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Abstract

We develop a scalable multi-step Monte Carlo algorithm for inference under a large class of 

nonparametric Bayesian models for clustering and classification. Each step is “embarrassingly 

parallel” and can be implemented using the same Markov chain Monte Carlo sampler. The 

simplicity and generality of our approach makes inference for a wide range of Bayesian 

nonparametric mixture models applicable to large datasets. Specifically, we apply the approach to 

inference under a product partition model with regression on covariates. We show results for 

inference with two motivating data sets: a large set of electronic health records (EHR) and a bank 

telemarketing dataset. We find interesting clusters and competitive classification performance 

relative to other widely used competing classifiers. Supplementary materials for this article are 

available online.
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1 Introduction

We propose a distributed Monte Carlo algorithm for Bayesian nonparametric clustering and 

classification methods that is suitable for large sample sizes. The algorithm is applicable for 

both conjugate and non-conjugate structures, and consists of K computationally efficient 

steps, where K is dynamically determined and is typically less than four. In each of the first 

(K − 1) steps, we divide the data into multiple shards and run Markov chain Monte Carlo 

(MCMC) simulations in each shard. The algorithm is run in parallel without any 

communication between the parallel jobs. Schemes with such zero communication cost are 
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known as “embarrassingly parallel” algorithms, a term that first appeared in Moler (1986). 

In the last step, MCMC is run again to generate approximate samples from the full posterior. 

We apply the algorithm for inference in a product partition model with regression on 

covariates (PPMx, Müller et al. 2011), and show results for a large electronic health records 

(EHR) dataset and a telemarketing dataset. The method is scalable, shows competitive 

performance compared to state-of-the-art classifiers and generates interpretable partitions of 

the data.

Classification and clustering.

We consider Bayesian nonparametric (BNP) methods for clustering and classification. 

Classification aims to assign observations into two or more categories on the basis of 

training data with known categories. Widely used classification algorithms include logistic 

regression (LR), naive Bayes, neural networks, k-nearest neighbors, support vector machines 

(SVM, Cortes and Vapnik 1995), decision trees, random forests (RF, Ho 1995), 

classification and regression trees (Breiman et al. 1984), Bayesian additive regression trees 

(BART, Chipman et al. 2010), and mixture models based on BNP priors. Some recent 

examples for the latter are Cruz-Mesía et al. (2007) who use a dependent Dirichlet process 

prior, Mansinghka et al. (2007) who model the distribution within each subpopulation 

defined by the class labels using a Dirichlet process mixture model, or Gutiérrez et al. 

(2014) who use a geometric-weights prior instead. For more examples, see a recent review 

by Singh et al. (2016) and references therein.

In contrast to supervised learning in classification, clustering methods partition the 

observations into latent groups/clusters in an unsupervised manner, with the aim of creating 

homogeneous groups such that observations in the same cluster are more similar to each 

other than to those in other clusters. Widely used clustering methods include hierarchical 

clustering, k-means, DBSCAN (Ester et al., 1996) and finite mixture models. Posterior 

simulation for finite mixtures was first discussed in Richardson and Green (1997) and 

extended to multivariate mixtures in Dellaportas and Papageorgiou (2006). See, for example, 

Jain (2010) and Fahad et al. (2014) for recent reviews. BNP (Hjort et al., 2010) clustering 

methods offer particularly flexible alternatives to the earlier mentioned clustering 

algorithms. Examples include Dirichlet process mixtures (DPM, Lo, 1984; MacEachern, 

2000; Lau and Green, 2007) and variations with different data structures, such as Rodriguez 

et al. (2011) for a mixture of graphical models, Pitman-Yor process (PY) mixtures (Pitman 

and Yor, 1997; Ni et al., 2018), normalized inverse Gaussian process mixtures (Lijoi et al., 

2005), normalized generalized Gamma process mixtures (Lijoiet al., 2007), and more 

general classes of BNP mixture models (Barrioset al., 2013; Favaro and Teh, 2013; Argiento 

et al., 2010).

Scalable methods.

Datasets that are too large to be analyzed on a single machine increasingly arise in many 

applications. Many of the earlier mentioned classification or clustering methods do not 

easily scale to large datasets, partly due to lack of straightforward parallelization. Below, we 

briefly review some recently proposed computation efficient strategies.
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Zhang et al. (2012) developed two algorithms for parallel statistical optimization based on 

averaging and bootstrapping. Kleiner et al. (2014) developed a scalable bootstrap to evaluate 

the uncertainty of estimators. Bayesian methods naturally provide uncertainty quantification 

of estimators but are in general computation-intensive. Huang and Gelman (2005) proposed 

consensus Monte Carlo algorithms that distribute data to multiple machines running separate 

MCMC simulations in parallel. Various ways of eventually consolidating simulations from 

these subset posteriors have been proposed (Neiswanger et al., 2013; Wang and Dunson, 

2013; Whiteet al., 2015; Minsker et al., 2014; Scott et al., 2016). An alternative strategy for 

scalable Bayesian computation is based on approximating the full likelihood/posterior using 

subsampling techniques (Welling and Teh, 2011; Korattikara et al., 2014; Bardenet et al., 

2014; Quiroz et al., 2018); see Bardenet et al. (2015) for a review of related recent MCMC 

approaches. Alternatively to MCMC, Bayesian inference can be carried out by using 

approximation such as variational Bayes (Jaakkola and Jordan, 2000; Ghahramani and Beal, 

2001; Broderick et al., 2013; Hoffman et al., 2013). For a grand overview of Bayesian 

computation, see also Green et al. (2015). Although variational inference is scalable to large-

scale datasets and usually yields good approximations to the marginal posterior, MCMC 

algorithms tend to better approximate the joint posterior, due to their nature as simulation-

exact methods.

Scalable classification and clustering.

Some classical classifiers like logistic regression are scalable to large datasets and easy to 

interpret. However, logistic regression tends to be not as accurate as other “black box” 

classifiers. Ideally, a good classifier should not need to sacrifice its predictive performance 

for interpretability and scalability. This is what we aim to achieve in this paper.

Some work has been done in this area. Payne and Mallick (2018) developed a two-stage 

Metropolis-Hastings algorithm for logistic regression to avoid the need for exact likelihood 

computation. The first stage, based on an approximate likelihood, is used to determine 

whether a full likelihood evaluation is necessary in the second stage. Combined with 

consensus Monte Carlo, the proposed method scales well to datasets with large samples. 

Rebentrost et al. (2014) implemented SVM on a quantum computer and showed exponential 

speed-up compared to classical sampling algorithms.

