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Abstract

This article focuses on the clustering problem based on Dirichlet process (DP) mixtures. To model 

both time invariant and temporal patterns, different from other existing clustering methods, the 

proposed semi-parametric model is flexible in that both the common and unique patterns are taken 

into account simultaneously. Furthermore, by jointly clustering subjects and the associated 

variables, the intrinsic complex shared patterns among subjects and among variables are expected 

to be captured. The number of clusters and cluster assignments are directly inferred with the use of 

DP. Simulation studies illustrate the effectiveness of the proposed method. An application to wheal 

size data is discussed with an aim of identifying novel temporal patterns among allergens within 

subject clusters.

Keywords

Dirichlet mixture model; Joint Clustering; Longitudinal data

1. Introduction

In this paper, motivated by an epidemiological study we examine different allergic 

sensitization temporal patterns among subjects with different asthma statuses. Of interest is 

whether allergic sensitization to a set of indoor and outdoor allergens changes across 

different time points from infant to pre-adolescence, and to young adulthood, and if it does, 

then whether there exist systematic temporal patterns for different groups of subjects and for 

different groups of allergens. Compared to cross-sectional data, longitudinal data like this 

contains in depth information and provides us a unique opportunity to detect effective 

biomarkers for disease manifestations. For applications like this, cluster analyses aiming to 

detect the similarity between subjects are commonly implemented. In general, all clustering 

methods are either non-parametric, e.g., the k-means approach, or model-based 

(semi-)parametric approaches [5]. In this article, we focus on model-based semi-parametric 

clustering methods in the Bayesian framework.
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Many model-based clustering methods group subjects based on the means, for instance, the 

method built upon a mixture of density functions [5,17]. Some approaches cluster subjects 

based on associations of a dependent variable with independent variables [10]. The 

clustering process is to identify groups of subjects with each group (cluster) representing a 

unique association and such association can be longitudinal [10]. Model-based clustering 

methods have also been proposed to cluster variables, which are beneficial to studies with 

interest on grouped patterns of variables, e.g., different temporal expression patterns for 

genes in different pathways. One such a method is proposed by Qin and Self [15], in which a 

maximum likelihood-based approach via an estimation-maximization algorithm is applied to 

infer variable clusters and regression coefficients. However, all these methods either cluster 

subjects or variables but not both.

Biclustering is more recognized recently with its concept dated back to the 1970’s[11]. The 

biclustering scheme simultaneously clusters both subjects and variables and tries to optimize 

a pre-specified objective function. There are two main classes of bi-clustering algorithms: 

systematic search algorithms and stochastic search algorithms [6]. Some of the methods are 

proposed under the Bayesian framework, e.g., the parametric Bayesian BiClustering model 

(BBC) [9] performing clustering for both genes and experimental conditions and the non-

parametric Bayesian methods [12,13]. Bi-clustering focuses on coherence of rows and 

columns in the data. Since the technique is not model-based, it is restricted to profiles in the 

variables and external variables do not have any contribution to the evaluation of similarity 

between different variables. Furthermore, in variable clustering, it seems no methods 

available to handle variables with longitudinal measurements, as in the data motivating our 

study.

In this article, we propose a Bayesian nested joint clustering method to identify joint clusters 

based on temporal trends of a set of variables with background pattern adjusted. An 

underlying background pattern refers to a pattern shared by all subjects and variables. For 

instance, in our motivating example, the background pattern refers to a temporal allergic 

sensitization trend in the general population across all allergens. Subjects and variables with 

a pattern different from the background pattern will be included in a unique cluster. The 

proposed approach is a substantial extension to the method by Han et al. [10], where the 

focus is on clustering subjects only via longitudinal patterns of a variable of interest.

The road map for the remaining of the article is as follows. In Section 2, we present model 

specification, including model assumptions, parameter priors and posteriors. Numeric 

studies are in Section 3 and we present an application example in Section 4. Finally, a 

summary and discussion are included in Section 5.

2. Model Specification

2.1. Model

Suppose there are I subjects, and each subject is associated with H variables, measured at T 
time points. Let Yi, a T × H matrix, denotes a measure of response for subject I with Yi = 

(Yi1,⋯, YiH), Yih = (yih1,⋯, yihT)T, h = 1,⋯ , H, a T × 1 vector being the observation of hth 
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variable for subject i over T time ·units and Y = {Y1,⋯, YI} denoting all the observations. 

Clearly, each subject i has a data matrix Yi of the dimension T × H.

