr [Zk
∗(τℓ), Zk

∗(τℓ′)] =
V kk(τℓ, τℓ′ ∣ τℓ, τℓ′)

V kk(τℓ, τℓ ∣ τℓ, τℓ)V kk(τℓ′, τℓ′ ∣ τℓ′, τℓ′)
,

reduces to Rℐkℓ ∧ ℓ′ ∕ Rℐkℓ ∨ ℓ′ when the null hypothesis is true (ψ1 = ψ2 = 1) and 

W k
(ℓ)(s) is independent of ℓ, such as W k

(ℓ)(s) = 1. Theorem 1 describes that the correlation of 

(Zk(τℓ), Zk′(τℓ′)) including between different endpoints for k, k′ = 1, 2 and 1 ≤ ℓ′ ≤ ℓ ≤ L can 

be approximated by

Corr [Zk
∗(τℓ), Zk′

∗ (τℓ′)] =
V kk′(τℓ, τℓ′ ∣ τℓ, τℓ′)

V kk(τℓ, τℓ ∣ τℓ, τℓ)V k′k′(τℓ′, τℓ′ ∣ τℓ′, τℓ′)
,

which is {1(k = k′) + 1(k ≠ k′)ρZ(τℓ, τℓ′)} Rℐkℓ′ ∕ Rℐkℓ if the null hypothesis is true and 

W k
(ℓ)(s) is independent of ℓ, where

ρZ(τℓ, τℓ′) =
V kk′(τℓ, τℓ′ ∣ τℓ, τℓ′)

V kk(τℓ, τℓ′ ∣ τℓ, τℓ′)V k′k′(τℓ, τℓ′ ∣ τℓ, τℓ′)
.

4 Application to group-sequential design

We provide an application to the group-sequential design based on the result discussed in 

Sect. 3. As a motivating example, consider a major HIV treatment trial within the AIDS 

Clinical Trials Group, “A Phase III Randomized Comparative Study of Three Non-

Nucleoside Reverse Transcriptase Inhibitor (NNRTI)-Sparing Antiretroviral Regimens for 

Treatment-Naïve HIV-1-Infected Volunteers (The ARDENT Study: Atazanavir, Raltegravir, 

or Darunavir with Emtricitabine/Tenofovir for Naïve Treatment)” (Lennox et al. 2014). The 

planned total sample size of 1800 (equally-sized groups) was calculated for the paired 

comparison of the three regimens with respect to the two co-primary endpoints: “virologic 

failure” and “regimen failure due to tolerability”, not taking into account the potential 

correlation, with 3% inflation to the adjustment for interim monitoring, under the study 

duration of 96 weeks after enrollment of the last subject, where the two failures are non-

fatal. The study had (i) a power of 0.90 to establish non-inferiority in the risk reduction of 

virologic failure with the non-inferiority margin of 10% at α = 0.0125 for one-sided test, 

assuming the virologic failure rate of 25% at 96 weeks, and (ii) a power of 0.85 to detect a 

10% difference in regimen failure at α = 0.025 for two-sided test, assuming the regimen 

failure rate of 45% at 96 weeks.

For illustrative purposes, suppose that the objective of the ARDENT trial was to test for a 

two intervention superiority on both co-primary endpoints (OC1: virologic failure, OC2: 

regimen failure). The allocation ratios are assumed to be constant across analyses (aj1 = ⋯ = 

ajL) and are not changed arbitrarily during trial as the arbitrary choices may effect on the 

Type I error and power. The significance level of 2.5% (α = 0.025) is allocated to each 

endpoint using a one-sided logrank test in a group-sequential setting, where the group sizes 

at each analysis are equal (a1ℓ = 0.5), the survival rate at 96 weeks is assumed to be 75% and 
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85% for OC1, and 55% and 65% for OC2, in the control and test intervention groups, 

respectively (S11(96) = 0.75, S21(96) = 0.85; S12(96) = 0.55, S22(96) = 0.65). Two analyses 

are planned: the first at τ1= 48 + τA and the final at τ2 = 96 + τA (L = 2). Letting 

ψ∗ = (ψ1
∗, ψ2

∗) be the hazard ratios of interest as a true vector of ψ = (ψ1, ψ2), typical 

exponential assumptions lead to ψ*≐(0.565, 0.721) based on S2k(t) = S1k(t)ψk
∗
 for ARDENT 

study.

A superiority clinical trial with two event-time outcomes (OC1 and OC2) as “co-primary” 

endpoints is often designed to evaluate if the test intervention is superior to the control on 

both outcomes. For two co-primary endpoints, the testing procedure is to test the union 

H0
cp = H01 ∪ H02 of two individual nulls against the alternative H1

cp = H11 ∩ H12. For 

simplicity, suppose that the proportional hazards hypothesis ψ1(t) ≡ ψ1 and ψ2(t) ≡ ψ2, and 

single null hypothesis H0k : ψk = 1 is tested versus H1k : ψk < 1 at the significance level α 
for each k. When evaluating a joint effect on both endpoints within the context of group-

sequential designs, one decision-making framework associated with hypothesis testing is to 

reject H0
cp if statistical significance of the test intervention relative to the control intervention 

is achieved for both of the endpoints at any interim analysis until the final analysis not 

necessarily simultaneously (Asakura et al. 2014; Hamasaki et al. 2015). The power 

corresponding to the decision-making framework at ψ = ψ* is

1 − β = P ⋃ℓ = 1
L {Z1ℓ(τℓ) > c1ℓ(α)} ⋂ ⋃ℓ = 1

L {Z2ℓ(τℓ) > c2ℓ(α)}

= 1 − P ⋂ℓ = 1
L {Z1ℓ(τℓ) ≤ c1ℓ(α)}; ψ1 = ψ1

∗

− P ⋂ℓ = 1
L {Z2ℓ(τℓ) ≤ c2ℓ(α)}; ψ2 = ψ2

∗

+ P ⋂ℓ = 1
L {Z1ℓ(τℓ) > c1ℓ(α)⋂Z2ℓ(τℓ) > c2ℓ(α)}; ψ = ψ∗ ,

(6)

where ckℓ(α) is the critical boundary at the ℓth analysis for the kth outcome, specified and 

determined in advance using any group-sequential methods, as if the two endpoints were a 

single primary endpoint, ignoring the other endpoint, analogously to the single endpoint 

case. Note that only the marginal results of Theorem 1 are required for the standardized 

internal times Rℐkℓ, where Rℐkℓ does not depend on the correlation between OC1 and 

