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Abstract

Reward Prediction Errors (RPEs), defined as the difference between the expected and received 

outcomes, are integral to reinforcement learning models and play an important role in 

development and psychopathology. In humans, RPE encoding can be estimated using fMRI 

recordings, however, a basic measurement property of RPE signals, their test-retest reliability 

across different time scales, remains an open question. In this paper, we examine the 3-month and 

3-year reliability of RPE encoding in youth (mean age at baseline = 10.6 ± 0.3 years), a period of 

developmental transitions in reward processing. We show that RPE encoding is differentially 

distributed between the positive values being encoded predominantly in the striatum and negative 

RPEs primarily encoded in the insula. The encoding of negative RPE values is highly reliable in 

the right insula, across both the long and the short time intervals. Insula reliability for RPE 

encoding is the most robust finding, while other regions, such as the striatum, are less consistent. 

Striatal reliability appeared significant as well once covarying for factors, which were possibly 

confounding the signal to noise ratio. By contrast, task activation during feedback in the striatum 
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is highly reliable across both time intervals. These results demonstrate the valence-dependent 

differential encoding of RPE signals between the insula and striatum, and the consistency of RPE 

signals or lack thereof, during childhood and into adolescence. Characterizing the regions where 

the RPE signal in BOLD fMRI is a reliable marker is key for estimating reward-processing 

alterations in longitudinal designs, such as developmental or treatment studies.
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Introduction

Encoding of Reward Prediction Error (RPE), the difference between the expected and 

received reward value, can be estimated using fMRI in humans and its alterations are 

thought to be involved in developmental and psychopathological processes. Yet, a basic 

measurement property of the RPE, its test-retest reliability, remains to be established. In this 

paper, we examine RPE reliability in young people (mean age at baseline = 10.6 ± 0.3 

years), across 3 months and across 3 years.

The RPE is an important learning signal that helps organisms to maximize wins and 

minimize losses through value computations (Schultz 1998, 2006, 2013, 2016, 2017; Sutton 

and Barto, 1998; Rolls et al., 2008; Diederen et al., 2016; Schultz et al., 2017). An RPE 

arises whenever the outcome of an action is different from what was predicted. In situations 

where the outcome is better than predicted, the RPE is positive and is associated with an 

increased likelihood of the behavior that led to the reward to re-occur. If the reward falls 

below what was predicted, a negative RPE occurs along with a decrease of the likelihood of 

repeating the same behavior. The RPE has been extensively studied in animals and found to 

be encoded by mesolimbic dopaminergic neurons (Olds and Milner, 1954; Corbett and Wise, 

1980; Schultz et al., 1993; Bayer and Glimcher, 2005; Pan et al., 2005; Cohen et al., 2012; 

Averbeck and Costa, 2017).

Functional magnetic resonance imaging (fMRI) has made it possible to localize the RPE 

encoding in the human brain. A recent meta-analysis of such studies indicates that the RPE 

is encoded in a distributed network, positive RPEs seem to be primarily represented in the 

striatum and negative RPEs are primarily encoded in the insula (Liu et al., 2007; Palminteri 

et al., 2012; Garrison et al., 2013). This has opened the way for examining the role of RPEs 

in sensitive stages of development, such as adolescence, and in psychopathology. 

Developmentally, increasing evidence suggests that reward sensitivity increases in 

adolescents, and, indeed, positive RPE signals in the striatum and negative RPE signals in 

the insula, seem to peak in adolescents compared to children or adults (Cohen et al., 2010; 

Somerville and Casey, 2010; Lamm et al., 2014; Smith et al., 2014; Braams et al., 2015). In 

psychopathology, alterations in the processing of RPEs have been proposed to be centrally 

involved in a range of psychiatric disorders (Murray et al., 2008; Moutoussis et al., 2015; 

Radua et al., 2015; Ubl et al., 2015; Schmidt et al., 2016; Rothkirch et al., 2017; White et al., 

2017), including depression and schizophrenia.
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Yet, despite the importance of measuring RPE in fMRI, a fundamental psychometric 

property remains unexamined, namely its test-retest reliability across different time scales. 

Test-retest reliability studies are critical for distinguishing true signal changes from other 

sources of measurement instability (Maitra et al., 2002; Bennett and Miller, 2010, 

Raemaekers et al., 2012; Herting et al., 2017). Evaluating change over time is critical for 

understanding developmental processes as well as psychopathology. If RPE fMRI signal is 

to be helpful in understanding the contribution of reward processing in these areas, then its 

reliability needs to be established. It is critical to understand that reliability does not 

represent constancy or lack of change in a measure. For example, brain activity of 

individuals can change over time, yet still be reliable if the rank order between those 

individuals in relation to the mean is maintained. This fact can also be intuited from the 

original formulation of the intra-class correlation (ICC) coefficient given by Fisher (1954):

ICC = 1
Ns2 ∑

n = 1

N
(xn, 1 − x̄)(xn, 2 − x̄) (1)

where x is the pooled mean, N is the number of subjects, and the variance is given by:

s2 = 1
2N ∑

n = 1

N
(xn, 1 − x̄)2 + ∑

n = 1

N
(xn, 2 − x̄)2

(2)

The difference of each individual value at each time point (xn,1, xn,2) is subtracted from the 

overall mean of the measurement occasion. It is also obvious from this formulation that 

reliability is inversely related to within-subject variance. When studying temporal changes, 

there are several sources of variance that can decrease the signal to noise ratio (SNR), such 

as decay in equipment calibration, or individual differences in motion parameters (Green and 

Swets, 1974; Horowitz and Hill, 1980; Cover and Thomas, 1991; Herting et al., 2017). 