For clustering, Pennell and Dunson (2007) developed a two-stage approach for fitting 

random effects models to longitudinal data with large sample size. They first cluster subjects 

using a deterministic algorithm and then cluster the group-specific random effects using a 

DPM model. Zhao et al. (2009) proposed a parallel k-means clustering algorithm using the 

MapReduce framework (Dean and Ghemawat 2008). Wang and Dunson (2011) developed a 

single-pass sequential algorithm for conjugate DPM models. In each iteration, they 

deterministically assign the next subject to the cluster with the highest probability 

conditional on past cluster assignments and data up to the current observation. The algorithm 

is repeated for multiple permutations of the samples. Lin (2013) proposed a one-pass 

sequential algorithm for DPM models. The algorithm utilizes a constructive characterization 

of the posterior distribution of the mixing distribution given data and a partition. Variational 

inference is adopted to sequentially approximate the marginalization. Williamson et al. 
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(2013) introduced a parallel MCMC for DPM models which involves iteration over local 

updates and a global update. For the local update, they exploit the fact that a Dirichlet 

mixtures of Dirichlet processes (DP) again defines a DP, if the parameters of Dirichlet 

mixture are suitably chosen. Geet al. (2015) used a similar characterization of the DP as in 

Lin (2013). But instead of a variational approximation, they adapted the slice sampler for 

parallel computing under a MapReduce framework. Tank et al. (2015) developed two 

variational inference algorithms for general BNP mixture models.

The method that is most similar to the approach in this paper is the subset nonparametric 

Bayesian (SNOB) clustering of Zuanetti et al. (2018), a computation-efficient alternative for 

model-based clustering under a DPM model with conjugate priors. SNOB is a two-step 

approach. It first splits data into shards and computes clusters locally in parallel. A second 

step combines the local clusters into global clusters. All steps are carried out using MCMC 

simulation under a common DPM model. All cluster-specific parameters are marginalized 

out in the second step in order to merge local clusters. The latter requires conjugate models 

and limits its applicability in a wide range of applications where non-conjugate models are 

desired. In addition, for large datasets, the number of local clusters may still be too large to 

process in a single machine. This motivates the construction of a more general multi-step 

algorithm that allows for possibly non-conjugate models.

Proposed method.

Inspired by the Algorithm 8 in Neal (2000) for inference in DPM models, we extend SNOB 

to clustering under non-conjugate BNP models, and propose a multi-step algorithm for 

subset inference of general nonparametric Bayesian methods (SIGN). The algorithm is a K-

step approach (K is dynamically determined and will be introduced in Section 2). Each step 

requires clustering on small subsets only. The number of required subsets grows linearly 

with the sample size n, making it possible to implement posterior inference also for data that 

is too large for full MCMC simulation. SIGN can be applied with a large class of BNP 

mixture models. Particularly, we show how SIGN is implemented for inference under the 

PPMx model to simultaneously cluster and classify patients from a large Chinese EHR 

dataset with 85,021 samples and customers from a bank telemarketing dataset with 37,078 

records. SIGN relies on a notion of “clustering of clusters” which, in different contexts, has 

been successfully used in the literature before. For example, Argiento et al. (2014) and 

Malsiner-Walli et al. (2017) developed clustering-of-clusters models for clustering non-

Gaussian or non-convex data. In the upcoming discussion, we use the same notion to greatly 

reduce the computation cost of clustering large datasets.

In the context of a classification problem, SIGN still requires that all data can be accessed. 

This is not an inherent constraint of the proposed algorithm; rather it is due to the lack of 

sufficient/summary statistics for general classification models (such as probit regression). 

Whenever such statistics exist, SIGN does not need to access the entire dataset.

The remainder of this paper is organized as follows. In Section 2, we introduce the proposed 

SIGN algorithm which is applied for inference under the PPMx model in Section 3. The 

SIGN algorithm is evaluated with simulation studies in Section 4 and applied to EHR and 

bank telemarketing data in Section 5. We conclude with a discussion in Section 6.
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2 The proposed SIGN algorithm

2.1 BNP clustering

We propose an algorithm for posterior inference on random partitions under BNP mixture 

models. To state the general model, we need some notation. A partition ρ = {S1,…,SC} of an 

index set [n] ={1,…,n} is a collection of nonempty, disjoint and exhaustive subsets Sc⊆[n]. 

The partition can alternatively be represented by a set of cluster membership indicators s = 

(s1,…,sn) with si = c if i ∈ Sc. Throughout the paper, we will use superscript – i to represent 

the appropriate quantity with the ith sample or the ith item (defined later) removed. For 

instance, s−i = s\si and ρ−i = ρ\Ssi ∪ Ssi\i  are the cluster memberships and partition after 

removing index i.

In what follows we consider a random partition ρ with prior probability distribution p(ρ). Let 

nc =| Sc| denote the cardinalities of the partitioning subsets. Let n = (n1, …, nC) and let nj+ 

denote with the jth element incremented by 1, with the convention that n(C + 1)+ = (n1, 

…,nC,1). A random partition is called exchangeable if p(ρ) = f(n) for a symmetric (in its 

arguments) function f (n) and if f(n) = ∑j = 1
C + 1f nj + . The function f(n) is known as the 

exchangeable partition probability function (EPPF). By Kingman’s representation theorem 

(Kingman, 1978), any exchangeable random partition can be characterized as the groups 

formed by ties under i.i.d. sampling from a discrete probability measure G = ∑ℎ = 1
∞ wℎδmℎ. 

That is, ρ is determined by the ties among θi ~ G, i = 1,…,n. We denote the unique values of 

θi’s by θ1
⋆, …, θC* , implying i ∈ Sc if θi = θc

⋆. See, for example, Lee et al. (2013) for a 

discussion. It follows that a prior probability model for an exchangeable random partition ρ 
can always be defined as a prior p(G) on a random discrete distribution G = ∑ℎ = 1

∞ wℎδmℎ. 

This implicit definition of p(ρ) by a BNP prior p(G) on the random probability measure G is 

a commonly used specification of random partition models. The construction already 

includes cluster-specific parameters θc
⋆ which are useful for the construction of a sampling 

model conditional on the partition. We use it in the next step of the model construction.

The model on G and θi is completed with a sampling model for the observed data 

conditional on ρ. For example, the θi could index a sampling model p(yi | θi), implying that 

all observations in a cluster share the same sampling model. In summary,

yi|θi
indp yi |θi , θi|G

indG, G H,

where G is a discrete prior distribution for θi and H is the BNP prior for the random 

probability measure G.

There are a number of options for H. A popular choice is the DP, which yields an EPPF of 

the form p(ρ) ∝ αC − 1∏c = 1
C nc − 1 ! where α is known as the concentration parameter. 

Other choices include the PY process, the normalized inverse Gaussian process and the 

normalized generalized gamma process. In many applications, the focus is on the posterior 

distribution of the random partition ρ. The posterior distribution on ρ can be approximated 
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by various MCMC algorithms, including Escobar (1994), MacEachern and Müller (1998), 

Neal (2000) and Walker (2007) in the case of the DP prior, and, for more general models, 

Barrios et al. (2013), Favaro and Teh (2013) or Argiento et al. (2010). However, MCMC is 

only practicable for small to moderate datasets. Directly applying MCMC to large datasets is 

very costly because the algorithm has to scan through all observations at each iteration, each 

requiring likelihood and prior evaluations.

