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Abstract

Random-effects meta-analyses of observational studies can produce biased estimates if the 

synthesized studies are subject to unmeasured confounding. We propose sensitivity analyses 

quantifying the extent to which unmeasured confounding of specified magnitude could reduce to 

below a certain threshold the proportion of true effect sizes that are scientifically meaningful. We 

also develop converse methods to estimate the strength of confounding capable of reducing the 

proportion of scientifically meaningful true effects to below a chosen threshold. These methods 

apply when a “bias factor” is assumed to be normally distributed across studies or is assessed 

across a range of fixed values. Our estimators are derived using recently proposed sharp bounds on 

confounding bias within a single study that do not make assumptions regarding the unmeasured 

confounders themselves or the functional form of their relationships with the exposure and 

outcome of interest. We provide an R package, EValue, and a free website that compute point 

estimates and inference and produce plots for conducting such sensitivity analyses. These methods 

facilitate principled use of random-effects meta-analyses of observational studies to assess the 

strength of causal evidence for a hypothesis.
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1. Introduction

Meta-analyses can be indispensable for assessing the overall strength of evidence for a 

hypothesis and for precisely estimating effect sizes through aggregation of multiple 

estimates. Meta-analysis is often used not only for randomized trials, but also for 

observational studies. When the hypothesis of interest is about causation (e.g., of an 

exposure on a health outcome), evidence strength depends critically not only on the size and 

statistical uncertainty of the meta-analytic point estimate, but also on the extent to which 

these apparent effects are robust to unmeasured confounding (Shrier et al. 2007; Egger, 

Schneider, and Smith 1998; Valentine and Thompson 2013). However, when well-designed 

randomized studies do not exist because the exposure cannot be randomized, meta-analyses 

often include potentially confounded observational studies. Therefore, in practice, meta-

analyses of observational studies are often met with concerns about the potential for 

unmeasured confounding to attenuate—or possibly even reverse the direction of—the 

estimated effects (e.g., Chung et al. 2014; Aune et al. 2011; Siri-Tarino et al. 2010 with 

critiques on the latter by Stamler (2010)). Yet such considerations rarely proceed beyond 

qualitative speculation given the limited availability of quantitative methods to assess the 

impact of unmeasured confounding in a meta-analysis.

Our focus in this article is therefore on conducting sensitivity analyses assessing the extent 

to which unmeasured confounding of varying magnitudes could have compromised the 

results of the meta-analysis. Existing sensitivity analyses for confounding bias or other 

internal biases in meta-analysis estimate a bias-corrected pooled point estimate by directly 

incorporating one or more bias parameters in the likelihood and placing a Bayesian prior on 

the distribution of these parameters (Welton et al. 2009; McCandless 2012). An alternative 

frequentist approach models bias as additive or multiplicative within each study and then 

uses subjective assessment to elicit study-specific bias parameters (Turner et al. 2009). 

Although useful, these approaches typically require strong assumptions on the nature of 

unmeasured confounding (e.g., requiring a single binary confounder), rely on the arbitrary 

specification of additive or multiplicative effects of bias, or require study-level estimates 

rather than only meta-analytic pooled estimates. Furthermore, the specified bias parameters 

do not necessarily lead to precise practical interpretations.

An alternative approach is to analytically bound the effect of unmeasured confounding on 

the results of a meta-analysis. To this end, bounding methods are currently available for 

point estimates of individual studies. We focus on sharp bounds derived by Ding and 

VanderWeele (2016) because of their generality and freedom from assumptions regarding 

the nature of the unmeasured confounders or the functional forms of their relationships with 

the exposure of interest and outcome. This approach subsumes several earlier approaches 

(Cornfield et al. 1959; Schlesselman’s 1978; Flanders and Khoury 1990) and, in contrast to 

Lin, Psaty, and Kronmal (1998) and certain results of VanderWeele and Arah (2011), does 

not make any no-interaction assumptions between the exposure and the unmeasured 

confounder(s).

This article extends these analytic bounds for single studies to the meta-analytic setting. 

Using standard estimates from a random-effects meta-analysis and intuitively interpretable 
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sensitivity parameters on the magnitude of confounding, these results enable inference about 

the strength of causal evidence in a potentially heterogeneous population of studies. Broadly, 

our approach proceeds as follows. First, we select an effect size representing a minimum 

threshold of scientific importance for the true causal effect in any given study. Second, we 

use the confounded effect estimates from the meta-analyzed studies, along with simple 

sensitivity parameters, to make inference to the population distribution of true causal effects 

(the quantities of ultimate scientific interest). Last, we use this estimated distribution in turn 

to estimate the proportion of true causal effects in the population that are of scientifically 

meaningful size (i.e., those stronger than the chosen threshold). As we will discuss, the 

proportion of scientifically meaningful effect sizes in a meta-analysis is a useful 

characterization of evidence strength when the effects may be heterogeneous (Mathur and 

VanderWeele 2019). Conversely, we also solve for the sensitivity parameters on the bias that 

would be capable of “explaining away” the results of the meta-analysis by substantially 

reducing the proportion of strong causal effects. We also discuss sensitivity analysis for the 

pooled estimate of the mean effect.

If sensitivity analysis for unmeasured confounding indicates that only a small proportion of 

true causal effects are stronger than the chosen threshold of scientific importance, then 

arguably the results of the meta-analysis are not robust to unmeasured confounding in a 

meaningful way regardless of the “statistical significance” of the observed point estimate. To 

this end, we develop estimators that answer the questions: “In the presence of unmeasured 

confounding of specified strength, what proportion of studies would have true causal effects 

of scientifically meaningful size?” and “How severe would unmeasured confounding need to 

be ‘explain away’ the results; that is, to imply that very few causal effects are of 

scientifically meaningful size?” This approach to sensitivity analysis is essentially a meta-

analytic extension of a recently proposed metric (the E-value) that quantifies, for a single 

study, the minimum confounding bias capable of reducing the true effect to a chosen 

threshold (VanderWeele and Ding 2017). We provide and demonstrate use of an R package 

(EValue) and a free website for conducting such analyses and creating plots.

2. Existing Bounds on Confounding Bias in a Single Study

Ding and VanderWeele (2016) developed bounds for a single study as follows. Let X denote 

a binary exposure, Y a binary outcome, Z a vector of measured confounders, and U one or 

more unmeasured confounders. Let

RRXY z
c =  P Y   =  1  X  =  1,  Z  =  z

P Y   =  1  X  =  0,  Z  =  z

be the confounded relative risk (RR) of Y for X = 1 versus X = 0 conditional or stratified on 

the measured confounders Z = z.