We assume that Yih is associated with time invariant covariates Xi, a T × C matrix with C 
being the number of covariates via the following function,

Y iℎ = Xiβ0 + f1 ti; γ0, b0 + Xiβiℎ + f2 ti; γiℎ, biℎ + si + ϵiℎ, (1)

where f1(·) is an unknown function describing the temporal pattern applicable to all subjects 

(background pattern) and all variables, f2(·) is for temporal pattern specific to subject i for 

variable h (with background adjusted), si represents subject random effects, and ϵih is 

measurement error. Model (1) is for subject i and variable h and is in the same spirit as in 

Han et al. [10]. We assume independence among variables Yi and also between random 

noise and independent variables. Model (1) consists of two parts. The first part Xiβ0 + f1(ti; 
γ0, b0) describes background pattern common to all subjects and variables, and Xiβih +f2(ti; 
γih, bih) describes the pattern specifically for subject i and variable h. Assuming ϵih ~ 

N(0,τI) and si N 0, σs2I  with I being the identity matrix, we have

Y iℎ θ0, θi N Miℎ, Σ , (2)

with Mih = Xiβ0 + f1(ti; γ0, b0) + Xiβih + f2(ti; γih, bih), a T × 1 vector, Σ being a T ×T 
matrix with σs2 + τ on the diagonal and σs2 off diagonal, θ =(β0, γ0, b0)T denoting common 

parameters in the background, θih = (βih; γih, bih)T being the collection of parameters unique 

(unique parameters) to subject i and variable h, i = 1, 2,⋯ , I,h = 1, 2,⋯ , H. As seen in the 

construction of (1), θih is added onto θ0 and θih = 0 if subject i in variable h does not have a 

unique temporal trend.

We take Bayesian P-splines [2] with order l (l = 2) for functions f1(·) and f2(·) to estimate the 

unknown common and subject specific temporal trends. Specifically, we define

f1 ti, γ0, b0 = γ00 + γ01til + γ02til2 + ∑
j = 1

N
b0j til − tij* +

2 ,

f2 ti, γiℎ, biℎ = γiℎ0 + γiℎ1til + γiℎ2til2 + ∑
j = 1

N
biℎj til − tij* +

2 ,
(3)

where x +
2 = x2I(x ≥ 0) and N is the number of knots.

2.2. Nested joint clustering Scheme

We are interested in detecting two features, features in subjects indexed by i and features in 

variables indexed with h, represented by θih in (4). To reach the goal, we propose a nested 

joint clustering plan with variable clusters nested in subject clusters. The clustering process 

is unified, but to ease the understanding, we present the process in two steps: subject 

clustering and nested variable clustering.
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To cluster subjects, we group θ1·,⋯, θI· (each of the H variables in θi· has repeated 

measures) based on overall pattern in the H variables. Next the clustering will be performed 

on the variables within each identified subject cluster, i.e., clustering θ·1,⋯, θ·H. Under this 

context, variable clustering is nested in subject clustering. By performing the nested joint 

clustering, we are able to capture overall subject cluster trends and variable heterogeneity 

(distinct variable clusters) in each subject cluster.

θ11 ⋯ θ1H
⋮ ⋱ ⋮

θI1 ⋯ θIH

≜ θ1 ⋅ , ⋯, θi ⋅ , ⋯, θI ⋅ (features in subjects)

≜ θ ⋅ 1, ⋯, θ ⋅ h, ⋯, θ ⋅ H  (features in variables within subject cluster)

(4)

2.3. Parameter Priors

A fully Bayesian approach is used to infer the parameters and clusters. We start from the 

construction for the prior of θih, then discuss prior distributions of θi and θ·h. For subject i 
with a background pattern for variable h, θih = 0, otherwise, the subject has a unique pattern 

different from that in the background for that variable. To incorporate both unique and 

background patterns into the construction of prior distribution of θih, we use a mixture of 

distribution G and point mass δ(θih = 0),

θiℎ G, ω ωG + (1 − ω)δ θiℎ = 0 ,

with G generated from a Dirichlet Process (DP), G ~ DP (α, G0), where G0 is the base 

distribution and assumed to be G0 = N(μ0, Σ0). Parameter in G is a precision parameter that 

controls the distance between G and G0. Details of DP can be found in [1,3,4], among 

others. We assume Σ0 is a diagonal matrix composed of variance parameters corresponding 

to βih, γih, and bih in θih (Section 2.1). Parameter ω is the probability that subject i with 

variable h has a unique longitudinal trend different from the background.

To fit in the nested joint clustering scheme proposed in Section 2.2, in the following, we 

discuss the prior distributions of θi. and θ·h, along with other hyper-prior distributions.

2.3.1. Subject clustering—The parameters to be clustered to form subject clusters are 

θi ‘s. When clustering subjects, we focus on overall longitudinal patterns across all the 

variables and group subjects into clusters based on unique temporal patterns. For a subject 

with a background pattern only, i.e., the longitudinal pattern across all the H variables for 

that subject follows the pattern in the general population, we have θi = 0. Based on the prior 

distribution of θih, we have,

θi ⋅ G, ω1 ω ∏
ℎ = 1

H
G + (1 − ω)δ θi ⋅ = 0 .