2.2 SIGN algorithm

The proposed SIGN algorithm proceeds in steps. For illustration, an example workflow of 

SIGN with K = 3 steps is shown in Figure 1. Importantly, across all steps of the algorithm, 

all updates of cluster configurations (initially of observations, and of sets of observations in 

later steps) are based on a single underlying BNP mixture model for the data. Details of the 

implied probabilities for clustering sets of obserations are given later.

Step 1. In the first step, the full dataset is randomly split into M1 shards, M1 = 4 in Figure 1; 

the observations from each shard are denoted by a distinct symbol in the figure. A clustering 

method is then applied (in our implementation, using the algorithm 8 in Neal (2000) for 

posterior simulation) to cluster the items (initially, in the first step, the observations) in each 

shard separately, and can be implemented in parallel. We refer to the estimated clusters, 

represented by the ellipses, as “local” clusters. These local clusters are frozen, meaning that 

the observations within each cluster will never be divided in the subsequent steps, although 

merging is possible.

Step 2. The local clusters estimated from the previous step become the items to be clustered 

in this step. The items are distributed into M2 shards (M2 = 2 in Figure 1). We still use the 

same underlying BNP mixture model to cluster the items. See later for a statement of the 

relevant probabilities to cluster the items. At the end of the second step, the estimated 

clusters are again frozen as “regional” clusters.

Step 3. At the last step, all regional clusters are collected to form the items for the next, 

third, step. Again items are split into M3 shards and clustered within each shard. In the 

example of Figure 1, M3 =1 and iteration stops.

In general, iteration continues until the number of items is sufficiently small to be clustered 

in a single shard. Importantly, at each step one need to only scan through a small number of 

items (created by previous steps), instead of all observations in a large dataset. Each step can 

be implemented in parallel using instances of the same MCMC algorithm which takes as 

input a set of (current) items, generically denoted by y = y1, …, yB  and outputs estimated 

clusters of these items. Those clusters then define the items for the next step of the 

algorithm. Initially, in step 1, yi = yi are the original data. Let ri = |yi|, i = 1,…,B denote the 

size of each item, in terms of the number of original data that form yi, and let r ={r1,…,rB}. 

In the following, we describe the posterior probabilities for clustering items, i.e., sets of 

original observations, in any of the steps k = 1,…,K. To simplify notation we do not include 

an index for steps.
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2.2.1 MCMC—In each of the K steps, MCMC simulation iterates between (i) updating 

the cluster membership, and (ii) updating cluster-specific parameters given the cluster 

membership. The key quantity in updating the cluster membership is the conditional 

probability

p si = c |s−i, y, θ⋆ ∝ p si = c |s−i p yi |θc* (1)

for i = 1,…,B and c = 1,…,C−i + 1 where si = c means that item i is in cluster c, i.e., all 

observations in yi are assigned to cluster c. The definition of the items yi and the number of 

items, B, changes across steps. Initially, yi are the original data, and B = n is the sample size. 

In step 2, the items yi are the local clusters and B is the total number of local clusters, etc. 

Importantly, the probabilities that are evaluated under (1) and used for clustering in steps 1 

through 3 are all based on the same BNP mixture model for the original observations.

Equation (1) states the probabilities for combining clusters of observations into larger 

clusters. The first factor can be evaluated as

p si = c s−i ∝ p ρ+c

p ρ−i (2)

where ρ+c = ρ−i\Sc
−i ∪ Sc

−i ∪ i  is the new partition that assigns the ith item to cluster c 

(that is, all original data points that make up yi). The partition probabilities on the right-hand 

side of (2) depend on r n and the BNP prior H. For example, using H = PY,(d,G0) with 

concentration parameter α, discount parameter d, and baseline probability measure G0, 

implies the random prior partition:

p(ρ) ∝ (α |d)C ∏
c = 1

C
(1 − d)nc − 1, (3)

where (x)n = x(x+1)…(x+n-1) denotes the Pochhammer symbol of a rising factorial, and (x | 

y)n = x(x + y)…(x + (n −1)y) denotes the Pochhammer symbol with increment y. 

Substituting (3) into (2) yields

p si = c |s−i ∝

Γ nc−i + ri − d
Γ nc−i − d

 if c = 1, …, C−i

α + dC−i Γ ri − d
Γ(1 − d)  if c = C−i + 1

, (4)

where nc−i is the size of the cth cluster after removing the ith item yi (recall that size is 

recorded in original data units). In the special case when ri = |yi| = 1 for all i, equation (4) 

reduces to the Pólya urn representation of the PY.

The second factor in (1) is the sampling model evaluated for yi given the cluster-specific 

parameters, which is straightforward to compute except for the missing θc
⋆ for c = C−i + 1, 
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which could be avoided by marginalizing with respect to θc
⋆. In general, this marginalization 

is analytically intractable and we use instead the Algorithm 8 in Neal (2000). The algorithm 

includes a temporary model augmentation with m latent variables θc
⋆,c = C−i + 1,…,C−i + m 

which serve as potential new cluster parameters, and are generated from the prior for unique 

atoms of the BNP prior (base measure in the DP or PY prior). The prior probability for a 

new cluster in (4) is split equally among the m potential values. The case when resampling si
removes a current cluster, say Sc, by re-assigning the only element of a singleton cluster, 

needs careful attention. In that case, θc
⋆ becomes θC−i + 1

⋆
 and only the remaining latent 

variables are sampled from the prior. The only remaining parameters to be sampled in the 

MCMC are the cluster-specific parameters θj
⋆, which are updated using a suitable MCMC 

transition probability. At the end of each MCMC pass, we compute a least-squares estimate 

of the partition (Dahl, 2006). An alternative method of summarizing partitions is also 

considered in Section 4.1. Algorithm 1 summarizes the MCMC simulation.

2.2.2 The complete scheme—The complete SIGN algorithm simply repeatedly 

distributes the items (i.e., blocked observations) into shards and applies Algorithm 1 to each 

shard in parallel. The number K of steps is dynamically determined by specifying a 

maximum number R (typically a few hundred) of items that can be clustered in one 

processor. Simulation terminates when the total number of items is less than R. For example, 

suppose we set R = 200 and we obtain 600 local clusters from the first step. Since 600 > R, 

we decide to distribute the local clusters into 3 shards each with 200 blocked observations. If 

30 regional clusters are returned from the second step, we will in a final step cluster the 

regional clusters in one shard. Since 30 < R, there is no need for a further split and iteration 

stops. Hence in this example K = 3. The complete scheme is summarized in Algorithm 2. 

SIGN implements approximate posterior inference under the BNP mixture model. The 

approximation arises from the fact that observations in the same item at any step will not be 

split in any of the subsequent steps. See the following discussion for more details.

The SIGN algorithm can be applied with a wide range of BNP mixture models. The key step 

is deriving the prior probabilities for combining clusters. If an EPPF for the underlying BNP 

prior is available, it is simply evaluated as the ratio of two EPPFs as shown in Equation (2). 