Let its true, unconfounded counterpart standardized to the population be

RRXY z
t =

∑uP Y   =  1 X  =  1,  Z  =  z,  U  =  u P(U  =  u Z  =  z)
∑uP(Y X = 0, Z = z, U = u)P(U = u Z = z) .
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(Throughout, we use the term “true” as a synonym for “unconfounded” or “causal” when 

referring to both sample and population quantities. Also, henceforth, we condition implicitly 

on Z = z, dropping the explicit notation for brevity.) Define the ratio of the confounded to 

the true RRs as B  =  RRXY
c /RRXY

t .

Let RRXu = P (U = u | X = 1) /P (U = u| X = 0). Define the first sensitivity parameter as 

RRXU = maxu (RRXu); that is, the maximal RR of U = u for X = 1 versus X = 0 across strata 

of U. (If U is binary, this is just the RR relating X and U.) Next, for each stratum x of X, 

define a RR of U on Y, maximized across all possible contrasts of U:

RRUY X = x  =  
maxuP(Y = 1 X = x, U = u)
minuP(Y = 1 X = x, U = u) ,  x  ∈  {0,  1} .

Define the second sensitivity parameter as RRUY = max(RRUY|X=0, RRUY|X=1). That is, 

considering both strata of X, it is the largest of the maximal RRs of U on Y conditional on 

X. Then, Ding and VanderWeele (2016) showed that when B ≥ 1, then B itself is bounded 

above by

B  ≤  
RRXU  ⋅  RRUY

RRXU  +  RRUY   −  1

and that when B ≤ 1, the same bound holds for 1/B. Thus, defining the “worst-case” bias 

factor as B+  =  
RRXU  ⋅  RRUY

RRXU  +  RRUY   −  1 , a sharp bound the true effect is

RRXY
t   ≥  RRXY

c /B+ . (1)

This bound on the bias factor applies when examining the extent to which unmeasured 

confounding might have shifted the observed estimate RRXY
c  away from the null. Thus, 

Equation (1) indicates that RRXY
t  is at least as strong as a bound constructed by attenuating 

RRXY
c  toward the null by a factor of B+. The factor B+ is larger, indicating greater potential 

bias, when U is strongly associated with both X and Y (i.e., RRXU and RRUY are large) and 

is equal to 1, indicating no potential for bias, if U is unassociated with either X or Y (i.e., 

RRXU =1 or RRUY = 1).

If the two sensitivity parameters are equal (RRXU = RRUY), then to produce a worst-case 

bias factor B+, each must exceed B+  +   B+ B+  −  1  (which VanderWeele and Ding (2017) 

call the “E-value”). Thus, a useful transformation of B+ is the “confounding strength scale,” 

g, which is the minimum size of RRXU and RRUY under the assumption that they are equal:

g  =  B+  +   B+ B+  −  1    B+  =   g2

2g  −  1 . (2)
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If RRXY
c   <  1 (henceforth the “apparently preventive case”), then Equation (1) becomes 

(Ding and VanderWeele 2016):

RRXY
t   ≤  RRXY

c   ⋅  
RRXU*   ⋅  RRUY

RRXU*   +  RRUY   −  1 ,

where RRXU*   =  maxu RRXu
−1 , that is, the maximum of the inverse RRs, rather than the RRs 

themselves. Thus, B+ remains ≥ 1, and we have RRXY
t   ≥  RRXY

c .

Although these results hold for multiple confounders, in the development to follow, we will 

use a single, categorical unmeasured confounder for clarity. However, all results can easily 

be interpreted without assumptions on the type of exposure and unmeasured confounders, 

for instance by interpreting the relative risks defined above as “mean ratios” (Ding and 

VanderWeele 2016).

3. Random-Effects Meta-Analysis Setting

In this article, we use the aforementioned analytic bounds to derive counterparts for random-

effects meta-analysis. Under standard parametric assumptions (Sutton et al. 2000), each of k 
studies measures a potentially unique effect size Mi, such that Mi ~iid N(μ, V) for a grand 

mean μ and variance V. Let yi be the point estimate of the ith study and σi2 be the within-

study variance (with the latter assumed fixed and known), such that yi |Mi   N Mi, σi2 . Thus, 

marginally, yi   N μ,  V   +  σi2 .

Analysis proceeds by first estimating V via one of many possible estimators, denoted τ2. 

Heterogeneity estimation approaches include, for example, maximum likelihood and 

restricted maximum likelihood as well as approaches proposed by Paule and Mandel (1982), 

Sidik and Jonkman (2005), Hartung and Makambi (2002), and Hedges and Olkin (1985); see 

Veroniki et al. (2015) for a review. We will denote an estimator of μ by yR, which, for many 

estimators, will also be a function of τ2. For example, a common approach is to use the 

maximum likelihood solutions for the two parameters1:

yR  =  
∑i = 1

k wiyi

∑i = 1
k wi

, (3)

τ2  =  max 0,  
∑i = 1

k wi2 yi  −  yR
2  −  σi2

∑i = 1
k wi2

. (4)

The weights, wi, are inversely proportional to the total variance of each study (a sum of the 

between-study variance and the within-study variance), such that wi  =  1/ τ2  +  σi2 . 

Estimation can then proceed by first initializing yR and τ2 to, for example, the weighted 
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mean assuming τ2 =0 and the method of moments estimators, respectively, and then by 

iterating between (3) and (4) to reach the maximum likelihood solutions (Veroniki et al. 

2015). Other estimation procedures exist (see Veroniki et al. 2015 for a review), and our 

methods apply regardless of estimation procedure as long as: (1) yR and τ2 are consistent 

and unbiased, asymptotically normal, and asymptotically independent; (2) the point 

estimates’ expectations are independent of their standard errors; and (3) there are 

approximately 10 or more meta-analyzed studies (see the online Appendix).

4. Main Results

Consider k studies measuring RRs with confounded population effect sizes on the log-RR 

scale, denoted Mc, such that Mc ~ N(μc, Vc). (Other outcome measures are considered 

briefly in Section 10.) For studies in which some confounders are measured and adjusted in 

analysis, we define Mc as the population effect sizes after adjusting for these measured 

confounders, but without adjusting for any unmeasured confounders. Let the corresponding 

true effects be Mt with expectation μt and variance Vt. Let yR
c  be the pooled point estimate 

and τc2 be a heterogeneity estimate, both computed from the confounded study point 

estimates (e.g., from Equations (3) and (4)).

Consider the bias factor on the log scale, B* = log B, and allow it to vary across studies 

under the assumption that B*   N μB*,  σB*
2 , with B* independent of Mt. That is, we assume 

that the bias factor is independent of the true effects but not the confounded effects: 

naturally, studies with larger bias factors will tend to obtain larger effect sizes. For studies in 

which analyses conditioned on one or more measured confounders, B* represents additional 

bias produced by unmeasured confounding, above and beyond the measured confounders. 