Given that such noise can accumulate differentially over different time scales, it is important 

to estimate reliability across diverse intervals. So far, no study has addressed RPE reliability 

in young ages and even more so across different intervals. There have been two reports about 

reliability of other reward signals during adolescence (Braams et al., 2015; Vetter et al., 

2017). These studies report low reliability values in mid-brain regions, where reward related 

signals would be typically expected. Both studies examine reliability over a single long test-

retest interval of two years, which could be more influenced by cumulative errors.

In this work, we seek to establish the reliability of RPE signals across both a short (several 

months) and a long (several years) test-retest interval during development. We do so by 

using the ICC coefficient, which informs the within-subject variance relative to the total 

measurement variability (Bartko, 1966; Shrout and Fleiss, 1979; McGraw and Wong, 1996). 

For example, the popular version ICC(2,1) is defined as:

ICC = σ2witℎin subjects
σ2witℎin subjects + σ2between subjects + σ2error

(3)
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As obvious from this formulation of reliability, the smaller the other sources of variability in 

the denominator (i.e., the between-subject variance and the measurement error), the higher 

(i.e., closer to 1) the within-subject reliability. We estimate the ICC using a two-way 

random-effects modeling approach, sometimes also referred to as a multilevel or hierarchical 

model, which is a powerful statistical method for estimating individual trajectories of change 

over time. Even though calculating the ICC measure using the ANOVA framework has been 

widely adopted, the application of LME methodology to ICC has several advantages in some 

aspects of computation where limitations are present under the ANOVA framework. 

Specifically, the variances for the random effects components and the residuals are directly 

estimated through optimizing the restricted maximum likelihood (REML) function, and thus 

the ICC value is computed with variance estimates instead of with their mean square 

counterparts under ANOVA. Therefore, in conjunction with the theoretical quantities, the 

estimated ICCs are nonnegative by definition. Missing data can be naturally handled in LME 

because parameters are estimated through the optimization of the (restricted) maximum 

likelihood function, where a balanced structure is not required. Moreover, incorporating 

confounding effects is available through adding more fixed-effects terms into the model. 

This LME approach for ICC has previously been implemented in the program 3dLME 

(Chen et al., 2013) for voxel-wise data analysis in neuroimaging. In this context, the fMRI 

BOLD signal change is modeled linearly via the random intercept (initial state) and slope 

(trajectory of change). Hence, the ICC(2,1) model is an LME case with two crossed random-

effects terms. The randomization of both terms differentiates the between- and within-

subject variances, enabling the estimation of within-subject reliability (Singer and Willett, 

2003; Chen et al., 2013).

In this paper, we examine RPE signaling and its reliability using the “Piñata” task, a child-

friendly version of the Monetary Incentive Delay (MID) task. The Piñata task has been 

previously shown to evoke robust reward-related fMRI BOLD activations in children and 

adolescents (Helfinstein et al., 2013; Lahat et al., 2016). The task elicits larger negative than 

positive RPE values, which occur due to “no win” outcomes in win trials. This is because in 

this paradigm task parameters are adjusted online to maintain a ratio of 66% of successful 

trials for all subjects, inducing an expectation of more positive outcomes than negative 

outcomes. Therefore, “no wins”, when they occur, tend to induce larger RPEs relative to 

wins (as the latter are more expected). Subjects conducted this task in fMRI at three time 

points. The baseline scan (mean age 10.6 ± 0.3 years) is compared to a repeat scan following 

3 ± 2.24 months and another scan following 33.6 ± 9.36 months. As a first step, we 

demonstrate that behavioral performance of subjects across all visits is reliable and confirm 

that negative RPEs predominate in this task across the three scans. For the calculation of 

RPE values, we follow previous studies which defined the expected value as the product of 

reward magnitude and the success probability (Staudinger et al., 2009; Chase et al., 2015; 

Ubl et al., 2015). We compare different modeling approaches for estimating the expected 

success probability, where each model assumes different influence of previous outcomes on 

the expected value. We address the question of how RPE encoding is distributed in the brain, 

at each one of the three scans. RPE values are used as a parametric modulator of brain 

activity during the reward feedback times. We test the hypothesis that negative RPEs are 

represented mostly in the insula while striatal regions activity is correlated to positive RPE 
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values. We then ask whether the identified RPE signals are reliable, over three time points 

during development, separated by a three month and a three year test-retest interval. These 

results are then compared to the reliability pattern of other task activations.

Methods

Participants

Participants were drawn from a longitudinal cohort. Specifically, n = 23 subjects contributed 

to the first scan and to at least one of the repeated scans. The initial scan (visit 1) was 

followed by a repeated scan, either 3 ± 2.24 (visit 2, n = 18) or 33.6 ± 9.36 (visit 3, n = 16) 

months later. All subjects participated in at least two visits, as follows: visit 1 and visit 2 (n = 

9); visit 1 and visit 3 (n = 7); visit 2 and visit 3 (n = 1); visit 1 and visit 2 and visit 3 (n = 7). 