Combined with the sampling model, the cluster membership of each item can be drawn from 

its full conditional.
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2.2.3 Approximation—The described update for ρ involves an approximation of the 

target distribution p(ρ | y). The SIGN algorithm reduces computation time by replacing the 

problem of clustering n items by essentially M1 problems of clustering n / M1 items. The 

nature of the involved approximation is similar in flavor to a variational Bayes 

approximation. This is seen in a simplified setup assuming M1 = 2 shards, say A1 and A2, 

and assuming that iteration stops after K = 2 steps. Let dij denote co-clustering indicators dij 

= I(si = sj), and let d1 = (dij; i, j ∈A1), and similarly for d2 and d12 = (dij; i ∈A1, j ∈A2). Then 

(d1,d2,d3) is an alternative representation of a partition ρ. Let y1 denote the data in A1 and 

similarly for y2. If SIGN is implemented by generating one (approximate) posterior draw of 

d1 and d2 in each shard, then the algorithm p(d1,d2,d12 | y) q(d1,d2,d12) = p(d1 | y1) p(d2 | y2) 

p(d12 | d1,d2, y), that is, a distribution that is independent in d1,d2, but with each factor 

defined by the original target distribution. In contrast to a variational Bayesian approach 

there is no notion of optimizing the approximation.

Based on these considerations we propose a simple diagnostic to summarize the level of 

approximation. Select any two of the M1 shards in step 1, say A1 and A2. We then carry out 

Steps 1a and 2a like Steps 1 and 2 before, but restricted to the two selected shards only. 

Alternatively we implement (simulation exact) posterior MCMC simulation in

A1 ∪ A2. For any pair (i, j) in A1 ∪ A2, let pij = E(dij | y) denote the posterior co-clustering 

probabilities let pij denote the estimate based on Steps 1a and 2a, and let pij denote the same 

based on the MCMC simulation. We summarize the level of the approximation in SIGN by 

reporting the histogram of pij − pij and the proportion F0.1 of pairs (i, j) with pij − pij < 0.1. 

For the simulations and examples discussed in later sections, we find the histogram is 

concentrated around zero and F0.1 > 70%.

3 Clustering and classification with PPMx

Clustering is often carried out to find more homogeneous subpopulations that can then be 

used, for example, to derive improved classification and prediction. One example of such 

approaches is the PPMx model, which allows for simultaneously partitioning of 

heterogeneous samples and predicting outcomes on the basis of covariates. To fix notation, 
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let zi ∈{0,1} denote a binary outcome (reserving notation yi for a later introduced 

augmented response). Let

xi ={wi,ui} denote a set of continuous covariates wi = (wi1,…, wip) and categorical 

covariates ui = (ui1,…,uiq) for experimental units i =1,…,n. Let z = {z1,…, zn} and x ={x1,

…, xn}. A product partition model (PPM) (Hartigan, 1990) assumes p(ρ) ∝ ∏c = 1
C ℎ Sc , 

where h(·) is a non-negative cohesion function that quantifies the tightness of a cluster. For 

example, the prior distribution on partitions that is induced under i.i.d. sampling from a DP-

distributed random measure with concentration parameter α is a PPM with h(Sc) = α × (|Sc| 

− 1)!. Müller et al. (2011) define the PPMx as a variation of the PPM by introducing prior 

dependence on covariates by augmenting the random partition to

p(ρ |x) ∝ ∏
c = 1

C
ℎ Sc g xc⋆ , (5)

with a nonnegative similarity function g(·) indexed by covariates where xc⋆ = xi | i ∈ Sc  are 

the covariates of observations in the cth cluster. The similarity function measures how 

similar the covariates are thought to be. A computationally convenient default way to define 

a similarity function uses the marginal probability in an auxiliary probability model q on x:

g xc⋆ = ∫ ∏
i ∈ Sc

qx xi |ξc qξ ξc dξc .

The important feature here is that the marginal distribution has higher density value for a set 

of very similar xi than for a very diverse set. For continuous covariates, we use an 

independent normal-normal-gamma auxiliary model. Let N(x | m,v) denote the evaluation of 

a normal density with moments (m, v), evaluated at x, and similar for a gamma density, Ga(x 

| a,b) and other distributions. We use qx wij |μc, λc = N wij |μc, λc
−1  and 

qξ μc, λc = N μc |μ0, v0λc
−1 × Ga λc |aλ, bλ . In this case, ξc = (μc,λc). Let Cat(x|π) indicate 

a discrete r.v. x with probabilities p(x,=l) = πl. For categorical covariates with r categories, 

we use a categorical-Dirichlet auxiliary model, qx(uij | πc) = Cat(uij | πc) and qξ (πc) = 

Dir(πc | aπ,…,aπ) with πc = (πc1,…,πcr). The prior p(ρ | x) introduces the desired covariate-

dependent prior on the clusters Sc.

Conditional on ρ we introduce cluster-specific parameters βc and complete the model with a 

probit sampling model,

p(z |ρ, β, x) = ∏
c = 1

C
∏

i ∈ Sc
p zi |xi, βc = ∏

c = 1

C
∏

i ∈ Sc
pi

zi 1 − pi
1 − zi

(6)

with pi = Φ(xi βc) and a centered multivariate normal prior on βc ~ N(0,τβI).

A practical advantage of the PPMx is its simple implementation. The posterior defined by 

models (5) and (6) becomes
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p(ρ, β, ξ |z, x) ∝ ∏
c = 1

C
∏

i ∈ Sc
p zi |xi, βc qx xi |ξc p βc qξ ξc ℎ Sc .

Letting yi = zi, xi , θc
⋆ = βc, ξc ,qy yi |θc

⋆ = p zi |xi, βc qx xi |ξc , qθ θc
⋆ = p βc qξ ξc  and 

qρ(ρ) = ∏c = 1
C ℎ Sc  one can rewrite the posterior distribution as

p(ρ, β, ξ |z, x) ∝ ∏
c = 1

c
∏

i ∈ Sc
qy yi |θc

⋆ × ∏
c = 1

C
qθ θc

⋆ × qρ(ρ) . (7)

That is, posterior inference can proceed as if yi were sampled from Equation (7). For 

example, in our application, we choose qρ(·) to be the random partition that is induced by a 

PY prior. The PY generalizes the DP and is more flexible in modeling the number of clusters 

(De Blasi et al., 2015). Posterior inference under (7) can then be carried out using Equation 

(2.1) (and hence Algorithms 1 and 2) with p(yi |·) = qy(yi |·), H = PY(α,d,G0) and G0 = qθ 
(·). Note how (7) is identical to the posterior in a model with data yi cluster-specific 

parameters θ*c and prior qρ(ρ), allowing for easy posterior simulation.