Hence, studies with better existing control of confounding are likely to have a smaller value 

of B* than studies with poor confounding control. The normality assumption on the bias 

factor holds approximately if, for example, its components (RRXU and RRUY) are 

identically and independently log-normal with relatively small variance (Web Appendix). 

We now develop three estimators enabling sensitivity analyses.

4.1. Proportion of Studies With Scientifically Meaningful Effect Sizes as a Function of the 
Bias Factor

For an apparently causative RR (yR
c   >  0, or equivalently the confounded pooled RR is 

greater than 1), define p(q) = P(Mt > q) for any threshold q, that is, the proportion of studies 

with true effect sizes larger than q. Then a consistent estimator of p(q) is

p(q)  =  1  −  Φ
q  +  μB*  −  yR

c

τc2  −  σB*
2 ,  τc2  >  σB*

2 ,

where Φ denotes the standard normal cumulative distribution function. In the special case in 

which the bias factor is fixed to μB* across all studies, the same formula applies with 

σB*
2   =  0.
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Many common choices of heterogeneity estimators, τc2, are asymptotically independent of 

yR
c  (Web Appendix), an assumption used for all SEs in the main text. Results relaxing this 

assumption appear throughout the Web Appendix. An application of the delta method thus 

yields an approximate SE:

SE(p(q))  ≈  
var yR

c

τc2  −  σB*
2   +  

var τc2 q + μB* − yR
c 2

4 τc2 − σB*
2 3   ⋅  ϕ

q + μB* − yR
c

τc2 − σB*
2 ,  τc2  >  σB*

2 ,

where ϕ denotes the standard normal density function. (If τc2  ≤  σB*
2 , leaving one of the 

denominators undefined, this indicates that there is so little observed heterogeneity in the 

confounded effect sizes that, given the specified bias distribution, Vt is estimated to be less 

than 0. Therefore, attention should be limited to a range of values of σB*
2  such that 

τc2  >   σB*
2 . Also note that when p(q)  <  0.15 or >0.85, it is preferable to estimate inference 

using bias-corrected and accelerated bootstrapping [(Mathur and VanderWeele 2019)].)

For an apparently preventive RR (yR
c   <  0 or the confounded pooled RR is less than 1), 

define instead p(q) = P(Mt < q), that is, the proportion of studies with true effect sizes less 

than q. Then a consistent estimator is

p(q) =  Φ
q + μB* − yR

c

τc2 − σB*
2 ,  τc2 > σB*

2

with approximate SE:

SE(p(q)) =  
var yR

c

τc2 − σB*
2 +

var τc2 q − μB* − yR
c 2

4 τc2 − σB*
2 3   ⋅  ϕ

q − μB* − yR
c

τc2 − σB*
2 ,  τc2 > σB*

2 .

Because p(q) ismonotonic in σB*
2 , the homogeneous bias case (i.e., σB*

2   =  0) provides either 

an upper or lower bound on p(q) (Table 1). We later return to the practical utility of these 

results.

4.2. Bias Factor Required to Reduce Proportion of Scientifically Meaningful Effect Sizes 
to Below a Threshold

Conversely, we might consider the minimum common bias factor (on the RR scale) capable 

of reducing to less than r the proportion of studies with true effect exceeding q. We 

accordingly define T(r, q) = B+ : P (Mt > q) = r to be this quantity, with B+ taken to be 

constant across studies. (Note that taking B+ to be constant does not necessarily imply that 

the unmeasured confounders themselves are identical across studies.) Then for an apparently 
causative RR, a consistent estimator for the minimum common bias capable of reducing to 

less than r the proportion of studies with effects surpassing q is
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T(r,  q)  =  exp Φ−1(1 − r) τc2 − q + yR
c

with approximate SE:

SE(T(r, q))  =  exp τc2 Φ−1(1 − r) − q + yR
c   ×   var yR

c +
var τc2 Φ−1(1 − r) 2

4τc2
.

For an apparently preventive RR, we can instead consider the minimum common bias factor 

(on the RR scale) capable of reducing to less than r the proportion of studies with true effect 

less than q, thus defining T(r, q) = B+ : P (Mt > q) = r. Then a consistent estimator is

T(r, q)  =  exp q − yR
c − Φ−1(r) τc2

with approximate SE:

SE(T(r, q))  =  exp q − yR
c − τc2 Φ−1(r)   ×   var yR

c   +  
var τc2 Φ−1(r) 2

4τc2
.

4.3. Confounding Strength Required to Reduce Proportion of Scientifically Meaningful 
Effect Sizes to Below a Threshold

Under the assumption that the two components of the common bias factor are equal as in 

Equation (2), such that g = RRXU = RRUY, the bias can alternatively be parameterized on 

the confounding strength scale. Consider the minimum confounding strength required to 

lower to less than r the proportion of studies with true effect exceeding q and accordingly 

define G(r, q) = g: P (Mt > q) = r. For both the apparently causative and the apparently 
preventive cases, an application of Equation (2) yields

G(r, q)  =  T (r, q)  +   (T (r, q))2 − T (r, q)

with approximate SE:

SE(G(r, q))  =  SE(T (r, q))  ⋅   1  +   2T (r, q)  −  1
2 T(r, q)2  −  T (r, q)

.

5. Practical Use and Interpretation

5.1. Interpreting p(q)

To conduct our first proposed sensitivity analysis, one first assumes a simple distribution on 

the amount of confounding bias in the meta-analyzed studies, leading to the specification of 

a pair of sensitivity parameters, μB* and σB*
2 . Then, one computes p(q) to gauge the strength 
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of evidence for causation if confounding bias indeed follows the specified distribution. As 

mentioned in Section 1, we consider the proportion of true effects above a chosen threshold 

of scientific importance because this metric characterizes evidence strength while taking into 

account the effect heterogeneity that is central to the random-effects meta-analysis 

framework. That is, a large proportion of true effect sizes stronger than a threshold of 

scientific importance in a meta-analysis (e.g., 70% of true effects stronger than the threshold 

RR = 1.10, i.e., q = log 1.10) suggests that, although the true causal effects may be 

heterogeneous across studies, there is evidence that overall, many of these effects are strong 

enough to merit scientific interest. If p(q) remains large for even large values of μB*, this 

indicates that even if the influence of unmeasured confounding were substantial, a large 

proportion of true effects in the population distribution would remain of scientifically 

meaningful magnitude. Thus, the results of the meta-analysis might be considered relatively 

robust to unmeasured confounding.