Exclusion of subjects from the analyses was based on excessive motion or technical 

deficiencies of the data (n = 2 for visit 2 and for visit 3); see Table 1 for included subjects’ 

information. The results were controlled for a possible impact of the number of scans during 

the third visit, as seven of the subjects participated in all 3 visits - hence we also considered 

separately only subjects who scanned twice. The reliability results for this additional 

analysis were consistent with the results we present (see Table-s6 in the Supplement). The 

reliability of the subjects which participated in three scans (for visit 1 to 3) was quite noisy, 

possibly due to including only 7 subjects, so we cannot conclude or address how this 

impacts on reliability with this data set. All participants provided informed assent, and 

participants’ guardians provided informed consent. The study was approved by the 

Institutional Review Boards of the National Institute of Mental Health and the University of 

Maryland, College Park.

Piñata fMRI task

Participants completed the fMRI Piñata task (Fig. 1), a child-friendly version of the 

Monetary Incentive Delay (MID) task (Helfinstein et al., 2013; Lahat et al., 2016). The task 

was administered using E-Prime (Psychology Software Tools, USA). Reward incentives in 

the piñata task differ from the MID task as there are no negative expected values (Knutson et 

al., 2000), but rewards range from no to large rewards. Participants had to ‘whack’ piñatas 

by pressing a button as fast as possible, to earn the presented stars. Each trial included three 

stages: the anticipation stage was comprised of the cue presentation phase, where 

participants saw the piñata partially revealed at the top of the screen with the number of stars 

visible inside (cue, 1500 ms), and a cue-free anticipatory period that varied between 1000 

and 2000 ms. In the response stage, the piñata dropped to the center of the screen and the 

participant made a speeded button press (target). The target appeared for a variable period of 

time, followed by a delay period, such that the combined duration of both target and delay 

was in total 1500 ms; in the feedback stage (1500 ms), participants either saw the piñata 

cracked open with won stars falling (positive feedback), or the intact piñata swinging away 

(a loss feedback). The task consisted of one practice run of 22 trials, followed by six task 

runs of 22 trials each, for a total of 132 task trials. Trials were divided evenly between the 

four incentive levels (0 stars, 1 star, 2 stars and 4 stars) for a total of 33 trials at each 

incentive level. Participants received money based on the amount of stars they earned, up to 

$15 with a minimum of $3, plus an additional $3 for every 47 stars they captured. A real-
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time algorithm was used to maintain a fixed 66% success level, which adjusted the duration 

of target image presentation in each trial, to increase or decrease success level.

Behavioral data analysis

Reliability of in-scanner behavior was estimated for reaction time (RT), using the average 

response time across all trials of each subject. The ICC(2,1) value was estimated over each 

of the test-retest intervals (visit 1 to 2; visit 1 to 3).

fMRI data acquisition

Participants were scanned in a General Electric (Waukesha, WI, USA) Signa 3 T magnet. 

Task stimuli were displayed via back-projection from a head-coil mounted mirror to a screen 

at the foot of the scanner bed. Foam padding was used to constrain head movement. 

Behavioral data were recorded using a hand-held two-button response box. Forty-seven 

sagittal slices (3.0-mm thickness) per volume were obtained using a T2*-weighted echo-

planar sequence (echo time, 25 ms; flip angle, 50°; 96 × 96 matrix; field of view, 240 mm; 

in-plane resolution, 2.5 mm × 2.5 mm; repetition time was 2300 ms). A total of 77 vol were 

collected in each run. To improve the localization of activations, a high-resolution structural 

image was also collected from each participant during the same scanning session using a T1-

weighted standardized magnetization prepared spoiled gradient recalled echo sequence with 

the following parameters: 124 1.2-mm axial slices; repetition time, 8100 ms; echo time, 32 

ms; flip angle, 15°; 256 × 256 matrix; field of view, 240 mm; in-plane resolution, 0.86 mm × 

0.86 mm; NEX, 1; bandwidth, 31.2 kHz.

fMRI data processing

Analysis of fMRI data was performed using Analysis of Functional and Neural Images 

(AFNI) software version 2.56 b (Cox, 1996). Echo-planar images (EPI) were visually 

inspected to confirm image quality and minimal movement. Standard pre-processing of EPI 

data included slice-time correction, motion correction, spatial smoothing with a 6-mm full 

width half-maximum Gaussian smoothing kernel, normalization into Talairach space and a 

3D non-linear registration. Each subject’s data were transformed to a percent signal change 

using the voxel-wise time series mean blood oxygen level dependent (BOLD) activity. 

Images were analyzed using an event-related design. Time series for each individual were 

analyzed using multiple regression (Neter et al., 1996). The entire trial was modeled using a 

gamma-variate basis function, including five cue events (0 star cues, 1 star cues, 2 star cues, 

4 star cues and cues from premature response trials), the target event and the feedback event. 