One of the goals in our later applications is to classify a new subject, i.e., predict the binary 

outcome zn+1, on the basis of covariates xn+1. It is straightforward to predict zn+1 using 

posterior averaging with respect to partitions, cluster allocation and model parameters. Let 

q xn + 1 |xc⋆ = g xc⋆, xn + 1 /g xc⋆ . The posterior predictive distribution is given by

p zn + 1|xn + 1, z, x ∝ ∫ { nc − d ∑
c = 1

C
p zn + 1|xn + 1, βc, sn + 1 = c q xn + 1|xc⋆

+ (α + dC)p zn + 1|xn + 1, βC + 1 g xn + 1 p(ρ |z, x)dρ,

which can be approximated by

p zn + 1|xn + 1, z, x ∝ 1
T ∑

t = 1

T
{ nc(t) − d ∑

c = 1

C(t)
p zn + 1|xn + 1, βc(t), sn + 1

(t) = c q xn + 1|xc⋆

+ α + dC(t) p zn + 1|xn + 1, βC + 1
(t) g xn + 1 ,

with superscript (t) indexing the tth MCMC samples t = 1,…,T, and βC + 1
(t)  is drawn from its 

prior.

4 Simulation

We conduct four simulation studies. The first two simulations focus on clustering. We use a 

PY mixture (PYM) model. The last two simulations consider clustering and classification 
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based on the PPMx. We use relatively small datasets with n = 800 in the simulations, so that 

we can compare with standard MCMC implementations of inference under the PYM and 

PPMx models. Scalability is later explored, in two case studies. We report frequentist 

summaries based on 50 repetitions. For each repeat simulation, MCMC is run for 10,000 

iterations, discarding the first 50% of MCMC samples as burn-in and thinning the chain by 

keeping every 5th sample.

4.1 Simulation I: Mixture of five normals

The first simulation considers a SIGN approximation of posterior inference in a PYM model 

for a p = 5 dimensional outcome yi:

yi|μi, Σi
 ind p yi |μi, Σi , μi, Σi |G ind G, G PY α, d, G0 ,

where G0(μ, Σ) = Np(μ|0,Σ/κ0) × IW(Σ|b, Ip). The hyperparameters are α =1, d = 0.5, κ0 = 

0.01, b = p.

We construct a simulation truth with C0 = 5 true clusters with equal sizes. We generate si 

using p(si = l) = 1/5, and data yi|si = c ~ Np(μc, Σc), i = 1,…,n. where μ1 = (−2,1.5,0,0,0)T, μ2 

= (0,3,0,0,0)T, μ3 = (0,0,0,1, −2)T, μ4 = (1,2,0,0,0)T, μ5 = (0,0,0, −2, −2)T, Σ1= 

diag(0.25,0.1,1,1,1), Σ2= diag(1.252,0.1,1,1,1), Σ3= diag(1,1.1,0.1,0,0.25), 

Σ4 = blkdiag 0.1 0.05
0.05 0.1 , I3  and Σ5 =  blkdiag  I3, 0.25 0.125

0.125 0.25 .

In words, clusters 1, 2, and 4 are characterized by a shift in the distribution for the first two 

variables yi1 and yi2 with different correlation structures, whereas clusters 3 and 5 are 

characterized by a shift in the third and fourth variables yi4 and yi5. And yi3 plays the role of 

a “noisy” response with the same distribution across all clusters. Variables that do not 

characterize clusters (such as yi3, yi4, yi5 in clusters 1, 2 and 4) are independently sampled 

from standard normal distributions. The data of one randomly selected simulation is shown 

in Supplementary Materials (Figure 1).

We implement SIGN for approximate posterior inference, using K = 2 steps. In the first step, 

the data are randomly split into M1 = 4 shards with each shard processing 200 samples. We 

compare the SIGN approximation with a (simulation exact) MCMC implementation for 

PYM and with DBSCAN (Ester et al. 1996). DBSCAN is a clustering-algorithm designed to 

discover clusters of arbitrary shape. It has two tuning parameters: neighborhood size ϵ and 

the minimum number m of points in the ϵ-neighborhood. We use the default choice m = 5 as 

implemented in the R package ”dbscan” (Hahsler and Piekenbrock 2018). The value of ϵ is 

set to 1, which gives the best performance in the spiral data (Section 4.2), a typical example 

showcasing the strength of DBSCAN. We will also examine a couple of other values of ϵ. In 

addition, we include a variation of SIGN with a different loss function instead of squared 

error loss (to summarize the partition at the end of each MCMC pass). Specifically, we use 

variation of information loss (Meilă 2007; Wade and Ghahramani 2018; Rastelli and Friel 

2018), and refer to this variation as SIGN-VI.
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The average estimated number of clusters, C, and the misclustering rate are reported in Table 

1. SIGN and SIGN-VI slightly underestimate C (relative to the posterior mean under full 

MCMC simulation). In terms of the misclustering rate, full MCMC posterior inference is 

closely matched by SIGN and SIGN-VI. DBSCAN shows a 41% misclustering rate. A 

similar comparison holds for parameter estimation: SIGN and SIGN-VI closely match the 

average mean squared error for cluster-specific means μ that is reported under full posterior 

MCMC, which in turn is lower than under DBSCAN (Table 1).

To further evaluate the approximation accuracy of SIGN relative to full posterior simulation 

for the PYM, we evaluate the posterior co-clustering probabilities pij = p(si = sj | y), i < j, 
using SIGN and full posterior MCMC in the PYM, and then take the differences between the 

two estimates across all pairs (i, j) of observations. The histogram of the differences across 

50 simulations (Supplementary Material, Figure 2) indicates good approximation accuracy 

of SIGN.

Sensitivity analysis.—Next, we evaluate the sensitivity of the SIGN approximation with 

respect to different random splits of the data in the first step. We randomly pick one 

simulation and run SIGN 50 times, each time with a different initial split. The average 

estimated number of clusters is 4.96 with standard deviation 0.20 and misclustering rate 0.09 

with standard deviation 0.03. The small standard deviations indicate stable performance of 

SIGN under different splits of the data.

To assess sensitivity with respect to the local sample size in each shard in the first step, we 

increase the sample size to n = 4000 and compare with full posterior MCMC under the PYM 

and with DBSCAN. Full posterior inference finds 21.8 clusters on average. As expected, 

larger total sample size gives rise to more clusters, a typical property of many BNP mixture 

models. DBSCAN finds 126.38 clusters on average using ϵ = 1. DBSCAN is quite sensitive 

to the choice of ϵ. For example, in a randomly selected simulation, the estimated numbers of 

clusters are 123, 77 and 5 for ϵ = 1.0,1.1,1.7. However, we note that DBSCAN is 

particularly designed to work well with unusual clusters, as we shall see later, in Section 4.2.

We then run SIGN with M1 = 4,8,10,20 corresponding to 1000,500,400,200 data points per 

shard. The average (over repeat simulations) estimated numbers of clusters are 

8.54,6.46,5.74,5.44 with standard deviations 1.76,1.03,0.75,0.70 The average misclustering 

rates are 0.06,0.05,0.05,0.09 with standard deviations 0.02,0.01,0.01,0.02. In summary, the 

SIGN approximation tends to under-estimate the number of clusters relatively to full 

MCMC. This is probably due to the fact that local clusters in earlier steps are frozen and can 

only grow by later merging, but can never shrink. This biases the number of estimated 

clusters toward smaller numbers. However, in most applications the many small and 

singleton clusters that are generated by some BNP mixture models are not of interest, 

making this approximation error less critical.