5.2. How to Choose q, μB*, and σB*
2  When Computing p q

The threshold q allows the investigator to flexibly define how much attenuation in effect size 

due to confounding bias would render a causal effect too weak to be considered 

scientifically meaningful. A general guideline might be to use q = log 1.10 as a minimum 

threshold for an apparently causative RR or q = log (1/1.10) ≈ log 0.90 for an apparently 

preventive RR. There is also an extensive interdisciplinary literature on how to choose such 

thresholds, as summarized elsewhere (Mathur and VanderWeele 2019). Because μB* and σB*
2

are sensitivity parameters that are not estimable from the data, we would recommend 

reporting p q  for a wide range of values of μB* (including large values, representing 

substantial confounding bias) and with σB*
2  ranging from 0 to somewhat less than τc2.

To provide intuition for what values of μB* and σB*
2  might be plausible in a given setting, it 

can be useful to consider the implied range of bias factors across studies for a given pair of 

sensitivity parameters. For example, if μB* = log 1.20 and σB*
2   =  0.01, so that the SD of the 

bias on the log scale is 0.10, these choices of sensitivity parameters imply that 95% of the 

studies have B (on the risk ratio scale) between exp(μB* − Φ−1 (0.975) σB* = 0.98 and 

exp(μB*+ Φ−1 (0.975 × σB*) = 1.46. This choice of sensitivity parameters may be 

reasonable, then, if one is willing to assume that studies very rarely (with approximately 

2.5% probability) obtain point estimates that are inflated by more than 1.46-fold due to 

unmeasured confounding, and furthermore that studies very rarely obtain point estimates 

that are biased toward, instead of away from, the null (which requires B < 1). If, in contrast, 

an assessment of study design quality suggests that some studies in the meta-analysis might 

have more severely biased point estimates than the above bias distribution implies, then one 

might consider increasing μB* or σB*
2 . The choice of σB*

2  can also be informed by the extent 

to which the meta-analyzed studies differ with respect to existing confounding control. 

When some studies have much better confounding control than others, then B* may vary 

substantially, so a larger σB*
2  may be reasonable. When all studies adjust for similar sets of 

confounders and use similar populations, then a small σB*
2  may be reasonable. In the Web 
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Appendix, we consider the fidelity of assuming homogeneous bias (σB*
2  = 0) when in fact the 

bias is heterogenous, presenting quantitative summaries of the relative and absolute 

difference between the two.

Last, bounds achieved when σB*
2   =  0 can provide useful conservative analyses. Table 1 

shows that setting σB*
2   =  0 yields either an upper or lower bound on p q , where the latter 

allows σB*
2   >  0. The direction of the bound depends on whether yR

c  is apparently causative 

or preventive and on whether q is chosen to be on the lower or upper tail of the bias-

corrected pooled point estimate, defined as yR
t   =  yR

c   −  μB* for the apparently causative case 

and yR
t   =  yR

c   +  μB* for the apparently preventive case. For example, for yR
c   >  0 and 

q  >  yR
c   −  μB*, the σB*

2   =  0 case provides an upper bound on p q . When concluding that 

results are not robust to unmeasured confounding, the analysis with σB*
2   =  0 is therefore 

conservative in that fewer true effect sizes would surpass q under heterogeneous bias. For 

example, if we calculated p q  =  log 1.10   =  0.15 with μB* = log 1.20 and σB*
2   =  0, then an 

analysis like this would yield conclusions such as: “The results of this meta-analysis are 

relatively sensitive to unmeasured confounding. Even a bias factor as small as 1.20 in each 

study would reduce to only 15% the proportion of studies with true RRs greater than 1.10, 

and if the bias in fact varied across studies, then even fewer studies would surpass this effect 

size threshold.”

5.3. Interpreting T(r,  q) and G(r,  q)

In contrast to p q , the metrics T(r,  q) and G(r, q) do not require specification of a range of 

sensitivity parameters regarding the bias distribution. Instead, they solve for the minimum 

amount of bias that, if constant across all studies, would “explain away” the effect in a 

manner specified through q (the minimum threshold of scientific importance) and r (the 

minimum proportion of true effects above q). That is, we might say that unmeasured 

confounding has, for practical purposes, “explained away” the results of a meta-analysis if 

fewer than, for example, 10% of the true effects are stronger than a threshold of RR 1.10, in 

which case we would set r = 0.10 and q log 1.10.

A large value of either T(r,  q) or G(r, q) indicates that it would take substantial unmeasured 

confounding (i.e., a large bias factor as parameterized by T(r,  q) or a large strength of 

confounding as parameterized by G(r, q) to “explain away” the results of the meta-analysis in 

this sense, and that weaker unmeasured confounding could not do so. Thus, the results may 

be considered relatively robust to unmeasured confounding. For example, by choosing q = 

log(1.10) and r = 0.20 and computing T r,  q  = 2.50 (equivalently, G r,  q   =  4.44), one might 

conclude: “The results of this meta-analysis are relatively robust to unmeasured 

confounding, insofar as a bias factor of 2.50 on the RR scale (e.g., a confounder associated 

with the exposure and outcome by risk ratios of 4.44 each) in each study would be capable 

of reducing to less than 20% the proportion of studies with true RRs greater than 1.10, but 

weaker confounding could not do so.” On the other hand, small values of T r,  q  and G r,  q
indicate that only weak unmeasured confounding would be required to reduce the effects to 
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a scientifically unimportant level; the meta-analysis would therefore not warrant strong 

scientific conclusions regarding causation.

5.4. How to Choose q and r When Computing T r,  q  and G r,  q

When computing T r,  q  and G r,  q , one can use the same effect size threshold q as 

discussed above for computing p q . When the number of studies, k, is large (e.g., ≥ 15), one 

might require at least 10% of studies (r = 0.10) to have effect sizes above q for results to be 

of scientific interest. For 10 ≤ k ≤ 15, one might select a higher threshold, such as r = 0.20 

(thus requiring at least 20% of studies to have effects more extreme than, e.g., log 1.10). Of 

course, these guidelines can and should be adapted based on the substantive application. 

Furthermore, note that the amount of bias that would be considered “implausible” must be 

determined with attention to the design quality of the synthesized studies: a large bias factor 

may be plausible for a set of studies with poor confounding control and with high potential 

for unmeasured confounding, but not for a set of better-designed studies in which the 

measured covariates already provide good control of confounding.