The model also included six nuisance variables modeling the effects of residual translational 

(motion in the x, y and z planes), rotational motion (roll, pitch and yaw) and a regressor for 

baseline plus slow drift effect, modeled with polynomials (baseline being defined as the non-

modeled phases of the task). For RPE modulation of reward feedback event, each feedback 

time in that regressor was multiplied by the respective trial base RPE value. Our regressor of 

interest was the RPE modulation of the feedback event.

Region-of-interest (ROI) approach was used to analyze average activations or reliability, of 

pre-defined regions (coordinates were derived from the Talairach atlas). To analyze RPE 

encoding in the ROI level, the individual whole-brain RPE encoding maps were masked for 
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the right insula, left insula and striatum (a combination of bilateral caudate and putamen). A 

mean RPE encoding value was then calculated per region by averaging the values of all 

voxels in that region. To illustrate the reliability of the RPE encoding in the right insula, we 

extracted the mean RPE encoding value across the reliable voxels in the right insula of each 

subject, for each of the time points (as presented in Fig. 5C and D).

To validate the reliability of specific ROIs, the whole-brain ICC maps were masked for the 

right insula, left insula and striatum (combination of bilateral caudate and putamen). ICC 

values of all voxels in each of these regions were extracted and the number of voxels 

crossing the ICC threshold was estimated per region. This extraction was also used to 

estimate the number of reliable voxels shared between the two time intervals.

We summarize the reliability of reward-related regions, relying on a previous metanalysis 

where a Reward-Network, comprised of 11 anatomical regions, is defined (Bartra et al., 

2013, Satterthwaite et al., 2015, Pan et al., 2017).

Reward Prediction Error (RPE) computational models

For the RPE modulation analysis, a single-subject model was generated with RPE values as 

the parametric linear modulator of the BOLD signals in the respective feedback times. This 

implementation has been previously described for the MID task (Staudinger et al., 2009). 

The RPE was calculated as follows:

Expected value EV = Magnitude X Probability (4)

Reward Prediction Error RPE = Outcome − EV (5)

The Magnitude was ascribed the number of stars (cue) and the outcome was the actual 

received amount. Probability was set to a fixed success probability of 66%, in accordance 

with the real-time tracking algorithm. There were 7 possible RPE values: Table 2

Moreover, to control for the impact of the chosen computational model for RPE calculation, 

we compared the results to several dynamic expectation models, where the success 

probability is modified individually according to previous outcomes per trial. These models 

account for a stronger influence of outcomes in most recent trials, which decays 

exponentially in time. Each model considered a different value for the decay rate, reflecting 

how many previous outcomes are still influential for the expected value.

This weighted probability was realized using the recursive formula:

Expected value EV n + 1 = Magnitude X Pn (6)

Pn = 1 − e−
tn − tn − 1

τ ⋅ y(n) + e−
tn − tn − 1

τ ⋅ Pn − 1 (7)
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Where y(n) is the current trial success, such that y(n) = 1 if the subject hit successfully in 

trial n within the predefined response interval, and y(n) = 0 otherwise. The exponential 

function decay rate defines the length of the time window in which previous trials are still 

considered influential. This feature is determined in the equation by the exponent power, 

which is the ratio between a single trial duration (tn - tn-1) and a chosen probability 

estimation time window, τ. By setting this rate to different values we created models 

spanning either 5, 10 or 20 previous trials.

Test-retest reliability analyses

One set of analyses aimed at analyzing the behavioral reliability of the Piñata task, using the 

performance measure of mean Response Time. The ICC estimate was implemented 

following McGraw and Wong (1996) in Matlab (R2017a, Mathworks, MA, USA), across 

visit 1 to 2 and visit 1 to 3.

Reliability analysis of fMRI data, was conducted by implementing a two-way random-

effects model, with the random variables being subject and visit, in the AFNI program 

3dLME (Chen et al., 2013; Chen et al., 2017). These ICC estimates were parallel to 

ICC(2,1) as denoted by Shrout and Fleiss (1979). The decision of defining the explanatory 

variable in the model as random effects was determined in light of the interchangeability of 

the factor levels. In this case, we assume that there is no systematic difference across the 

factor levels, in contrast to case-control designs (e.g. patient-controls) which are typically 

handled as fixed effects because of the lack of exchangeability. Similarly, the visit is treated 

as random effects as there is no systematic difference in the conditions between the three 

visits.

We examined using this approach the test-retest reliability of the RPE signals during the 

reward feedback phase. Modulation was implemented for BOLD activity during the 

feedback event. The inputs to the fMRI voxel-wise ICC analyses were the modulation 

strength estimates from the individual analyses. The whole brain level ICC threshold was set 

to 0.45, corresponding to the mid-value of the range defined as a “fair” ICC (Cicchetti, 

2001). Next, significant clusters were corrected for multiple comparisons in the whole brain 

level, using Monte Carlo simulations and a mixed autocorrelation function (3dClustSim in 

AFNI using the acceptable ACF model, which simulates noise volume assuming the ACF is 

given by a mixed-model), which produced a threshold of 102 voxels for corrected p < 0.05 

(uncorrected p < 0.005). Analysis of ICC significance was conducted in AFNI at the whole 

brain level, using Fisher’s r to z transformation voxel-wise, as modified in McGraw and 

Wong (1996):

zi = 1
2σlog1 + (k − 1)ICCi

1 − ICCi
(8)

σ2 = k
2(n − 2)(k − 1) (9)

Where i is the voxel index, k the number of repeated scans and n is the number of subjects. 