4.2 Simulation II: Two spirals

The main strength of DBSCAN is its flexibility to adjust to clusters of different shapes. 

Here, we consider data with two highly non-convex clusters. A typical view of the data is 

shown in Figure 2. Applying full MCMC for the PYM model, the SIGN approximation, and 
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DBSCAN for 50 randomly generated two-spiral datasets, we find the average (over the 

repeat simulations) estimated number of clusters to be 14.10,9.28,1.98 with standard 

deviations 1.37,0.93,0.14 for full posterior inference, the SIGN approximation, and for 

DBSCAN, respectively. However, the tuning parameter ϵ of DBSCAN is tuned in an 

“oracle” way, that is, we set

ϵ = 1 so that the average number of clusters is close to the truth C0 = 2. Not surprisingly, due 

to the convexity of normal density/contours, the PYM model requires more clusters to 

compensate the non-convex shape of the true clusters, using both, full posterior MCMC as 

well as using the SIGN approximation. The estimated clusters for one simulation are shown 

in Figure 2.

4.3 Simulation III: cluster-specific probit regression

Next we assess the performance of the SIGN implementation for inference in the PPMx. We 

first consider a scenario where the simulation truth includes underlying clusters. We assume 

a simulation truth with C0 = 5 clusters, p = q = 5 continuous and discrete covariates, and all 

clusters having the same size. Discrete covariates ui are generated as uij ~ Cat(1/ 3,1/ 3,1/ 3), 

independently, j =1,…,q. Continuous covariates wi are generated in the same way as yi in 

Simulation I. The binary response zi is generated from a cluster-specific probit regression, zi 

~ Bernoulli(pi) with

Φ−1 pi =

−1 − wi5 if si = 1
−1+2wi3 if si = 2
−1+wi4 if si = 3

−1 + 1.5wi1 − I ui1 = 2 + I ui1 = 3 if si = 4
−1 − 1 − 1.5wi1 − I ui2 = 2 + I ui3 = 3 if si = 5 .

We fix the hyperparameters as

α =1,d = 0.5,τβ =1,μ0 = 0,v0 = aλ = bλ = 0.01,aπ =1/ r, and carry out inference under the 

PPMx model using the default similarity functions (simply PPMx hereafter). For 

comparison, we also carry out inference using k-means (Hartigan and Wong, 1979) for the 

continuous covariates (which define the clusters) with k = 5 (the true number of clusters) and 

20 random starting points. PPMx is always able to correctly identify the number of clusters 

with 2.5% average misclustering rate (with respect to cluster assignment). The SIGN 

approximation selects the correct number of clusters in 48 (out of 50) simulations, with 

average misclustering rate 7.5%. In contrast, with k-means we find a misclustering rate of 

25.5%.

To assess the out-of-sample predictive performance, that is, prediction of zn+1, we compute 

the area under the ROC curve (AUC) based on 50 independent test samples generated from 

the same simulation truth as the training data. In addition to the previous comparison, we 

also benchmark against four more alternative classifiers: sparse LR with lasso (R 

package ”glmnet”, Friedman et al., 2010), SVM (”e1071”, Meyer et al., 2018), RF 

(”randomForest”, Liaw and Wiener, 2002), and BART (”BayesTree”, Chipman and 

McCulloch, 2016). For SVM, we transform the discrete covariates using dummy variables, 
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fit with linear, cubic and Gaussian radial bases and report the best performance of the three. 

We grow 50,000 trees for RF and 200 trees for BART. For a fair comparison, we run BART 

using the same MCMC configuration as ours (i.e. 10,000 iteration, 50% burn-in and save 

every 5th sample). The results are reported in the first column of Table 2, where we find that 

full posterior inference in the PPMx and the SIGN approximation have almost the same 

AUC’s and both compare favorably with the competing classifiers.

4.4 Simulation IV: non-linear probit regression

The favorable results for SIGN and PPMx in simulation III may be partially due to the 

chosen simulation truth. For an alternative comparison, in this example we use a simulation 

truth different from the PPMx model. Particularly, we assume a simulation truth without an 

underlying clustering structure, generating the binary response by a nonlinear probit 

regression, zi ~ Bernoulli(pi) with

Φ−1 pi = − 1 + wi1
2 − wi2

2 + sin wi3wi4 + I ui1 = 2 − I ui1 = 3 − I ui2 = 2 + I ui2 = 3 .

The AUC summaries for the classification are shown in the second column of Table 2. 

SIGN, PPMx and RF have the same AUC, AUC = 0.84, which is slightly lower than the 

AUC of BART, AUC = 0.87. LR and SVM do not perform well in both simulations possibly 

due to the parametric (linear or cubic) decision boundary in LR, and the use of SVM with 

linear and cubic bases, and the difficulty in tuning the model parameters in SVM with radial 

bases.

5 Case studies

5.1 Electronic health records data: detecting diabetes

The emergence of EHR data gives rise to great opportunities as well as challenges for data-

driven approaches in early disease detection. Large sample sizes allow more efficient 

statistical inference but at the same time impose computational challenges, especially for 

flexible but computation-intensive BNP models.

We consider EHR data for n = 85, 021 individuals in China. The dataset is based on a 

physical examination of residents in some districts of a major city in China conducted in 

2016. We use the data to develop a model for chronic disease prediction, specifically for 

diabetes. We extract data on diabetes from the items “medical history” and “other current 

diseases” in the physical examination form. If either of the two items of a subject mention 

diabetes, that subject is considered as having diabetes. We denote the diabetes status by zi (1: 

diabetic and 0: normal) for subjects i =1,…,n. Blood samples were drawn from each subject 

and sent to a laboratory for subsequent tests. We consider test results that are thought to be 

relevant to diabetes. These include white blood cell count (WBC), red blood cell count 

(RBC), hemoglobin (HGB), platelets (PLT), fasting blood glucose (FBG), low density 

lipoproteins (LDL), total cholesterol (TC), triglycerides (Trig), triketopurine (Trik), high 

density lipoproteins (HDL), serum creatinine (SCr), serum glutamic oxaloacetic 

transaminase (SGOT), and total bilirubin (TB). We also include 5 additional covariates: 
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gender, height, weight, blood pressure, and waist. Our goal is twofold: (1) predicting 

diabetes; and (2) clustering a heterogeneous population into homogeneous subpopulations.

To comply with Chinese policy, we report inference for data generated by a Generative 

Adversarial Network (GAN, Goodfellow et al. 2014), which replicates the distribution 

underlying the raw data. GAN is a machine learning algorithm which simultaneously trains 

a generative model and a discriminative model on a training dataset (in our case, the raw 

EHR dataset). The generative model simulates the training data distribution in order to 

simulate hypothetical additional data, which is then merged with the original data. 