OC2 in the situation where both outcomes are non-fatal. Once Rℐkℓ, k = 1, 2 are 

determined, then the critical boundaries can be calculated using the group-sequential 

methods to control an overall Type I error rate in each marginal. Using the result of Theorem 

1 that the distribution of Z can be approximated by that of Z* under a large sample size, the 

power (6) can be approximately calculated as
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1 − β = 1 − ∫
−∞

c11
∗

⋯∫
−∞

c1L
∗

fL(z11, …, z1L; R11)dz11⋯dz1L

− ∫
−∞

c21
∗

⋯∫
−∞

c2L
∗

fL(z21, …, z2L; R22)dz21⋯dz2L

+ ∫
−∞

c11
∗

⋯∫
−∞

c1L
∗

∫
−∞

c21
∗

⋯∫
−∞

c2L
∗

f2L(z11, …, z1L, z21, …, z2L; R)dz11⋯dz1Ldz21⋯dz2L,

(7)

where fm(·; A) is m-variate normal density function with zero mean vector and variance-

covariance matrix A, R is the correlation matrix given by

R =
R11 R12
R21 R22

= S− 1
2ΣS− 1

2,

S = diag(σ1111, σ1122, … , σ11LL, σ2211, σ2222, … σ22LL), the integration limits ckℓ
∗  are

ckℓ
∗ = 1

σkkℓℓ
{ckℓ(α) − γℓnLμkℓ}, k = 1, 2; ℓ = 1, …, L,

and recall nℓ = γℓnL.

Returning to the ARDENT study, let τA = 0 similarly to the manner assumed by Lennox et 

al. (2014). Although τA is not zero in fact, this selection of τA provides a conservative result 

and is reasonable in practice because of difficulty of estimating the feasible entry period. 

Two fixed analysis times are (τ1, τ2) = (48, 96), where the censoring distribution (3) under 

τA = 0 is simplified to

C1(t) =
1, 0 ≤ t ≤ τ1 = 48
0, τ1 < t , C2(t) =

1, 0 ≤ t < τ2 = 96
0, τ2 < t . (8)

We select the weight function of W k
(ℓ)(s) = 1 corresponding to the logrank statistic. Under 

these configurations with the exponential marginal assumption, we calculate Rℐkℓ whose 

values are 0.5314 and 0.5669 at 48 weeks for the OC1 and OC2, and then determine ckℓ(α) 

by the O’Brien-Fleming-type function (O’Brien and Fleming 1979) using the Lan-DeMets 

error-spending method (Lan and DeMets 1983), as shown in Table 1 including the Pocock-

type boundary (Pocock 1977). The power (7) is then calculated, given the settings of the 

joint survival functions Sj(t, s) and the correlations ρj between the OC1 and OC2. We use the 

copula model (5) to identify the joint survival distribution Sj(t, s). In particular, we utilize the 

Clayton copula (late time-dependency) (Clayton 1976) and the Gumbel copula (early time-

dependency) (Hougaard 1986), that is, we set, under the Clayton copula,

Sj(t, s) = (eθjλj1t + eθjλj2s − 1)−1 ∕ θj
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and, under the Gumbel copula,

Sj(t, s) = exp −{(λj1t)1 ∕ θj + (λj2s)1 ∕ θj}θj ,

the mariginal hazard rates are given by λ1k = − log S1k (96)/96 and λ2k = λ1kψk
∗, and the 

association parameter θj is determined by the value of ρj (see Sugimoto et al. (2013) for 

more details). For simplicity, we set the correlations as ρ1 = ρ2 ≡ ρ and consider ρ = 0, 0.1, 

…, 0.9 and 0.95. Based on (7), the total maximum sample size (MSS) required for the final 

analysis is the smallest integer nL which provides (7) not less than the desired power at the 

prespecified ψ = ψ*. For example, using the method with above parameter configuration 

and setting, for ρ = 0, R11, R22, and R12 are approximately calculated by

R11 = 1, 0.7260
0.7260, 1 , R22 = 1, 0.7507

0.7507, 1
and R12 = 0, 0

0, 0 ,

respectively, and for ρ = 0.8

R11 = 1, 0.7260
0.7260, 1 , R22 = 1, 0.7507

0.7507, 1
and R12 = 0.2159, 0.1569

0.1622, 0.3341 ,

respectively. Once the MSS is computed, the maximum event number (MEN) dkL is 

calculated using dkL = nLPkL (event), where Pkℓ(event) is the probability that the event of the 

kth outcome occurs on the time interval (0, τℓ] and can be calculated, for example, based on 

Collett (2003) or Sugimoto et al. (2017, Appendix B). Also, the average event number 

(AEN) d̄k is calculated using hypothetical reference values, similarly to Asakura et al. 

(2014), by

d̄k = ∑ℓ = 1
L − 1 dkℓPℓ(stop) + dkL 1 − ∑ℓ = 1

L − 1 Pℓ(stop)

where dkℓ = nℓPkℓ(event), and Pℓ(stop) is the stopping probability as defined by the frequency 

of crossing the critical boundaries at the ℓth interim analysis under the true values ψ* of the 

intervention effects. The AEN can provide information regarding the number of events 

anticipated in a group-sequential design in order to reach a decision point.