The whole brain maps of z scores were then thresholded for p < 0.05. Group-level one 
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sample t-test images of RPE encoding, were produced per visit and thresholded similarly 

(corrected to p < 0.05 using a minimal cluster size of 102 voxels and p < 0.005).

Impact of motion on reliability results, was tested using the same LME model with mean 

subject motion as a between subject covariate.

We also examined whether reliability of the RPE signal differs from the reliability of other 

task activations. For this purpose, we analyzed activity evoked during feedback receipt and 

also looked separately at activation due to loss feedback (as RPE values in this task are 

mainly negative). In this analysis, the feedback event was not modulated by RPE values and 

was considered versus baseline (the non-modeled phases of the task).

Results

Behavioral reliability

Reliability of task behavioral measures is examined to determine whether participants’ 

responding patterns are stable between scans. As shown in Fig. 2A, mean RT values are 

highly reliable between both the short (visit 1 to 2; ICC = 0.91, p = 0.001) and long (visit 1 

to 3; ICC = 0.85, p = 0.007) scanning intervals.

Task RPE values

We first test whether indeed negative RPE values are more dominant in this paradigm. We 

demonstrate this in Fig. 3B, by the cumulative sum of RPEs during the experiment (the sum 

of all preceding RPE values, per trial), of each of the subjects. It is apparent that most of the 

curves are turning negative, showing that higher negative RPE amplitudes are intrinsic to the 

task.

RPE encoding

RPE values are used as a parametric modulator for feedback phase at the individual level, 

followed by a group t-test at the whole brain level. The resulting voxel-wise effect images, 

reflect the strength of the linear correlation between BOLD activation (during reward 

feedback) and RPE value on that trial. Positive values indicate stronger activation for higher 
RPE values, while negative values reflect increased activity for lower RPEs. As shown in 

Fig. 4A (and supplementary Table-s1), during visit 1 RPE signal is represented positively in 

the striatum (depicted by an orange arrow) and negatively in the insula (depicted by the blue 

arrow). During visit 2 there is a significant negative association between RPE values and 

insula activation, but the striatal signal falls below correction threshold (Fig. 4B). During 

visit 3, both RPE activations in the insula and in the striatum are detected, but when using an 

uncorrected threshold (Fig. 4C).

To compare the group level effect across visits, we contrasted between the group whole-

brain images (visit 1 versus visit 2, visit 1 versus visit 3 and visit 2 versus visit 3). Following 

FWE correction of the contrasted images, we find that RPE encoding is significantly higher 

during the first visit compared to the follow-up visits, in frontal and temporal regions. Of the 

reward-network regions, the caudate and thalamus show significantly better encoding, 

during the first visit relative to the third (see Figure s1 and supplement table-s1, for detailed 
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results of contrasting RPE encoding between the three visits). When comparing RPE 

encoding between the three visits in the individual ROI level (Fig. 4D), we do not find the 

differences we identified by contrasting the whole-brain group images: in this analysis both 

insular and striatal mean activations do not change significantly over the three time points. 

This was tested with a series of t-tests across each pair of visits (for the striatum, visits 1 and 

2: p = 0.14, t = 1.4, z = 0.99; visits 1 and 3: p = 0.47, t = 0.79, z = 0.07; visits 2 and 3: p = 

0.72, t = −0.37, z = 0.52). The differences which are observed in the whole brain group level 

might be also caused by differences in the spatial spread of active voxels, limiting the 

detection of the same clusters following minimal cluster corrections. As explained in more 

detail by Aron et al., (2006), this can be expected also due to the nonlinearity of the 

thresholding of whole-brain images, which can exaggerate very small differences in the 

signal or noise to substantial differences between thresholded images.

RPE encoding reliability

Reliability of RPE encoding in the whole brain level is shown in Fig. 5 (lower panels show 

the voxels which cross the z score threshold) and summarized in supp. Table 2. A significant 

cluster of a reliable RPE signal is found in the right insula between both visit 1 to 2 (Fig. 

5A; ICCpeak = 0.731) as well as 1 to 3 (Fig. 5B; ICCpeak = 0.735). Only RPE encoding in the 

right insula was significantly reliable across both time intervals across all tested models. By 

contrast, no other of the eleven reward network regions (left striatum, right striatum, 

ventromedial prefrontal cortex, left insula, posterior cingulate, ventral tegmental area, 

anterior cingulate, pre-supplementary motor area, left thalamus, right thalamus) was 

significant using the standard model. In some but not across all additional models, other 

brain regions, listed in the supplement, were found to be significantly reliable. For example, 

striatal results are crossing statistical threshold when excluding premature response trials. 

We summarize the reliability of reward-related regions, by listing whether each of the 

Reward-Network regions is reliable or not, in Supplement Table-s9 (according to the regions 

which appeared as significantly reliable in the whole-brain ICC analysis). Fig. 5C –D 

demonstrate how reliability in the right insula reflects a stable rank order at the individual 

RPE encoding level.