Meanwhile, the discriminative model learns to optimally distinguish between original and 

simulated data. During training, the generative model uses gradient information from the 

discriminative model to produce better simulations. After training, the generative model can 

be used to generate an arbitrary number of simulations which are similar in distribution to 

the original dataset. In our case, we generate a simulated dataset of the same size as the raw 

EHR dataset.

For this application, we train on a dataset where columns of continuous variables are 

standardized, and corresponding output are then re-scaled at simulation time. To 

accommodate binary variables, we allow the GAN to simulate continuous values, and round 

corresponding outputs to 0 or 1. We use the architecture of MMD-GAN (Li et al., 2017), 

which uses maximum mean discrepancy (MMD, Gretton et al., 2012), a distributional 

distance, to compare real data and simulations. Our implementation uses encoder and 

decoder networks each containing three layers of 100 nodes, connected by a bottleneck layer 

of 64 nodes, and with exponential linear unit activations. In the optimization, we use 

RMSProp with a learning rate of 0.001, and we weight the MMD in our discriminator loss 

function by 0.1.

Our model reaches a stable point, where both marginal distributions and pairwise 

correlations agree with the raw data (see Figure 3). Moreover, the classifiers we consider 

have similar prediction performance on the two datasets. Therefore, we only report the 

results based on the replicated EHR data (referred to as EHR data hereafter). To the extent to 

which the preprocessed data set retains all information and structure of the original data, any 

inference other than subject-specific summaries remains practically unchanged. See the 

Appendix for more details.

Results.—We randomly sample 84,750 subjects as training data and use the remaining 271 

subjects as test data to evaluate out-of-sample classification performance. We implement 

inference under the PPMx model using the proposed SIGN algorithm. In the 

implementation, we use 250 compute cores (equivalent to 11 compute nodes with 24 cores 

per node) at the Texas Advanced Computing Center (TACC, http://www.tacc.utexas.edu) for 

computation. In the first step, the training data are randomly split into M1 = 250 compute 

cores/shards with 339 samples in each shard. Across all shards, we obtain 1351 local 

clusters. In the second step, the 1351 local clusters are distributed to M2 = 5 shards with 

each shard taking about 270 items. In step 2, the local clusters are grouped into 25 regional 

clusters. Iteration stops there since 25 items need not be further split, i.e., K = 3. In a final 
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step, the 25 regional clusters are merged to 5 global clusters with sizes 26892, 26453, 18778, 

11474, and 1153, respectively.

The AUC summaries based on the test dataset are provided in Table 2. SIGN reports the 

highest AUC (0.880), followed by RF, and BART. As expected, the most important covariate 

for predicting diabetes is FBG. Regressing on FBG alone achieves AUC = 0.829. In terms of 

computation time, SIGN, BART, RF and SVM take 0.9, 18.7, 3.5 and 2.5 hours with 2.6 

GHz Xeon E5–2690 v3 CPU, respectively, whereas LR is several magnitude faster at the 

price of accuracy. We do not implement PPMx with standard MCMC, as this is not feasible 

with the large sample size. The good performance of SIGN may be explained by its ability 

to explicitly accommodate the heterogeneous nature of the subject population and allow for 

cluster-specific probit models in each subpopulation, while leveraging model averaging to 

classify new subjects. For example, the estimated intercept is −1.5 for cluster 2 and −0.95 

for cluster 4. The coefficient of the important covariate FBG also exhibits heterogeneity, 

0.97 for cluster 3 and 0.76 for cluster 4.

Finally, we evaluate the F0.1 diagnostic proposed in Section 2.2.3. Specifically, we sample m 
= 4 out of the M1 = 250 shards. We then run the SIGN approximation as well as full MCMC 

posterior simulation on the merged dataset of the 4 selected shards. Repeating the same 

procedure 62 times, we find an average F0.1 value of 0.73.

5.2 Predicting the success of telemarketing

Direct marketing is a form of advertising where the salesperson directly communicates with 

the customers to promote business. In 2011, marketers are estimated to have spent $163 

billion on direct marketing which accounted for 52.1% of total US advertising expenditures 

in that year (Direct Marketing Association INC., 2012). A common direct marketing 

practice is by phone, known as telemarketing. In this study, we focus on predicting the 

success of telemarketing in selling long-term bank deposits.

We analyze a dataset collected from a Portuguese retail bank (Moro et al., 2014) with n = 41, 

188 records. The outcome of interest is whether the customer eventually subscribed a long-

term deposit: zi = 1 if yes, and zi = 0 otherwise, i =1,…,n. Associated with each record/

customer are 20 covariates which are listed in Table 3. We follow Moro et al. (2014) and 

remove the covariate “last contact duration,” since the duration is unknown before a call is 

performed and therefore can not be used to predict the outcome of the next customer. After 

removing records that are inconsistent with the data description, the resulting dataset 

contains 37,078 records. We randomly sample n = 36, 750 as training data and use the 

remaining 328 for testing purpose. Similarly to the analysis in Section 5.1, we apply PPMx 

using SIGN with K = 3 steps. In the first step, we randomly split the training data into M1 = 

150 shards (distributed on 7 compute nodes) with each shard taking 245 samples. We find 

1,474 local clusters in the first step. Next, the 1,474 local clusters are then split to M2 = 5 

shards, with each shard processing about 295 blocks of customers. In this step, the local 

clusters are merged into 64 regional clusters. Finally, the 64 regional clusters are grouped 

into 14 global clusters with cluster sizes 7,687, 6,042, 5,725, 5,130, 3,950, 2,815, 2,101, 

1,484, 975, 689, 56, 48, 26 and 22.
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The classification performance evaluated on the testing dataset is reported in the last column 

of Table 2 for SIGN, BART, RF, LR and SVM. We find SIGN outperforms all other methods 

with AUC = 0.825. The second best algorithm is BART with AUC = 0.792.

6 Discussion

We have introduced SIGN as a scalable algorithm for inference on clustering under BNP 

mixture models. SIGN can be thought of as a parallelizable extension of the Algorithm 8 in 

Neal (2000), which is applicable to both conjugate and non-conjugate models. We use SIGN 

to implement inference under a PPMx model for a Chinese EHR dataset with 85,021 

individuals and a bank telemarketing dataset with 37,078 customers. We find good 

classification performance compared with state-of-the-art competing methods. For the EHR 

study, we find five meaningful clusters in the study population. We anticipate that this study 

will continue to collect many more subjects over the coming years. The use of algorithms 

that are scalable to millions of observations in terms of both, computing time and memory is 

therefore imperative. The computing time for the proposed algorithm remains practicable 

with increasing sample size, as long as enough computing resources are available. For 

example, with 1,000,000 observations, SIGN runs for about 1 hour on 2,000 cores or 

equivalently on 80 compute nodes. This is feasible on many high performance computing 

centers such as TACC. Memory is less of a critical limitation. If needed, one can use one 

large-memory compute node (192GB on TACC) in the last step where we have to access the 

entire dataset.