6. Further Remarks on Heterogeneity

We operationalized “robustness to unmeasured confounding” as the proportion of true 

effects surpassing a threshold, an approach that focuses on the upper tail (for an apparently 

causative RRXY
c ) of the distribution of true effect sizes. Potentially, under substantial 

heterogeneity, a high proportion of true effect sizes could satisfy, for example, RRXY
t   >  1.10

while, simultaneously, a nonnegligible proportion could be comparably strong in the 

opposite direction RRXY
t   <  0.90 . Such situations are intrinsic to the meta-analysis of 

heterogeneous effects, and in such settings, we recommend reporting the proportion of effect 

sizes below another threshold on the opposite side of the null (e.g., log 1/1.20 ≈ log 0.80) 

both for the confounded distribution of effect sizes and for the distribution adjusted based on 

chosen bias parameters. For example, a meta-analysis that is potentially subject to 

unmeasured confounding and that estimates yR
c   =  log 1.15 and τc2  =  0.10 would indicate 

that 45% of the effects RRXY
c  surpass 1.20, while 13% are less than 0.80. For a common B* 

= log 1.10 (equivalently, g = 1.43 if considering worst-case bias), we find that 

1  −  Φ log 1.20  −  log 1.15  +  log 1.10
0.10  of the true effects surpass RRXY

c   =  1.20, while 20% are 

less than RRXY
c   =  0.80. More generally, random-effects meta-analyses could report the 

estimated proportion of effects above the null or above a specific threshold (along with a 

confidence interval for this proportion) as a continuous summary measure to supplement the 

standard pooled estimate and inference (Mathur and VanderWeele 2019). Together, these 

reporting practices could facilitate overall assessment of evidence strength and robustness to 

unmeasured confounding under effect heterogeneity.

7. Sensitivity Analysis for the Point Estimate

As discussed above, the proportion of effects stronger than a threshold can be a useful 

measure of evidence strength across heterogeneous effects in addition to pooled point 
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estimate alone, and hence our sensitivity analysis techniques have emphasized the former. 

However, it is also possible to conduct sensitivity analysis on the pooled point estimate itself 

to assess the extent to which unmeasured confounding could compromise estimation of μt. 

The following development proceeds analogously to that of Section 4.

7.1. An Adjusted Point Estimate as a Function of the Bias Factor

For an apparently causative RR and a specified μB*, an unbiased estimate of the true mean, 

μt, is simply yR
t   =  yR

c   −  μB*. For an apparently preventive RR, it is yR
t   =  yR

c   +  μB*. 

Because these expressions consider the average true effect only, they do not involve bias 

correction of τc2, so are independent of σB*
2 . Since μB* is treated as fixed, we have 

var yR
t   =  var yR

c , so inference on yR
t  can use without modification the SE estimate for yR

c

computed through standard meta-analysis of the confounded data. For example, Hartung and 

Knapp’s’s (2001) estimation approach yields

SE yR
t   =  

∑i = 1
k 1

τc2  +  σi2
yic  −  yR

c 2

(k  −  1)∑i = 1
k 1

τc2  +  σi2
,

where yic is the confounded log-RR estimate in the ith study.

7.2. Bias Factor and Confounding Strength Required to Shift the Point Estimate to the 
Null

One could instead consider the value of μB* that would be required to “explain away” the 

point estimate. That is, to completely shift the point estimate to the null (i.e., μt = 0, 

implying an average risk ratio of 1) would require μB*  =  yR
c . As in Section 4.3, the bias 

factor can be converted to the more intuitive confounding strength scale via Equation (2). 

Thus, the minimum confounding strength to completely shift the point estimate to the null 

is, for the apparently causative case:

exp yR
c   +   exp yR

c exp yR
c   −  1 . (5)

Additionally, one can consider the confounding strength required to shift the confidence 

interval for yR
c  to include the null; to do so, yR

c  in the above expression would simply be 

replaced with the confidence bound closer to the null. (For the apparently preventive case, 

whether considering the point estimate or the confidence interval bound, each exponentiated 

term in Equation (5) would be replaced by its inverse.) As above, these measures do not 

describe heterogeneity. Thus, Equation (5) is in fact equivalent to VanderWeele and Ding 

(2017)’s E-value (as discussed in Section 2) applied directly to yR
c , as illustrated in the next 

section.
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8. Software and Applied Example

The proposed methods (as well as those discussed in Section 7) are implemented in an R 

package, EValue, which produces point estimates and inference for sensitivity analyses, 

tables across a user-specified grid of sensitivity parameters, and various plots. Descriptions 

of each function with working examples are provided in the Web Appendix and standard R 

documentation. A website implementing the main functions is freely available (https://

mmathur.shinyapps.io/meta_gui_2/).

We illustrate the package’s basic capabilities using an existing meta-analysis assessing, 

among several outcomes, the association of high versus low daily intake of soy protein with 

breast cancer risk among women (Trock, Hilakivi-Clarke, and Clarke 2006). The analysis 

comprised 20 observational studies that varied in their degree of adjustment for suspected 

confounders, such as age, body mass index (BMI), and other risk factors. To obtain τc2 and 

var τc2  (which were not reported), we obtained study-level summary measures as reported in 

a table from Trock, Hilakivi-Clarke, and Clarke (2006), treading odds ratios as approximate 

risk ratios given the rare outcome. This process is automated in the function 

EValue::scrape_meta. We estimated yR
c   =  log 0.82, SE yR

c   =  8.8  ×  10−2 via the Hartung 

and Knapp’s (2001) adjustment (whose advantages were demonstrated by IntHout, 

Ioannidis, and Borm (2014)), τc2  =  0.10 via the Paule and Mandel (1982) method, and 

SE τc2   =  5.0  ×  10−2.

Figure 1 (produced by EValue::sens_plot) displays the estimated proportion of studies with 

true RRs < 0.90 as a function of either the bias factor or the confounding strength, holding 

constant σB*
2   =  0.01. Table 2 (produced by EValue::sens_table) displays T r,  q  and G r,  q

across a grid of values for r and q. For example, only a bias factor exceeding 1.63 on the RR 

scale (equivalently, confounding association strengths of 2.64) could reduce to less than 10% 

the proportion of studies with true RRs < 0.90. However, variable bias across studies would 

reduce this proportion (see Table 1), and the confidence interval is wide.

We now briefly illustrate the sensitivity analysis techniques for yR
c  described in Section 7. 

For example, applying Equation (5) indicates that an unmeasured confounder associated 

with both soy intake and breast cancer by risk ratios of at least 1.72 could be sufficient to 

shift the point estimate RRXY
c   =  0.82  to 1, but weaker confounding could not do so 

(VanderWeele and Ding 2017). To reiterate the remarks made in Section 6 regarding 

heterogeneity, note that our proposed sensitivity analyses found 

G(r  =  0.10,  q  =  log 0.90)  =  2.64. This is considerably larger than the E-value of 1.72 for 

the point estimate, demonstrating that even in the presence of unmeasured confounding 

strong enough to shift the point estimate to the null, more than 10% of the true RRs would 

nevertheless remain stronger than 0.90.