To validate the anatomical region of reliability we used an ROI extraction of ICC values. We 

find that the number of voxels which are exceeding the ICC threshold in the insula is 122 

and 334, across visit 1 to 2 and 1 to 3, respectively. These values indicate that the region is 

reliable across both time intervals. It should be noted, that these values are extracted based 

on anatomical location and do not consider how spatially contiguous voxels are, hence we 

can expect differences from the cluster sizes detected with a whole-brain minimal cluster 

correction.

It should be also stressed, that reliability of activation is not necessarily influenced by 

differences in activation across visits: a signal can significantly change over time but still be 

reliable, if the change is consistent within the group and subjects maintain the same rank 

order.
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Controlling for confounding factors

We compared the described reliability results to the reliability of RPE signals when RPE 

values are calculated using a dynamic model of the expected success probability. This model 

accounts for the influence of recent outcomes on our expectation to win, with a temporal 

decay in their impact. We find that insula reliability is high and robust for both time intervals 

across all of the tested models. Striatal results are crossing statistical threshold but 

inconsistently, being significantly reliable between visit 1 to 2 for the model which considers 

the last 20 trials outcomes, and between visit 1 to 3 when considering the last 5 trials (see 

Table-s3 and Figure s2 for a detailed description of the results).

To control for behavioral effects on reliability estimates, in particular due to losses following 

prepotent responses, we excluded those trials from the RPE modulation. We find that under 

this restriction the insula remains reliable as before (sTable-s4). Moreover, once these are 

removed the reliability in the striatum becomes significant at the pre-determined level (visit 

1 to 2: right insula and striatum ICCpeak = 0.7; visit 1 to 3: right insula and striatum: ICCpeak 

= 0.77; left putamen: ICCpeak = 0.78, see Table-s4 for detailed results).

We also considered the status of puberty along the three time points using the puberty 

Tanner scale (Tanner, 1986), which shows values of (average ± SD): 1.42 ± 0.48 during the 

first two visits, and 2.46 ± 0.28 during the third. When using these puberty scores as an 

explanatory variable in the ICC LME model (over visit 1 to 3), we find that in addition to the 

consistent reliability of RPE signals in the insula (here on left and right sides), reliability in 

the striatum becomes significant at the pre-determined level (right putamen; see detailed 

results in Table-s5).

To account for the potential effects of individual motion differences, we repeated all ICC 

analyses with the motion parameter as a covariate. Mean subject motion per visit was used 

as a between subject covariate. This modification did not influence the pattern or 

significance of results.

Feedback phase activations reliability

We then analyze reliability of general activation during feedback times - not modulated by 

RPE values. As shown in Fig. 6A, the reliability pattern differs and the striatum is in fact the 

most reliable region (reliability is across visits 1, 2 and 3: ICCpeak = 0.89 when using a more 

stringent threshold of ICC>0.6 for a better anatomical separation), while insula is less 

reliable (a reliable cluster appears only under a lower threshold).

Interestingly, when analyzing the activations during feedback of loss events only, activation 

is now negative in the striatum and positive in the insula (see Figure s3). This observation 

means that at the times of presentation of loss feedback, striatum becomes less activated, 

while the insula shows increased activation (positive correlation to loss feedback). It is 

important to stress that there is no straightforward relation between the insula being 

activated synchronously with loss feedback times, and the negative correlation of the 

amplitude of this insular activity with the values of loss RPE.
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Analyzing the reliability of feedback phase signals, considering loss events only, shows as 

well the highest reliability in striatal regions (Fig. 6B, visit 1 to 2 ICCpeak = 0.73; visit 1 to 3 

focus in left putamen of ICCpeak = 0.79, cluster extends also to left insula and there is no 

right insula cluster), as also depicted clearly by contrasting these maps with the respective 

RPE encoding reliability maps (Fig. 6C). Overall, the reliability of activation during 

feedback for this task seems to be highest in striatum as per theory, while the reliability of 

RPE signals is specifically high in the insula.

Discussion

The current study examined the test–retest reliability of RPE fMRI signals, during the 

transition from childhood to adolescence. Two test-retest time intervals were used, one 

spanning several months and the other several years. Results show the distributed encoding 

of RPEs, being maximal in the insula for negative RPE values whilst focused in the striatum 

for positive RPEs. These insular negative RPE signals are highly reliable across both time 

intervals, suggesting its potential utility as a marker for tracking aberrations in loss-

processing and punishment-based learning, during development or disease.

We first validated the behavioral reliability of the piñata task, which is a modified version of 

the MID task adapted for use in pediatric populations. We then addressed RPE encoding in 

the brain, by analyzing the linear modulation between RPE values and brain activity during 

the feedback phase. In keeping with previous findings (Liu et al., 2007; Palminteri et al., 

2012; Garrison et al., 2013), RPE values were negatively correlated to insular activity, and a 

positive correlation was found between RPE and striatal activity. In this valence-dependent 

dissociation, striatal activity increases as RPE values are more positive, while insular activity 

increases as RPE values become more negative. This encoding pattern does not seem to 

change over the three time points.