In this paper, we only consider “large n, small p” problems. The two motivating applications 

include only p = 18 and p = 19 covariates. Extension to “large n, large p” problems is of 

practical interest for other potential applications. Another limitation of inference for the 

PPMx model with the current SIGN implementation is the need to access the entire dataset 

in the last step, which becomes computationally prohibitive for big n or p. For the PPMx, 

one possible strategy is to replace the cluster-specific probit model by a simpler cluster-

specific Bernoulli model with the binary response. The desired dependence between 

response and covariate is introduced marginally, after marginalizing with respect to the 

partition. Under this construction the algorithm depends on the data only through low 

dimensional summary statistics and could handle arbitrarily large data. A similar strategy 

was explored in Zuanetti et al. (2018). However, introducing the dependence between 

response and covariates through the partition only, we find less favorable classification 

performance than in the current implementations (results not shown).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: GAN preprocessing details

To evaluate the privacy of the simulated set, we measure two types of risk: presence 

disclosure and attribute disclosure (Choi et al., 2017). Presence disclosure is the ability to 

determine whether a candidate point was included in the training dataset. Attribute 

disclosure is the ability to predict other attributes of a candidate point, given partial 

information about that point. For both settings, we choose three sets of equal size – 5% of 

the training data, a heldout set for testing, and a heldout set for baseline comparison – then 

estimate the sensitivity and precision of classification schemes.

For presence disclosure, we sample a candidate from the union of training and testing sets, 

and classify whether the candidate was included in the training set based on the presence of 

an ϵ-close neighbor in the simulated set. For large ϵ, the notion of ϵ-closeness is not 

informative, since many points are returned as neighbors, and precision scores hover around 

50% – no better than random guessing. For small ϵ, few points are returned as neighbors, 

and neighbors are more likely to be correctly guessed, since the requirement is for a 

neighbor to be nearly identical to the candidate point. To reflect the optimal privacy 

standard, we report scores using the largest ϵ for which precision exceeds 55%. This yields 

the largest sensitivity under nontrivial risk, where a higher sensitivity indicates greater 

ability to identify a participant. At ϵ = 9.5, the sensitivity of this classification is 0.0005, 

indicating that compromised training points would be identifiable only 0.05% of the time.

For attribute disclosure, we sample as above, and classify whether unknown features of a 

candidate point can be correctly estimated to within 5% of the true value, by averaging each 

feature over the candidate’s five nearest neighbors in the simulated set. We report values for 

the case in which half of the candidate’s features are known, and the other half are imputed, 

and note that performance did not change significantly when the percentage of known values 

differed. The sensitivity and precision scores of this classification are 0.31 and 0.72, 

respectively, indicating that unknown features would be correctly guessed 31% of the time, 

and features claiming to be within 5% of the true value would in fact be 72% of the time.

We note that privacy and accuracy goals are inherently opposed. An increase in privacy 

corresponds to a simulated set with less information about individual data points, and vice 

versa. As a general guideline, we aim to satisfy privacy requirements while preserving as 

much as possible the utility of the simulations. In the specific case of attribute risk, we 

recognize that scores depend on the correlation structure of the data, where highly correlated 

features are more susceptible to attribute disclosure. As a baseline, we compared attribute 

risk scores of simulations to those of the final heldout set, and found that both were 

approximately 30% and 70%, respectively.
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Fig. 1. 
Example workflow of a 3-step SIGN algorithm. Step 1: the dataset is randomly distributed 

into 4 shards, each denoted by a unique type (color) of marker and observations are 

partitioned into local clusters (represented by the ellipses) within each shard in parallel. Step 

2: local clusters are collected, randomly distributed into M2 = 2 shards, and then partitioned 

into regional clusters within each shard. Step 3: regional clusters are aggregated and 

partitioned into global clusters.
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Fig. 2. 
Two-spiral data. One randomly selected simulation result for inference under (a) SIGN, (b) 

standard implementation of PYM, and (c) DBSCAN. Marker types indicate clusters.
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Fig. 3. 
GAN-preprocessed EHR data versus raw EHR data. (a) Marginal distribution of each 

variable. For each variable, the two overlaid histograms show the agreement between the 

preprocessed and the raw data. (Variable names and ranges are deliberately not shown.) (b) 

Correlation of each pair of variables. Each dot represents the Pearson correlation coefficients 

of one pair of variables in the raw EHR data (x-axis) versus the same in the GAN-

preprocessed EHR data (y-axis). In total, we have 
19
2  pairs/dots.
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Table 1

Clustering performance of the methods used for Simulation I. The table reports the average estimated number 

of clusters (C), misclustering rate (MISC) and mean squared error in estimating cluster-specific means μb 
(MSE) for inference under SIGN, SIGN with variation of information loss (SIGN-VI), standard 

implementation of Pitman-Yor process mixture (PYM) and DPSCAN. Numerical errors (as standard 

deviations over repeat simulation) are given within the parentheses.

SIGN SIGN-VI PYM DBSCAN

C 4.94 (0.31) 4.90 (0.30) 5.08 (0.27) 3.64 (1.63)

MISC 0.08 (0.03) 0.09 (0.03) 0.04 (0.01) 0.41 (0.11)

MSE 0.01 (0.01) 0.01 (0.01) 0.01 (0.00) 0.49 (0.18)
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Table 2

Performance of the methods used for Simulations III and IV, and the two case studies. The table reports AUC 

for inference under the SIGN approximation, (standard implementation of) PPMx, BART, RF, LR and SVM. 

Numerical errors (as standard deviations over repeat simulation) are given within the parentheses.

Simulation III Simulation IV EHR Bank

SIGN 0.808 (0.067) 0.838 (0.067) 0.880 0.825

PPMx 0.824 (0.060) 0.841 (0.063) - -

BART 0.755 (0.062) 0.866 (0.050) 0.867 0.792

RF 0.793 (0.059) 0.838 (0.067) 0.869 0.786

LR 0.600 (0.091) 0.524 (0.073) 0.856 0.781

SVM 0.622 (0.077) 0.585 (0.077) 0.856 0.761
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Table 3

20 Covariates in the long-term deposit data. For categorical covariates, the number within the parentheses 

indicates the number of categories.

Covariate name Type

Type of job Categorical (12)

Marital status Categorical (4)

Education Categorical (8)

Default or not Categorical (3)

Housing loan or not Categorical (3)

Contact communication type Categorical (2)

Last contact month of year Categorical (12)

Last contact day of the week Categorical (5)

Outcome of the previous campaign Categorical (3)

Age Continuous

Last contact duration Continuous

Number of contacts Continuous

Number of days from a previous campaign Continuous

Number of contacts before this campaign Continuous

Employment variation rate Continuous

Consumer price index Continuous

Consumer confidence index Continuous

Euribor 3 month rate Continuous

Number of employees Continuous
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