Other methods developed for a single study could similarly be applied to the meta-analytic 

point estimate, but they require specification of many more sensitivity parameters or make 

more assumptions about the underlying unmeasured confounder (e.g., Schlesselman’s 1978; 
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Imbens 2003; Lin, Psaty, and Kronmal 1998; VanderWeele and Arah 2011). To apply these 

methods directly, we use a simplified form assuming that U is binary, that the prevalences P 
(U = 1 | X = 1, Z) = 0.65 and P (U = 1 | X = 0, Z) = 0.35 are in fact known, and that the 

relationship between U and Y is identical for X = 1 and X = 0. Under this more restrictive 

specification on unmeasured confounding, an application of Schlesselman’s (1978) method 

(or an application of a special case of Theorem 2 by VanderWeele and Arah (2011)) finds 

that such a confounder would exactly shift the point estimate to the null if were associated 

with both soy intake and breast cancer by risk ratios of 1.94.

9. Simulation Study

We assessed finite-sample performance of inference on p q  in a simple simulation study. 

While fixing the mean and variance of the true effects to μt = log 1.4 and Vt = 0.15 and the 

bias parameters to μB* = log 1.6 and σB*
2   =  0.01, we varied the number of studies (k ∈ {15, 

25, 50, 200}) and the average sample size N within each study (E[N] ∈ {300, 500, 1000}). 

The fixed parameters were chosen to minimize artifacts from discarding pathological 

samples with τc2  <  σB*
2  or with truncated outcome probabilities due to extreme values of 

RRXY
c ; theoretically, p q  is unbiased regardless of these parameters. We set the threshold for 

a scientifically meaningful effect size at q = log 1.4 to match μt, such that, theoretically, 50% 

of true effects exceed q. We ran 1000 simulations for each possible combination of k and 

E[N], primarily assessing coverage of nominal 95% confidence intervals and secondarily 

assessing their precision (total width) and bias in p(q  =  log 1.4) versus the theoretically 

expected 50%. Additionally, we assessed agreement between p q  and results obtained from 

an unconfounded meta-analysis (one in which all meta-analyzed studies adjust fully for 

confounding through stratification).

For each study, we drew N ~ Unif (150, 2E[N] − 150), using 150 as a minimum minimum 

sample size to prevent model convergence failures, and drew the study’s true effect size as 

Mt ~ N(μt, Vt). We simulated data for each subject under a model with a binary exposure (X 
~ Bern(0.5)), a single binary unmeasured confounder, and a binary outcome. We set the two 

bias components equal to one another (g = RRXU = RRUY) and fixed P(U = 1|X = 1) = 1, 

allowing closed-form computation of

P(U  =  1 |X  =  0)  =  
exp Mt [1  +  (g  −  1)]  −  exp Mc

(g  −  1) exp Mc

as in Ding and VanderWeele (2016). Within each stratum X = x, we simulated U ~ Bern(P(U 
= 1|X = x)). We simulated outcomes as Y ~ Bern(exp{log 0.05 + log(g)U + MtX}). Finally, 

we computed effect sizes and fit the random-effects model using the metafor package in R 

(Viechtbauer 2010), estimating τc2 per Paule and Mandel (1982) and var yR
c  with the Hartung 

and Knapp’s (2001) adjustment.

To compare results of our estimators to estimates from unconfounded meta-analyses, we 

also computed unconfounded effect sizes for each study using the Mantel–Haenszel risk 
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ratio stratifying on U (Rothman, Greenland, and Lash 2008). (This approach is used only for 

theoretical comparison, since in practice we are concerned with confounders that are 

unmeasured and therefore cannot be incorporated in analysis.) We then meta-analyzed these 

unconfounded point estimates and estimated, with no adjustment for bias, the proportion of 

effects in the population stronger than q.

Results (Table 3) indicated approximately nominal performance for all combinations of k 
and E[N], with precision appearing to depend more strongly on k than E[N]. As expected 

theoretically, p q  was approximately unbiased. Compared to theoretical expectation, the 

proposed estimators appeared to perform slightly better than meta-analyses of unconfounded 

point estimates obtained through stratification on U. The latter method may have been 

compromised under strong confounding, which often induced zero cells in confounder-

stratified analyses due to near collinearity of U with X and Y.

10. Discussion

This article develops sensitivity analyses for unmeasured confounding in a random-effects 

meta-analysis of an RR outcome measure. Specifically, we have presented estimators for the 

proportion, p q , of studies with true effect sizes surpassing a threshold and for the minimum 

bias, T r,  q , or confounding association strength, G r,  q , in all studies that would be 

required to reduce to below a threshold the proportion of studies with effect sizes less than q. 

Such analyses quantify the amount of confounding bias in terms of intuitively tractable 

sensitivity parameters. Computation of p q  uses two sensitivity parameters, namely the 

mean and variance across studies of a joint bias factor on the log-RR scale. Estimators 

T r,  q  and G r,  q  make reference to, and provide conclusions for, single sensitivity 

parameter, chosen as either the common joint bias factor across studies or the strength of 

confounding associations on the RR scale. These methods assume that the bias factor is 

normally distributed or fixed across studies, but do not make further assumptions regarding 

the nature of unmeasured confounding.

Assessing sensitivity to unmeasured confounding is particularly important in meta-analyses 

of observational studies, where a central goal is to assess the current quality of evidence and 

to inform future research directions. If a well-designed meta-analysis yields a low value of 

T r,  q  or G r,  q  and thus is relatively sensitive to unmeasured confounding, this indicates 

that future research on the topic should prioritize randomized trials or designs and data 

collection that reduce unmeasured confounding. On the other hand, individual studies 

measuring moderate effect sizes with relatively wide confidence intervals may not, when 

considered individually, appear highly robust to unmeasured confounding; however, a meta-

analysis aggregating their results may nevertheless suggest that a substantial proportion of 

the true effects are above a threshold of scientific importance even in the presence of some 

unmeasured confounding. Thus, conclusions of the meta-analysis may in fact be robust to 

moderate degrees of unmeasured confounding.

We focused on RR outcomes because of their frequency in biomedical meta-analyses and 

their mathematical tractability, which allows closed-form solutions with the introduction of 

only one assumption (on the distribution of the bias factor). To allow application of the 
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present methods, an odds ratio outcome can be approximated as an RR if the outcome is 

rare. If the outcome is not rare, the odds ratio can be approximately converted to an RR by 

taking its square root; provided that the outcome probabilities are between 0.2 and 0.8, this 

transformation is always within 25% of the true RR (VanderWeele 2017). Comparable 

sensitivity analyses for other types of outcomes, such as mean differences for continuous 

outcome variables, would require study-level summary measures (e.g., of within-group 

means and variances) and in some cases would yield closed-form solutions only at the price 

of more stringent assumptions. Under the assumption of an underlying binary outcome with 

high prevalence, such measures could be converted to log-odds ratios (Hasselblad and 

Hedges 1995) and then to RRs (Vander-Weele 2017) as described above (see VanderWeele 

and Ding 2017). It is important to note that, in circumstances discussed elsewhere (Tang 

2000; Thorlund et al. 2011), RR outcomes can produce biased meta-analytic estimates. 