We then showed that the signal for negative RPE values in the right insula is reliable. This 

does not mean that there are no changes in encoding of negative RPEs over the three time 

points (and hence across that developmental period), but that changes occur similarly across 

the subjects. Hence, a subject who was on the high end of RPE signal strength during 

childhood, would maintain this rank relative to the group following several months, as well 

as following several years in adolescence. Such consistency requires low measurement noise 

and no individual changes which differ significantly from the trend of the group. When 

reliability is low on the other hand, the measure is not consistent across subjects and the 

group average estimates could be erroneously enhanced or blunted. Therefore, the reliability 

of RPE encoding as observed in the insula, indicates that changes found in the group average 

level, are consistent with changes in the individual level. Hence, estimating reliability 

provides a necessary validation of the significance of group level activation changes. In 

addition, further regions comprising frontal and parietal areas, show sufficient reliability for 

either one or both intervals. The anterior cingulate cortex for example, is a region 

comprising the fronto-striatal dopaminergic pathways, the connectivity of which influences 

reward-processing and regulation (Gotlib et al., 2010).
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Striatal encoding of RPE positive values seemed to be reliable under a less strict threshold, 

or when excluding premature response trials. Premature response trials may have added to 

the noise of the RPE signal, as there is no actual RPE experienced by the subject during such 

trials. The higher reliability of striatal signals once covarying for puberty status, could 

reflect a developmental effect on reward processing which should be further explored. The 

overall inconsistency of the reliability findings for the RPE signal in the striatum, may be 

also a reflection of the higher negative RPE amplitudes intrinsic in the task. If both RPE 

values and the associated brain signals have high amplitudes, a better signal to noise ratio 

should be expected and therefore a higher consistency (Welvaert and Rosseel, 2013). 

However, it is possible that the low reliability of striatal RPE encoding is not only due to the 

task design, as a previous study in adults showed a similar finding, even though using a task 

with a balanced relation between positive and negative RPE values (Chase et al., 2015). 

Another possibility is higher reliability due to a larger signal to noise ratio per the stronger 

activation (Caceres et al., 2009), hence a more dominant RPE encoding in the insula. In 

congruence, absolute striatal RPE encoding is lower compared to the insula in the second 

visit (p = 0.03), possibly confounding striatal reliability (indeed found to be the lowest over 

visit 1 to 2). In contrast to the RPE signal, we show that during reward and loss feedback the 

striatum is the most reliable region, in keeping with prior theory and data. The higher 

reliability of the striatum is supported again by a larger absolute amplitude of the signal 

versus the insula, possibly increasing the signal to noise ratio and the consistency of 

activation (a peak beta of −0.23 versus 0.16 in the insula). The two measures, feedback 

activation and RPE modulated effect, provide different information of brain activation. 

While striatum is more dominant in encoding occurrence and value of feedback, the insula, 

shows higher and more consistent association of activity to RPE values.

Reliability of RPE encoding in the insula, is high both over the short and the long test-retest 

intervals. This suggests that the RPE measure in the insula is not particularly prone to 

cumulative errors at longer time scales (up to the 3 years on average tested here). However, 

should be noted that the reliable voxels in the insula do not overlap between the two time 

intervals (there are 15 mutual voxels only). When lowering the ICC threshold (to ICC>0.3), 

a larger number of voxels overlap between both time intervals (103 voxels), but these are 

only 25% of the reliable voxels in the insula under this threshold. Possible reasons for this 

discrepancy, could be minor shifts in the insular voxels which predominantly encode RPEs, 

either between subjects (the two time intervals included different subjects), or over time. 

Future studies could address this question better, if using a design of multiple time intervals.

Establishing reliable signals over such different time intervals, is highly relevant to 

psychopathology as well as developmental studies. Treatment outcomes of drug or 

psychological therapies are typically measured over several weeks to a few months. RPE 

encoding alterations have been implicated in a range of psychiatric disorders (Murray et al., 

2008; Moutoussis et al., 2015; Radua et al., 2015; Ubl et al., 2015; Schmidt et al., 2016; 

Rothkirch et al., 2017; White et al., 2017). For example, in depression, positive RPEs are 

found to be blunted, whilst negative RPEs in the insula appear increased (Chandrasekhar 

Pammi et al., 2015; Engelmann et al., 2017). Increased encoding of negative RPEs indicates 

higher sensitivity to unexpected losses, which in depression may characterize avoidance 

behavior (Luking et al., 2015; Hevey et al., 2017), as well as the impairment in reward-based 
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learning (Henriques and Davidson, 2000; Pizzagalli et al., 2005; Tavares et al., 2008; 

Whitmer et al., 2012; Vrieze et al., 2013). Reliable negative RPE encoding in the brain, 

therefore, could be used as a valid treatment parameter, to track intervention induced 

changes, both at a short and a long time scale.

Moreover, the identification of a reliable negative RPE signal is relevant to tracking 

developmental changes in reward processing. Previous studies have shown that positive RPE 

signals in the striatum are higher in adolescents, compared to children and young adults 

(Cohen et al., 2010; Galvan, 2010; Eppinger et al., 2013; Braams et al., 2015; Thomason and 

Marusak, 2017). This is thought to reflect the higher motivation for rewards and risk taking 

behaviors in adolescents. Other studies find negative RPE signals in the insula to increase 

during adolescence (Van Leijenhorst et al., 2010; Smith et al., 2014; Hauser et al., 2015), 

which has been taken to indicate of a higher sensitivity to losses. Such developmental 

changes can occur with different time scales across individuals, which would potentially 

compromise reliability. However, as we had the opportunity to analyze the reliability also 

over a more stable, short time interval, inter-subject differences over the longer time interval 

in this case, are probably less pronounced than the consistency of RPE encoding within the 

group.