Table 2 summarizes the MSS, MEN and AEN, and empirical power for the late time-

dependent association. The empirical power under the calculated MSS achieves the targeted 

power. First of all, we can see that the group-sequential design provides a quite smaller AEN 

than fixed-sample design does in every case, which is preferred in terms of costs saving. As 

expected, the MSS decreases with higher positive correlation, but the reduction is small. 

Power and sample size is less impacted by the correlation than the hazard ratio. The MSS is 

nearly determined by the hazard ratio closer to 1 and it does not vary with the correlation 

Sugimoto et al. Page 13

Lifetime Data Anal. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



when one hazard ratio is relatively smaller (or larger) than the other. Similarly there is little 

difference in the MEN between the group-sequential and fixed-sample designs. Based on 

these results, for the ARDENT study, the MSS is nearly determined by OC2. We only 

describe the result assuming the late time-dependent association. Similar patterns are 

observed in the case of an early time-dependent association (Gumbel copula), where the 

design planning results under the Gumbel copula is provided in Table B.1 of Appendix B. 

Also, we provide the considerations and results about Type I error rates control in Appendix 

B (Tables B.2 and B.3).

In this illustration, the interim analysis was planned to be conducted at the prespecified 

calendar times as participants are recruited in calendar time. On the other hand, one may 

design a survival trial based on information fraction as interim summary statistics depend on 

the amount of information available. For example, the first analysis is planned when 50% of 

the maximum event numbers for one endpoint has been observed. The proposed method can 

be applied to information fraction as well. Table B.4 in Appendix B summarizes the 

statistics required for information-based designs including the corresponding calendar time, 

variance, and information fraction for one endpoint relative to information fraction for the 

other endpoint.

5 Discussion

A single primary endpoint may or may not provide a comprehensive picture of the important 

effects of the intervention. For this reason, many investigators prefer to design clinical trials 

with more than one primary endpoint (Dmitrienko et al. 2009). Multiple primary endpoints 

offer an attractive design feature as they capture a more complete characterization of the 

effect of an intervention on short and long term outcomes. For example, the Ambassador 

trial (NCT03244384) was designed to test the effect of pembrolizumab on overall survival 

and disease-free survival in patients with bladder cancer. In addition, it is common in 

oncology trials to use two primary endpoints to study the effect of treatment in different 

patient populations. For example, SWOG S0819 (Herbst et al. 2018) was designed to test the 

effect of cetuximab plus chemotherapy on overall survival in all patients with lung cancer 

and to study the impact of the combination therapy on progression-free survival in patients 

who were EGFR positive. However, for both multiple primary and co-primary endpoints, it 

is non-trivial to control the Type I and Type II errors when the endpoints are correlated. 

Evaluating an impact of the correlations among the endpoints is important, in design and 

analysis of clinical trials with multiple endpoints. Although methodologies to address 

continuous or binary endpoints in fixed-sample designs are well-developed, methodologies 

for event-time endpoints are limited (Halabi 2012; Rauch et al. 2016), especially in a group-

sequential setting.

In this paper, we discuss a basic theory and method for group-sequential design in clinical 

trials with two non-fatal event-time outcomes. We present the asymptotic form and 

computing method of the variance-covariance function for the two sets of group-sequential 

weighted logrank statistic, which is fundamental for determining the information fraction for 

each outcome and for evaluating the probability of rejecting the null hypotheses. Several 

authors have developed many methods for group-sequential designs. However, in the context 

Sugimoto et al. Page 14

Lifetime Data Anal. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT03244384


of comparing co-primary or multiple endpoints between groups, the form of the asymptotic 

variance-covariance matrix has not been provided based on the data correlation structure 

among two event-times. The description of the multivariate central limit theorem and the 

Cramer-Wald device by some authors did not clearly provide the asymptotic form of the 

variance-covariance matrix and the connection with a martingale approach, which cause 

challenges when calculating a power and the required sample size for a trial design. 

Although the covariance form similar to Theorem 1 has been reported in Murray (2000) and 

Andrei and Murray (2005), their contexts are different from ours and in paired logrank 

statistics on the same time axis. When two martingale components with event-time outcomes 

are correlated on different time axes, it is difficult to directly apply the standard martingale 

theory for survival analysis. We overcome these difficulties by deriving the two-dimensional 

Volterra integral equation using the discrete Ito formula (Jacod and Shiryaev 2003) within a 

martingale approach, which is provided in Appendix A as the proof of Theorem 1. From the 

simulation result, the asymptotic distribution of Theorem 1 works well in most practical 

situations as long as the event rate or sample size is not so small.

We apply the asymptotic result to group-sequential methodology for monitoring both or one 

of the event-time outcomes, when the trial is designed to evaluate a joint effect on both 

outcomes. There are several advantages for our developed methods. First, they provide an 

approach to determine the information and information fraction for two event-time 

outcomes. Second, these methods present the opportunity of evaluating the relationship 

between two event-time endpoints and how it impacts the decision-making for rejecting the 

null hypothesis, in terms of the Type I error, power, sample size and number of events. 

Finally, the methods provide insights on how to optimally choose a strategy for monitoring 

two event-time endpoints. We outline the method for calculating the probability, sample size, 

and number of events for the method, and illustrate the methods using a clinical trial 

example in HIV. Under a calculated total maximum sample size for a joint effect on two 

outcomes, the monitoring method achieves the targeted power and adequately controls the 

Type I error. The empirical Type I error rate was evaluated using Monte-Carlo simulation, 

and the methods presented here are valid in other practical situations. The objectives of the 

methods are to incorporate the correlation between the two event-time outcomes in power, 

Type I error evaluation and sample size calculation and to investigate how they behave as the 

correlation varies. The strength and shape of the association may be estimated from external 

or internal pilot data, but are usually unknown.