When such biases in pooled point estimates or heterogeneity estimators are likely, sensitivity 

analyses will also be biased.

For existing meta-analyses that report estimates of the pooled effect, the heterogeneity, and 

their SEs or confidence intervals, one could conduct the proposed sensitivity analyses using 

only these four summary measures (i.e., simply using existing summary statistics and 

without reanalyzing study-level point estimates). However, in practice, we find that reporting 

of τc2 and var τc2  is sporadic in the biomedical literature. Besides their utility for conducting 

sensitivity analyses, we consider τc2 and var τc2  to be inherently valuable to the scientific 

interpretation of heterogeneous effects. We therefore recommend that they be reported 

routinely for random-effects meta-analyses, even when related measures, such as the 

proportion of total variance attributable to effect heterogeneity (I2), are also reported. To 

enable sensitivity analyses of existing meta-analyses that do not report the needed summary 

measures, the R packages EValue and MetaUtility helps automate the process of obtaining 

and drawing inferences from study-level data from a published forest plot or table. The user 

can then simply fit a random-effects model of choice to obtain the required summary 

measures.

Our framework assumes that the bias factor is normally distributed or taken to be fixed 

across studies. Normality is approximately justified if, for example, log RRXU and log 

RRUY are approximately identically and independently normal with relatively small 

variance. Since RRUY is in fact a maximum over strata of X and the range of U, future work 

could potentially consider an extreme-value distribution for this component, but such a 

specification would appear to require a computational, rather than closed-form, approach. 

Perhaps a more useful, conservative approach to assessing sensitivity to bias that may be 

highly skewed is to report T r,  q  and G r,  q  for a wide range of fixed values B*, including 

those much larger than a plausible mean.

An alternative sensitivity analysis approach would be to directly apply existing analytic 

bounds (Ding and VanderWeele 2016) to each individual study to compute the proportion of 

studies with effect sizes more extreme than q given a particular bias factor. This has the 

downside of requiring access to study-level summary measures (rather than pooled 

estimates). Moreover, the confidence interval of each study may be relatively wide, such that 
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no individual study appears robust to unmeasured confounding, while nevertheless a meta-

analytic estimate that takes into account the distribution of effects may in fact indicate that 

some of these effects are likely robust. As described in Section 7, one could also 

alternatively conduct sensitivity analyses on the pooled point estimate itself, but such an 

approach is naïve to heterogeneity: when the true effects are highly variable, a nonnegligible 

proportion of large true effects may remain even with the introduction of enough bias to 

attenuate the pooled estimate to a scientifically unimportant level (Mathur and VanderWeele 

2019).

In summary, our results have shown that sensitivity analyses for unmeasured confounding in 

meta-analyses can be conducted easily by extending results for individual studies. These 

methods are straightforward to implement through either our R package EValue or website 

and ultimately help inform principled causal conclusions from meta-analyses.
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Refer to Web version on PubMed Central for supplementary material.

Funding

This research was supported by National Defense Science and Engineering Graduate Fellowship 32 CFR 168a and 
NIH grant ES017876.

References

Aune D, Chan DS, Lau R, Vieira R, Greenwood DC, Kampman E, and Norat T (2011), “Dietary Fibre, 
Whole Grains, and Risk of Colorectal Cancer: Systematic Review and Dose-Response Meta-
Analysis of Prospective Studies,” BMJ, 343, d6617. [PubMed: 22074852] 

Chung M, Ma J, Patel K, Berger S, Lau J, and Lichtenstein AH (2014), “Fructose, High-Fructose Corn 
Syrup, Sucrose, and Nonalcoholic Fatty Liver Disease or Indexes of Liver Health: A Systematic 
Review and Meta-Analysis,” The American Journal of Clinical Nutrition, 100, 833–849. [PubMed: 
25099546] 

Cornfield J, Haenszel W, Hammond EC, Lilienfeld AM, Shimkin MB, and Wynder EL (1959), 
“Smoking and Lung Cancer: Recent Evidence and a Discussion of Some Questions,” Journal of the 
National Cancer Institute, 22, 173–203. [PubMed: 13621204] 

DerSimonian R, and Laird N (1986), “Meta-Analysis in Clinical Trials,” Controlled Clinical Trials, 7, 
177–188. [PubMed: 3802833] 

Ding P, and VanderWeele TJ (2016), “Sensitivity Analysis Without Assumptions,” Epidemiology, 27, 
368. [PubMed: 26841057] 

Egger M, Schneider M, and Smith GD (1998), “Spurious Precision? Meta-Analysis of Observational 
Studies,” BMJ, 316, 140. [PubMed: 9462324] 

Flanders WD, and Khoury MJ (1990), “Indirect Assessment of Confounding: Graphic Description and 
Limits on Effect of Adjusting for Covariates,” Epidemiology, 1, 239–246. [PubMed: 2081259] 

Hartung J, and Knapp’s G (2001), “On Tests of the Overall Treatment Effect in Meta-Analysis With 
Normally Distributed Responses,” Statistics in Medicine, 20, 1771–1782. [PubMed: 11406840] 

Hartung J, and Makambi K (2002), “Positive Estimation of the Between-Study Variance in Meta-
Analysis,” South African Statistical Journal, 36, 55–76.

Hasselblad V, and Hedges LV (1995), “Meta-Analysis of Screening and Diagnostic Tests,” 
Psychological Bulletin, 117, 167. [PubMed: 7870860] 

Hedges L, and Olkin I (1985), Statistical Methods for Meta-Analysis, SanDiego, CA: Academic Press.

Mathur and VanderWeele Page 17

J Am Stat Assoc. Author manuscript; available in PMC 2020 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Imbens GW (2003), “Sensitivity to Exogeneity Assumptions in Program Evaluation,” American 
Economic Review, 93, 126–132.

IntHout J, Ioannidis JP, and Borm GF (2014), “The Hartung-Knapp-Sidik-Jonkman Method for 
Random Effects Meta-Analysis Is Straightforward and Considerably Outperforms the Standard 
DerSimonian-Laird Method,” BMC Medical Research Methodology, 14, 25. [PubMed: 24548571] 

Lin DY, Psaty BM, and Kronmal RA (1998), “Assessing the Sensitivity of Regression Results to 
Unmeasured Confounders in Observational Studies,” Biometrics, 54, 948–963. [PubMed: 
9750244] 

Mathur MB, and VanderWeele TJ (2019), “New Metrics for Meta-Analyses of Heterogeneous Effects,” 
Statistics in Medicine, 38, 1336–1342. [PubMed: 30513552] 

McCandless LC (2012), “Meta-Analysis of Observational Studies With Unmeasured Confounders,” 
The International Journal of Biostatistics, 8, 368.