It is important to note that while insular RPE signals appear to be consistent over time, a 

number of other reward-related regions don’t show reliable activations under the primary 

model used in the paper. A possible explanation is that these regions are not predominantly 

involved in RPE encoding, and therefore have a low RPE signal to noise ratio which 

decreases the reliability of this signal.

This study has several strengths, such as the scanning at three different time points during 

development, modeling RPE signals and having a young age sample. However, the study 

should also be seen in the light of several limitations. First, the task used, whilst well suited 

for the study of negative RPEs, it doesn’t have a good enough access to positive RPE signals 

reliability. Second, the relatively small sample size in this study means that our power to 

detect signals may be diminished. Third, the variability of time intervals across subjects, in 

both the short and the long intervals is large (although the two categories of time intervals 

are still separated by at least 1 year from each other).

Overall, this study addresses uniquely RPE encoding and its reliability during development, 

showing highest reliability for encoding negative RPEs in the insula. These results are 

relevant for studies aiming to estimate alterations in sensitivity to losses and punishment-

based learning, across different time scales, whether during development or disease.
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Fig. 1. 
The task trial time course (adapted from Lahat et al., 2016).
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Fig. 2. 
Reliability of response time across the two time intervals.
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Fig. 3. 
(A) Success probability values, exemplified for visit 1, each subject is represented by a 

single curve (probability per trial is the mean across all preceding trials). (B) RPE values are 

mostly negative, as demonstrated by the cumulative sum of RPE values (calculated per trial 

using all preceding trials values); each curve represents a single subject, and all visits are 

shown.
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Fig. 4. 
RPE encoding. Voxel-wise group effect maps presenting the parametric modulation values 

of: (A) Visit 1, corrected for FWE with a threshold of p = 0.005 and a minimal cluster size 

of 102 voxels; (B) Visit 2, upper panel is corrected similarly and the lower panel is with a 

non-corrected p = 0.005; (C) Visit 3, using an uncorrected p = 0.005 (upper panel), or an 

uncorrected p = 0.05 (lower panel). (D) Mean ROI RPE encoding levels, across all voxels 

per region, averaged across all subject per visit (error bars depict the standard error). The 

effect size for each ROI (Cohen’s d, peak beta value): right insula: visit 1 (−1.17, −0.09), 
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visit 2 (−2.03, −0.12), visit 3 (−1.24, −0.08); left insula: visit 1 (−1.41, −6.62), visit 2 (−3.11, 

−0.12), visit 3 (−1.25, −0.083); striatum: visit 1 (1.49, 0.074), visit 2 (1.81, 0.046), visit 3 

(1.44, 0.05).
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Fig. 5. 
Reliability of RPE signals. (A, B) ICC maps (top panels), thresholded for FWE and 

ICC>0.45 and the respective maps of significant (p < 0.05) ICC z scores (lower panels). (C) 

Mean RPE encoding over reliable insular voxels across visits, and (D) shows the within-

subject comparison of RPE encoding (where each data point is mean RPE signal value, of 

one subject, in two of the visits).
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Fig. 6. 
(A) Reliability of general feedback activation, with no RPE modulation, across the three 

time points. (B) Reliability of only loss trials feedback, transformed to z-score (p = 0.01) 

across visit 1 to 2 (upper panel) and visit 1 to 3 (lower panel). Under this more stringent 

threshold only striatum remains reliable. (C) Contrast images of loss feedback reliability 

versus RPE encoding reliability, visit 1 to 2 and for visit 1 to 3 in panel (D).
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Table 1

Group characteristics and demographics.

Visit 1 Visit 2 Visit 3

Number of subjects 22 16 14

Mean Age (SD) 10.61 (0.32) 10.78 (0.37) 13.61 (0.56)

Gender, n females 13 11 9
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Table 2

RPE values with a fixed success probability model.

Outcome Reward Prediction Error (RPE)

Winning reward of 0 stars 0 − (0 × 0.66) = 0

Winning reward of 1 stars 1 − (1 × 0.66) = 0.34

Winning reward of 2 stars 2 − (2 × 0.66) = 0.68

Winning reward of 4 stars 4 − (4 × 0.66) = 1.36

Missing reward of 0 stars 0 − (0 × 0.66) = 0

Missing reward of 1 stars 0 − (1 × 0.66) = −0.66

Missing reward of 2 stars 0 − (2 × 0.66) = −1.32

Missing reward of 4 stars 0 − (4 × 0.66) = −2.64

Neuroimage. Author manuscript; available in PMC 2020 September 25.


	Abstract
	Introduction
	Methods
	Participants
	Piñata fMRI task
	Behavioral data analysis
	fMRI data acquisition
	fMRI data processing
	Reward Prediction Error (RPE) computational models
	Test-retest reliability analyses

	Results
	Behavioral reliability
	Task RPE values
	RPE encoding
	RPE encoding reliability
	Controlling for confounding factors
	Feedback phase activations reliability

	Discussion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Table 1
	Table 2