We discuss the situation where both event-time outcomes are non-fatal. Sugimoto et al. 

(2017) discussed the fixed-sample design when one event is fatal, and when both are fatal. 

An extension of their work to a group-sequential setting will require an extensive study to 

modify the variance-covariance structure of the group-sequential logrank statistics in order 

to handle dependent censoring. Research on group-sequential designs under such situations 

is an important area for future studies.
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Appendix

A Proof of Theorem 1

Let Mik
(ℓ)(t) = Nik

(ℓ)(t) − ∫0
tY ik

(ℓ)(x)dΛgik(x) and {ℱk, t
(ℓ) : t ≥ 0} be a standard filtration generated 

from the history through time t for the kth outcome and the ℓth analysis (ℱk, t
(ℓ) is the smallest 

σ-algebra generated by {Nik
(ℓ)(x), Nik

C(ℓ)(x) :0 ≤ x ≤ t, i = 1, ⋯ , nℓ}, where 

Nik
C(ℓ)(t) = 1{Tik

(ℓ) ≤ t, Δik
(ℓ) = 0} is a censoring counting process). As is well-known, Mik

(ℓ)(t)

has the ℱk, t
(ℓ)-martingale property. We discuss the asymptotic behavior using the 

decomposition of the weighted logrank process Uk
(ℓ)(t) = mk

(ℓ)(t) + n
ℓ
− 1

2ℳk
(ℓ)(t) from the 

definition of Uk
(ℓ), where

ℳk
(ℓ)(t) = ∫0

t
Hk

(ℓ)(x)n
ℓ

1
2 ∑nL

i = 1 dMik
(ℓ)(x) = ∫0

t
Hk

(ℓ)(x)n
ℓ

1
2dM•k

(ℓ)(x),

dM•k
(ℓ)(x) =

dM2k
(ℓ)(x)

Y 2k
(ℓ)(x)

−
dM1k

(ℓ)(x)

Y 1k
(ℓ)(x)

, dMjk
(ℓ)(x) = ∑i = 1

nℓ 1{gi = j}dMik
(ℓ)(x),

dMik
(ℓ)(x) = 1{i ≤ nℓ}

1{gi = 2}

Y 2k
(ℓ)(x)

−
1{gi = 1}

Y 1k
(ℓ)(x)

dMik
(ℓ)(x),

and ℳk
(ℓ)(t) is ℱk, t

(ℓ)-martingale because Hk
(ℓ)(t) is ℱk, t

(ℓ)-predictable.

Let Z∗ = (Z1
∗(τ1), …, Z1

∗(τL), Z2
∗(τ1), …, Z2

∗(τL))T and let Zk
∗(τℓ) be Zk(τℓ) whose denominator 

is replaced by the limit version,

Zk
∗(τℓ) = n

ℓ

1
2 Uk

(ℓ)(τℓ)

V kk
0(ℓ)(τℓ)

= n
ℓ

1
2μkℓ + ξkℓℳk

(ℓ)(τℓ),

where we write ξkℓ = 1 ∕ V kk
0(ℓ)(τℓ) for simplicity. The distribution of Z − Dnμ is 

asymptotically equivalent to

Z∗ − Dnμ = ξ11ℳ1
(1)(τ1), …, ξ1Lℳ1

(L)(τL), ξ21ℳ2
(1)(τ1), …, ξ2Lℳ2

(L)(τL)
T
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because the dominated convergence theorem works by the convergence of 

V kk
0(ℓ)(τℓ) P V kk

0(ℓ)(τℓ) uniformly on ℓ = 1,…, L as nL ≥ ⋯ ≥ n1 → ∞. We find it necessary to 

study the covariance of ℳk
(ℓ), s for characterizing the distribution of Z∗ − Dnμ.

In the proof hereafter, it is sufficient to consider the case of L = 2. As a function related to 

the characteristic function of ℳk
(ℓ)(t), define

Gk
(ℓ)(t) = exp izkℓℳk

(ℓ)(t) +
zkℓ
2

2 〈ℳk
(ℓ), ℳk

(ℓ)〉(t)

for a real non-zero zkℓ and i = −1, where ⟨m1, m2⟩ denotes a predictable covariance process 

for two martingales m1 and m2. In this case we have

〈ℳk
(ℓ), ℳk

(ℓ′)〉(t) = n
ℓ

1
2n

ℓ′

1
2 ∫0

t
Hk

(ℓ)(x)Hk
(ℓ′)(x)

dΛ1k(x)

Y 1k
(ℓ ∨ ℓ′)(x)

+
dΛ2k(x)

Y 2k
(ℓ ∨ ℓ′)(x)

,

following the standard martingale theory of survival analysis (see Fleming and Harrington 

(1991)). The consistency of Sjk
(ℓ)

, the Glivenko-Cantelli theorem, and Conditions 1 and 3 

imply sup0 ≤ x ≤ τℓ ∣ Hk
(ℓ)(x) − Hk

(ℓ)(x) ∣ P 0 and

sup
0 ≤ x ≤ τℓ

Hk
(ℓ)(x) ∕ nℓ

−1Ȳ jk
(ℓ)(x) − ℎjk

(ℓ)(x) P 0 as nℓ ∞, (9)

where

ℎjk
(ℓ)(x) =

Hk
(ℓ)(x)

ajℓyjk
(ℓ)(x)

= W k
(ℓ)(x)

aj′ℓSj′k(x−)

S•k
(ℓ)(x−)