Paule RC, and Mandel J (1982), “Consensus Values and Weighting Factors,” Journal of Research of 
the National Bureau of Standards, 87, 377–385.

Rothman KJ, Greenland S, and Lash TL (2008), Modern Epidemiology, New York: Lippincott 
Williams and Wilkins.

Schlesselman’s JJ (1978), “Assessing Effects of Confounding Variables,” American Journal of 
Epidemiology, 108, 3–8. [PubMed: 685974] 

Shrier I, Boivin J-F, Steele RJ, Platt RW, Furlan A, Kakuma R, Brophy J, and Rossignol M (2007), 
“Should Meta-Analyses of Interventions Include Observational Studies in Addition to Randomized 
Controlled Trials? A Critical Examination of Underlying Principles,” American Journal of 
Epidemiology, 166, 1203–1209. [PubMed: 17712019] 

Sidik K, and Jonkman JN (2005), “Simple Heterogeneity Variance Estimation for Meta-Analysis,” 
Journal of the Royal Statistical Society, Series C, 54, 367–384.

Siri-Tarino PW, Sun Q, Hu FB, and Krauss RM (2010), “Meta-Analysis of Prospective Cohort Studies 
Evaluating the Association of Saturated Fat With Cardiovascular Disease,” The American Journal 
of Clinical Nutrition, 91, 535–546. [PubMed: 20071648] 

Stamler J (2010), “Diet-Heart: A Problematic Revisit,” The American Journal of Clinical Nutrition, 91, 
497–499. [PubMed: 20130097] 

Sutton AJ, Abrams KR, Jones DR, Jones DR, Sheldon TA, and Song F (2000), Methods for Meta-
Analysis in Medical Research, Chichester: Wiley.

Tang J-L (2000), “Weighting Bias in Meta-Analysis of Binary Outcomes,” Journal of Clinical 
Epidemiology, 53, 1130–1136. [PubMed: 11106886] 

Thorlund K, Imberger G, Walsh M, Chu R, Gluud C, Wetterslev J, and Thabane L (2011), “The 
Number of Patients and Events Required to Limit the Risk of Overestimation of Intervention 
Effects in Meta-Analysis: A Simulation Study,” PLoS One, 6, e25491. [PubMed: 22028777] 

Trock BJ, Hilakivi-Clarke L, and Clarke R (2006), “Meta-Analysis of Soy Intake and Breast Cancer 
Risk,” Journal of the National Cancer Institute, 98, 459–471. [PubMed: 16595782] 

Turner RM, Spiegelhalter DJ, Smith G, and Thompson SG (2009), “Bias Modelling in Evidence 
Synthesis,” Journal of the Royal Statistical Society, Series A, 172, 21–47.

Valentine JC, and Thompson SG (2013), “Issues Relating to Confounding and Meta-Analysis When 
Including Non-randomized Studies in Systematic Reviews on the Effects of Interventions,” 
Research Synthesis Methods, 4, 26–35. [PubMed: 26053537] 

VanderWeele TJ (2017), “On a Square-Root Transformation of the Odds Ratio for a Common 
Outcome,” Epidemiology, 28, e58–e60. [PubMed: 28816709] 

VanderWeele TJ, and Arah OA (2011), “Bias Formulas for Sensitivity Analysis of Unmeasured 
Confounding for General Outcomes, Treatments, and Confounders,” Epidemiology, 22, 42–52. 
[PubMed: 21052008] 

VanderWeele T, and Ding P (2017), “Sensitivity Analysis in Observational Research: Introducing the 
E-Value,” Annals of Internal Medicine, 167, 268–274, DOI: 10.7326/M16-2607. [PubMed: 
28693043] 

Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, Knapp G, and Salanti G (2015), 
“Methods to Estimate the Between-Study Variance and Its Uncertainty in Meta-Analysis,” 
Research Synthesis Methods, 7, 55–79. [PubMed: 26332144] 

Mathur and VanderWeele Page 18

J Am Stat Assoc. Author manuscript; available in PMC 2020 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Viechtbauer W (2010), “Conducting Meta-Analyses in R With the metafor Package,” Journal of 
Statistical Software, 36, 1–48.

Welton N, Ades A, Carlin J, Altman D, and Sterne J (2009), “Models for Potentially Biased Evidence 
in Meta-Analysis Using Empirically Based Priors,” Journal of the Royal Statistical Society, Series 
A, 172, 119–136.

Mathur and VanderWeele Page 19

J Am Stat Assoc. Author manuscript; available in PMC 2020 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Impact of varying degrees of unmeasured confounding bias on proportion of true RRs < 0.90
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Table 1.

Bounds on p q  provided by homogeneous bias with an apparently causative or preventive pooled effect.

q  >  yR
t q  <  yR

t

yR
c   >  0 Upper bound Lower bound

yR
c   <  0 Lower bound Upper bound

NOTE: yR
t

 estimates μt and is equal to yR
c   −  μB* for yR

c   >  0 or yR
c   +  μB* for yR

c   <  0.
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Table 2.

T r,  q  and G r,  q  (in parentheses) for varying r and q.

r

q

0.70 0.80 0.90

0.1 1.27 (1.85) 1.45 (2.25) 1.63 (2.64)

0.2 1.10 (1.44) 1.26 (1.84) 1.42 (2.19)

0.3 1.14 (1.55) 1.29 (1.89)

0.4 1.05 (1.28) 1.18 (1.64)

0.5 1.09 (1.41)

NOTE: Blank cells indicate combinations for which no bias would be required.
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Table 3.

For varying numbers of studies (k) and mean sample sizes within each study (mean N), displays the estimated 

proportion p q  of true effects above RR = 1.4 with its bias versus theoretically expected 50% (p q  bias), 

coverage of 95% confidence intervals for p q  (CI coverage), and mean width of 95% confidence intervals (CI 

width).

k Mean N p q p q  bias CI coverage CI width pMH

15 300 0.530 0.030 0.970 0.575 0.585

25 300 0.533 0.033 0.965 0.459 0.582

50 300 0.527 0.027 0.975 0.316 0.572

200 300 0.528 0.028 0.917 0.154 0.568

15 500 0.523 0.023 0.981 0.522 0.558

25 500 0.527 0.027 0.982 0.409 0.561

50 500 0.522 0.022 0.973 0.283 0.554

200 500 0.523 0.023 0.945 0.140 0.553

15 1000 0.518 0.018 0.976 0.475 0.540

25 1000 0.516 0.016 0.983 0.370 0.537

50 1000 0.521 0.021 0.983 0.259 0.541

200 1000 0.515 0.015 0.971 0.129 0.536

NOTE: pMH is the estimated proportion of effects above RR = 1.4 in unconfounded analyses stratifying on U.
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