, j′ = 3 − j,

and note that 0 ≤ Hk
(ℓ)(x) < ∞ for x ∈ [0, τℓ], Hk

(ℓ)(x) = 0 for τℓ < x and 0 ≤ ℎjk
(ℓ)(x) < ∞ for all 

x. The univariate asymptotic result provides E(eizkℓℳk
(ℓ)(t)) exp( −

zkℓ
2

2 V kk(t, t ∣ τℓ, τℓ)) as 

nℓ → ∞, which corresponds to the following convergences,

E(Gk
(ℓ)(t)) 1 and 〈ℳk

(ℓ), ℳk
(ℓ′)〉(t) P V kk(t, t ∣ τℓ, τℓ′)

(Nishiyama 2011). For different k ≡ k′, it is difficult to show joint normality with correlation 

between ℳk
(ℓ) and ℳk′

(ℓ) with standard martingale theory of counting processes (Fleming and 

Harrington 1991; Andersen et al. 1993). However, we overcome the challenge applying Ito’s 
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formula. The discrete Ito’s formula (Jacod and Shiryaev 2003; Huang and Strawderman 

2006) provides the decomposition of Gk
(ℓ)(t),

Gk
(ℓ)(t) − 1 = ∑

j = 1, 2
∫

0

t
Gk

(ℓ)(x − )Hjk
a(ℓ)(x)dMjk

(ℓ)(x)

+ ∑
j = 1, 2

∫
0

t
Gk

(ℓ)(x − )Hjk
(ℓ)(x)Y jk

(ℓ)(x)dΛjk(x),
(10)

where, with i1 = −i and i2 = i,

Hjk
a(ℓ)(x) = exp ijzkℓ

nℓHk
(ℓ)(x)

Y jk
(ℓ)(x)

− 1,

Hjk
(ℓ)(x) = exp ijzkℓ

nℓHk
(ℓ)(x)

Y jk
(ℓ)(x)

− 1 − ijzkℓ
nℓHk

(ℓ)(x)

Y jk
(ℓ)(x)

+
zkℓ
2

2
nℓHk

(ℓ)(x)

Y jk
(ℓ)(x)

2
.

The expectation of the right-hand side of (10) converges to zero as nℓ → ∞, because

E ∫
0

t
Gk

(ℓ)(x − )Hjk
a(ℓ)(x)dMjk

(ℓ)(x) = 0

and E ∫
0

t
Gk

(ℓ)(x − )Hjk
(ℓ)(x)Y jk

(ℓ)(x)dΛjk(x) 0
(11)

by the martingale property of Mjk
(ℓ) and the Lindeberg condition, respectively. In fact, using 

the integrable martingale property of Gk
(ℓ)(x−) and the well-known inequality

∣ exp(ic) − 1 − ic + 1
2c2 ∣ ≤ 1{ ∣ c ∣ ≤ ε} ∣ c ∣3 + 1{ ∣ c ∣ > ε} ∣ c ∣2

for any real c, the latter result of (11) is obtained as

E ∫0
t

Gk
(ℓ)(x−)Hjk

(ℓ)(x) Ȳ jk
(ℓ)(x)dΛjk(x)

≤ exp
zkℓ
2

2 〈ℳk
(ℓ), ℳk

(ℓ)〉(t) ×

E ∫0
t

∣ cjkℓ(x) ∣3 1{ ∣ cjkℓ(x) ∣ ≤ ε}Ȳ jk
(ℓ)(x)dΛjk(x)

+ E ∫0
t

∣ cjkℓ(x) ∣2 1{ ∣ cjkℓ(x) ∣ > ε}Ȳ jk
(ℓ)(x)dΛjk(x) 0

as nℓ → ∞, where ε is an arbitrary positive number, cjkℓ(x) = zkℓ nℓHk
(ℓ)(x) ∕ Ȳ jk

(ℓ)(x) and we 

have nℓcjkℓ(x) P zkℓℎjk
(ℓ)(x) uniformly on (0, τℓ] from (9). Hence, we have
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E((G1
(ℓ)(t) − 1)(G2

(ℓ′)(s) − 1)) E(G1
(ℓ)(t)G2

(ℓ′)(s)) − 1 (12)

as nℓ, nℓ′ → ∞ by the univariate results of E(Gk
(ℓ)(t)) 1, while using the formula (10) we 

can also find

E((G1
(ℓ)(t) − 1)(G2

(ℓ′)(s) − 1))

∑
j = 1, 2

∫
0

t∫
0

s
E G1

(ℓ)(x−)G2
(ℓ′)(y−)Hj1

a(ℓ)(x)Hj2
a(ℓ′)(y)dMj1

(ℓ)(x)dMj2
(ℓ′)(y) (13)

as nℓ, nℓ′ → ∞. Similarly to showing the latter result of (11), with asymptotic equality, we 

can replace the terms eij(cj1ℓ(x)+cj2ℓ′(y)) and eijcjkℓ(·) included in (13) by 

1 + ij{cj1ℓ(x) + cj2ℓ′(y)} − 1
2{cj1ℓ(x) + cj2ℓ′(y)}2 and 1 + ijcjkℓ( ⋅ ) − 1

2cjkℓ( ⋅ )2, respectively. In 

fact, we can show that

Hj1
a(ℓ)(x)Hj2

a(ℓ′)(y) = eij(cj1ℓ(x) + cj2ℓ′(y)) − eijcj1ℓ(x) − eijcj2ℓ′(y) + 1
= − cj1ℓ(x)cj2ℓ′(y) + oP (1 ∕ nℓnℓ′)

from the convergence result of nℓcjkℓ(x). Hence, we have

nℓnℓ′Hj1
a(ℓ)(x)Hj2

a(ℓ′)(y) P − z1ℓz2ℓ′ℎj1
(ℓ)(x)ℎj2

(ℓ′)(y) (14)

as nℓ, nℓ′ → ∞, so that we can apply this result to (13). Also, similar to Prentice and Cai 

(1992) and Sugimoto et al. (2013, 2017), we can show

1
ajℓ ∧ ℓ′nℓ ∧ ℓ′

E ∬ dMj1
(ℓ)(x)dMj2

(ℓ′)(y) = E ∬ dMi1
(ℓ)(x)dMi2

(ℓ′)(y) ∣ gi = j

= ∬ Cℓ ∧ ℓ′(x ∧ y)Aj(dx, dy) .

For simplicity, let ϕ(t, s) = E(G1
(ℓ)(t)G2

(ℓ′)(s)). From (12), (13), (14), γℓ
P γℓ, ajℓ

P ajℓ

(Conditions 1-2) and the dominated convergence theorem, we have the integral equation for 

ϕ(t, s) under nℓ, nℓ′ → ∞,

ϕ(t, s) − 1 = − z1ℓz2ℓ′
γℓ ∧ ℓ′
γℓ ∨ ℓ′

×

∫
0

t∫
0

s
ϕ(x−, y−) ∑

j = 1

2
ajℓ ∧ ℓ′ℎj1

(ℓ)(x)ℎj2
(ℓ′)(y)Cℓ ∧ ℓ′(x ∧ y)Aj(dx, dy) .

(15)

Similarly to bivariate survival function (Dabrowska 1988), the two-dimensional Volterra 

integral equation
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ϕ(t, s) = 1 + ∫0
t∫0

s
ϕ(x−, y−)b12(dx, dy) with ϕ(t, 0) = ϕ(0, s) = 1

is solved as ϕ(t, s) = exp[∫0
t∫0

s{b12(dx, dy) − b1(dx, y)b2(x, dy)}], where

b1(dx, y) = ϕ(dx, y) ∕ ϕ(x−, y−) and b2(x, dy) = ϕ(x, dy) ∕ ϕ(x−, y−) .

However, note that it is difficult to obtain bk(x, y), k = 1, 2 by directly differentiating (15) 

because of including the expectation of non-differentiable Mi1
(ℓ)(x) and Mi2

(ℓ′)(y). 

Alternatively, we can use the formula (10) again for the purpose, so that by the discussion 

similar to obtaining (15), as nℓ, nℓ′ → ∞, we have

∫ ϕ(dx, y) = ∫ E dG1
(ℓ)(x)dG2

(ℓ′)(y−) + E dG1
(ℓ)(x)G2

(ℓ′)(y−)

∫ ϕ(x−, y−)E ∑jHj1
a(ℓ)(x)dMj1

(ℓ)(x) = 0 .

This yields ∫∫ b1(dx, y)b2(x, dy) = 0. Hence, the solution of (15) is

ϕ(t, s) = exp ( − z1ℓz2ℓ′V 12(t, s ∣ τℓ, τℓ′)) .

Therefore, if E(∬ dMj1
(ℓ)(x)dMj2

(ℓ′)(y)) ≠ 0, the correlation between the two martingales works, 

which results in E(G1
(ℓ)(t)G2

(ℓ′)(s)) ≠ 1 but concludes

E(G1
(ℓ)(t)G2

(ℓ′)(s))ϕ(t, s)−1 1 as nL ≥ ⋯ ≥ n1 ∞ .

In summary, these results provide that the characteristic function of marginal martingale 

vector (ℳk
(ℓ)(t), ℳk′

(ℓ′)(s))T converges to that of bivariate normal distribution as

E eizkℓℳk
(ℓ)(t) + izk′ℓ′ℳk′

(ℓ′)(s)

exp ( − 1
2zkℓ

2 V kk(t, s ∣ τℓ, τℓ) − zkℓzk′ℓ′V kk′(t, s ∣ τℓ, τℓ′) − 1
2zk′ℓ′

2 V k′k′(t, s ∣ τℓ′, τℓ′))

=

exp ( − 2zkℓ
2 V kk(t, s ∣ τℓ, τℓ)) if k = k′, ℓ = ℓ′,

exp ( − 1
2{zkℓV kk(t, s ∣ τℓ, τℓ)1 ∕ 2 + zkℓ′V kk(t, s ∣ τℓ′, τℓ′)1 ∕ 2}2) if k = k′, ℓ ≠ ℓ′,

same as the above form otherwise.

A replication of the similar discussion provides that (ℳ1
(1)(t), ℳ1

(2)(t), ℳ2
(1)(t), ℳ2

(2)(t)) 

converges in distribution to a multivariate normal distribution with zero mean vector and 

covarince matrix
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V 11(t, s ∣ τ1, τ1),
V 11(t, s ∣ τ2, τ1), V 11(t, s ∣ τ2, τ2),
V 21(t, s ∣ τ1, τ1), V 21(t, s ∣ τ1, τ2), V 22(t, s ∣ τ1, τ1),
V 21(t, s ∣ τ2, τ1), V 12(t, s ∣ τ2, τ2), V 22(t, s ∣ τ2, τ1), V 22(t, s ∣ τ2, τ2)

.

These results lead imidiately to the convergence of Z∗ − Dnμ in distibution to Z* – Dnμ, as 

summarized in Theorem 1. □

B Some additional results

Table 2 of Sect. 4 displays the results obtained under the assumption of a late time-

dependent association (Clayton copula) for the joint survival distribution of the two event-

time outcomes. The users may be interested in how the results change if the other types of 

dependency between two outcomes are assumed. In Table B.1, we provide results from the 

design stage calculated under the same assumptions as Table 2 except that the joint survival 

distribution is replaced by an early time-dependent association (Gumbel copula). The pattern 

of the results of MSS, MEN and AEN under Gumbel copula are quite similar to Table 2, but, 

as the correlation is higher, their reduction rates from the values at zero correlation are 

slightly larger than those under Clayton copula.

Table B.1

Sample sizes, number of events, and empirical powers in a group-sequential trial with two 

co-primary outcomes under an early time-dependent association (Gumbel copula).

Corr.
ρj

*FSS

Group-sequential design Empirical power (%)

MSS

MEN AEN
Both
EP

At least
one EP

Single EP

OC1 OC2 OC1 OC2 OC1 OC2

0.0 830 835 168 335 141 293 80.6 99.3 95.3 84.5

0.1 824 829 166 332 139 290 80.6 99.0 95.2 84.4

0.2 818 823 165 330 138 289 80.4 98.6 95.2 83.9

0.3 812 817 164 327 137 286 80.5 98.1 94.9 83.7

0.4 805 810 163 325 136 285 80.5 97.7 94.8 83.4

0.5 799 804 161 322 134 282 80.6 97.3 94.6 83.3

0.6 792 797 160 319 133 280 80.3 96.7 94.2 82.7

0.7 786 791 159 317 132 279 80.6 96.3 94.2 82.7

0.8 780 785 158 315 132 277 80.3 96.0 94.1 82.2

0.9 776 781 157 313 131 276 80.7 95.8 94.2 82.3

0.95 775 780 157 313 131 276 80.4 95.6 94.0 82.0

*
FSS:Sample sizes required for fixed-sample design.

This table is created under the same settings and descriptions as those of Table 2 except the association between two 
outcomes OC1 and OC2. The joint survival distribution is modeled using the Gumbel copula which provides an early time-
dependent association.
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As indicated by one referee, an important matter of concern is how the Type I error rates are 

controlled or not. In fact, the proposed design method is based on asymptotic results. To 

answer such a problem, we evaluate the behavior of the actual Type I error rates under 

sample sizes calculated by the proposed methods. Using ARDENT study, we consider three 

settings of (ψ1, ψ2) = (1.0, 1.0), (0.565, 1.0) and (1.0, 0.721) (both null hypotheses and the 

two marginals) under the same configurations as Sect. 4, and we confirm the behavior via 

Monte-Carlo simulation with 1,000,000 runs. For the simulation, a trial ended at the planned 

follow-up duration. When the observed numbers were larger than the planned ones, the 

critical value at the final analysis was recalculated based on

1 − P (Zk1 < ck1, …, ZkL < c kL ∣ H0k) = αk,

where c kL is the critical value at the final analysis, recalculated such that the above equation 

is satisfied to control the Type I error adequately if the planned numbers are different from 

the observed ones.

Tables B.2 and B.3 show the results of the actual Type I error rates, which are corresponding 

to the situations under null hypotheses of Tables 2 and B.1 under Clayton and Gumbel 

copulas, respectively. Where the columns “Both” and “ALO” give the probabilities to reject 

two null hypotheses of OC1 and OC2 jointly (Both) and at least one (ALO), respectively, 

and “OC1” and “OC2” provide the probabilities to reject two single hypotheses of OC1 and 

OC2, respectively. We observe that the results of “Joint” are well controlled at the nominal 

error rate 2.5% in the three cases. Those of “ALO” are less than 2 × 2.5% only at both null 

hypotheses and reflect the effect of multiplicity using two times testing. Also, the results of 

“OC1” and “OC2’ are well controlled at the nominal Type I error rate in three cases. 

Therefore, our method works well in controlling the nominal Type I error rate under the 

calculated sample size.

Table B.2

Simulation assessment: Probability of rejecting null hypothesis under Clayton copula.

Corr.
ρj

MSS

(ψ1, ψ2) = (0.565, 1.0) (ψ1, ψ2) = (1.0, 0.721) (ψ1, ψ2) = (1.0.1.0)

Both ALO OC1 OC2 Both ALO OC1 OC2 Both ALO OC1 OC2

0.0 835 2.39 95.4 95.3 2.50 2.10 85.0 2.49 84.6 0.06 4.91 2.48 2.49

0.1 833 2.39 95.4 95.3 2.50 2.15 84.8 2.50 84.5 0.08 4.94 2.50 2.52

0.2 832 2.42 95.3 95.3 2.51 2.20 84.7 2.51 84.4 0.08 4.91 2.49 2.51

0.3 831 2.44 95.3 95.2 2.51 2.24 84.6 2.50 84.4 0.10 4.92 2.51 2.52

0.4 829 2.44 95.2 95.2 2.50 2.27 84.6 2.51 84.3 0.12 4.90 2.50 2.52

0.5 827 2.43 95.2 95.1 2.48 2.30 84.3 2.50 84.2 0.15 4.87 2.53 2.49

0.6 825 2.47 95.1 95.1 2.51 2.33 84.3 2.49 84.2 0.18 4.80 2.46 2.51

0.7 821 2.48 95.0 95.0 2.51 2.38 84.0 2.49 83.9 0.23 4.80 2.51 2.52

0.8 816 2.52 94.9 94.9 2.53 2.45 83.8 2.52 83.7 0.30 4.69 2.49 2.51

0.9 806 2.51 94.7 94.4 2.52 2.48 83.3 2.51 83.3 0.45 4.50 2.48 2.47
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Corr.
ρj

MSS

(ψ1, ψ2) = (0.565, 1.0) (ψ1, ψ2) = (1.0, 0.721) (ψ1, ψ2) = (1.0.1.0)

Both ALO OC1 OC2 Both ALO OC1 OC2 Both ALO OC1 OC2

0.95 797 2.51 94.5 94.5 2.51 2.46 82.8 2.47 82.8 0.62 4.39 2.51 2.50

Table B.3

Simulation assessment: Probability of rejecting null hypothesis under Gumbel copula.

Corr.
ρj

MSS

(ψ1, ψ2) = (0.565, 1.0) (ψ1, ψ2) = (1.0, 0.721) (ψ1, ψ2) = (1.0.1.0)

Both ALO OC1 OC2 Both ALO OC1 OC2 Both ALO OC1 OC2

0.0 835 2.40 95.4 95.3 2.51 2.11 84.9 2.51 84.5 0.06 4.94 2.49 2.51

0.1 829 2.44 95.3 95.2 2.50 2.26 84.5 2.50 84.2 0.12 4.89 2.51 2.50

0.2 823 2.46 95.0 95.0 2.49 2.36 84.1 2.50 84.0 0.18 4.84 2.51 2.51

0.3 817 2.47 94.9 94.9 2.49 2.42 83.8 2.50 83.8 0.27 4.75 2.50 2.52

0.4 810 2.51 94.8 94.8 2.52 2.47 83.6 2.51 83.5 0.35 4.63 2.48 2.50

0.5 804 2.52 94.6 94.6 2.52 2.50 83.2 2.52 83.2 0.47 4.55 2.53 2.50

0.6 797 2.51 94.5 94.5 2.51 2.49 82.8 2.49 82.8 0.57 4.42 2.50 2.49

0.7 791 2.48 94.3 94.3 2.48 2.52 82.6 2.52 82.6 0.69 4.27 2.49 2.47

0.8 785 2.52 94.1 94.1 2.52 2.49 82.3 2.50 82.3 0.82 4.17 2.50 2.49

0.9 781 2.51 94.0 94.0 2.51 2.50 82.1 2.50 82.1 0.95 4.06 2.49 2.52

0.95 780 2.52 94.0 94.0 2.52 2.51 82.1 2.51 82.1 0.99 4.05 2.51 2.54

Table 1 of Sect. 4 displays the planning information for a group-sequential design at the 

fixed analysis time points (48 and 96 weeks) considered in ARDENT trial. Other group-

sequential designs based on selected information fractions can be constructed. Table B.4 

displays the planning information for a group-sequential design for information fractions of 

0.5 and 1.0.

Table B.4

Variance, calendar time and information fraction corresponding to the other endpoint’s 

information fraction

Endpoint Variance, corresponding calendar time and 
information fraction

1st analysis Final 
analysis

Virologic failure (OC1) information fraction 0.5 1.0

Corresponding Calendar time (week) 45.5 96.0

OC1 V 11
0(ℓ)(τℓ) 0.0252 0.0499

OC2
(Regimen failure) V 22

0(ℓ)(τℓ) 0.0539 0.0998

Corresponding information 
fraction

0.5400 1.0

Regimen failure (OC2) information fraction 0.5 1.0

Corresponding Calendar time (week) 42.0 96.0
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Endpoint Variance, corresponding calendar time and 
information fraction

1st analysis Final 
analysis

OC1
(Virologic failure) V 11

0(ℓ)(τℓ) 0.0233 0.0499

Corresponding information 
fraction

0.4675 1.0

OC2 V 22
0(ℓ)(τℓ) 0.0502 0.0998
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Table 1

Calculated information fractions and the corresponding O’Brien-Fleming-type (OF) and Pocock-type (PC) 

critical boundaries.

Anal-
ysis

#

Calen-
dar

Time

OC1 OC2

Information
Fraction

OF-type
Bound

PC-type
Bound

Information
Fraction

OF-type
Bound

PC-type
Bound

1 48 0.5314 2.8616 2.1390 0.5669 2.7576 2.1200

2 96 1.0000 1.9718 2.2110 1.0000 1.9761 2.2215
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Table 2

Sample sizes, number of events, and empirical powers in a group-sequential trials with two co-primary 

outcomes (Clayton copula).

Corr
ρj *FSS

Group-sequential design Empirical power (%)

MSS

MEN AEN
Both
EP

At least
one EP

Single EP

OC1 OC2 OC1 OC2 OC1 OC2

0.0 830 835 168 335 141 293 80.6 99.3 95.3 84.6

0.1 829 833 167 334 140 292 80.5 99.2 95.2 84.5

0.2 827 832 167 333 140 291 80.4 99.2 95.2 84.4

0.3 826 831 167 333 140 291 80.7 99.1 95.3 84.5

0.4 824 829 166 332 139 291 80.5 99.0 95.2 84.3

0.5 822 827 166 331 139 290 80.6 99.0 95.1 84.3

0.6 820 825 166 331 139 290 80.6 99.0 95.1 84.2

0.7 816 821 165 329 138 288 80.5 98.5 95.0 83.9

0.8 811 816 164 327 137 287 80.5 98.2 95.0 83.7

0.9 801 806 162 323 136 284 80.3 97.5 94.6 83.2

0.95 792 797 160 319 134 280 80.4 96.8 94.4 82.8

*
FSS:Sample sizes required for fixed-sample design.

The trial is designed to evaluate if an intervention is superior to the control with respect to both virologic (OC1) and regimen failure (OC2) with 
80% power at the 2.5% significance level of a one-sided logrank test, where two analyses are planned at fixed calendar times of 48 and 96 weeks. 
For both outcomes, the critical boundaries are determined using the Lan-DeMets error-spending method with the O’Brien-Fleming type function. 
The bivariate exponential distribution is modeled using the Clayton copula. Empirical power is calculated using 100,000 repetitions. The marginal 
powers for OC1 and OC2 are calculated under a calculated maximum sample size.

Lifetime Data Anal. Author manuscript; available in PMC 2021 April 01.


	Abstract
	Introduction
	Group-sequential bivariate event-time data and the logrank statistic
	Asymptotic structure of the group-sequential bivariate logrank statistic
	Application to group-sequential design
	Discussion
	Appendix
	Table B.1
	Table B.2
	Table B.3
	Table B.4
	References
	Table 1
	Table 2