Having G generated from DP equipped G an ability to describe skewed distributions. Since 

our goal is to assess overall patterns across all H variables, flexibility of G is essential. 
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Furthermore, the inherent clustering property of samples drawn from a distribution with DP 

prior ensures the formation of clusters among θi·. Thus, using DP as part of the mixture is 

critical for the process of clustering subjects. The conditional prior distribution for θi with (·) 
denoting all other parameters and data is then defined as,

θi ⋅ | ( ⋅ ) ω ∏
ℎ = 1

H 1
I − 1 + α ∑

j ≠ i
δ θj ⋅ + α

I − 1 + αN μ0, Σ0

+ 1 − ω1 δ θi ⋅ = 0 ,
(5)

which assumes that subjects not following the temporal trend in a general population 

(determined by θ0) are grouped into clusters with each cluster having one unique temporal 

pattern on average across all H variables. Parameter α in G controls cluster sizes. A larger 

value of α leads to a larger number of clusters. Since we do not expect many levels of 

discrepancy among subjects with respect to overall longitudinal patterns for the H variables, 

the value of α is chosen to be relatively small, e.g., α = 0.01, although we can choose α by 

optimizing the deviance information criterion (DIC) [7,16].

2.3.2. Nested variable clustering—To cluster variables within each subject cluster, 

θ·h is used. Note that conditional on T time units, the distribution of Yih is exchangeable 

with respect to i and h. This property of exchangeability eases the difficulty of clustering the 

H variables within each subject cluster and makes it comparable to the process of clustering 

subjects. To achieve this, we treat measures on H variables as observations on H “subjects” 

and, each having Ik (number of subjects in kth subject cluster, k = 1,⋯ , K) “variables” and 

each “variable” has T repeated measures. With this “modified” structure of data, for θ·h 

within each subject cluster, we further examine their heterogeneity. In this sense, the prior 

distribution of θ·h is conditional on all other parameters as well as the clustering of θi·,

θ ⋅ h |θi ⋅ , ( ⋅ ) ω ∏
i = 1

Ik 1
I − 1 + α ∑

g ≠ ℎ
δ θ ⋅ g + ω α

I − 1 + αN μ0, Σ0 + (1 − ω)δ

(θ ⋅ ℎ = 0) .
(6)

It is worth noting that in expressions (5) and (6), we assume the probability that subject i has 

a unique overall longitudinal trend across the H variables is the same as that for the pattern 

of variable h being in the background across all Ik subjects. This assumption is acceptable in 

that in both situations we are interested in the probability that a longitudinal trend is 

coincident with a pattern in the background.

2.4. Prior distributions for other parameters

For the hyper-prior distributions of μ0 and Σ0 in the base distribution G0, and the distribution 

of weight parameter ω, we propose vague or non-informative priors. For μ0, we choose a 

multivariate normal distribution with mean 0 and known large diagonal covariance matrix 

Σμ0. For all the parameters in Σ0, we take inverse gamma (IG) as the prior distributions with 

shape and scale parameters are known and chosen small. For the weight parameter ω, we 

assume ω ~ Beta(2, 2), which is a symmetric distribution within interval (0,1). For the prior 

distributions of θ0, a multivariate normal is chosen with mean 0 and covariance Σθ0, a 
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known diagonal matrix with large components. For variance parameter τ in ϵih and variance 

parameter σs2 in random subject effects, an inverse gamma distribution with small shape and 

scale parameters are used.

2.5. Joint and conditional posterior distributions

Let A = θiℎ, i = 1, ⋯, I, ℎ = 1, ⋯, H, ζ , where ζ = μ0, Σ0, ω, θ0, τ, σs2 , denote all parameters, 

the joint posterior distribution is, up to a normalization constant,

P(A Y ) ∝ ∏
i

∏
ℎ

p Y θiℎ, θ0, τ, σs2 p θi . , θ . ℎ G, ω p G G0, α p μ0 p Σ0 p(ω

)p θ0 p(τ)p σs2 ,

with G0 = N μ0, Σ0 .

(7)

Note that the joint posterior distribution reduced to the distribution in Han et al. [10] if we 

only have one variable, and nested joint clustering becomes clustering subjects only. 

Posterior inference of A is obtained by successively simulating values from their full 

conditional posterior distributions through the Gibbs sampling scheme. We included the 

conditional posterior distributions as well as the sampling scheme in the Appendix. 

Derivations of these distribution are similar in spirit to those given in Han et al. [10].

3. Simulated Experiments

For methods clustering subjects based on longitudinal patterns with background patterns 

adjusted, Han et al. [10] via simulations compared with a non-parametric approach 

implemented in an R package kml [8], and demonstrated the advantage of their proposed 

method. The proposed method performs joint clustering and reduces to [10] when there is 

one variable. We expect that the advantage of adjusting background while clustering still 

holds. As for methods with the ability of jointly clustering subjects and variables under a 

longitudinal setting, we have not identified comparable methods. To demonstrate the 

effectiveness of the method, we thus implemented simulated data sets generated under 

different scenarios. Different sample sizes and different number of variables are considered. 

We take sample size I = 200, 400, 600 and number of variables H = 10, 20. The background 

pattern is assumed to be linear as

f1 = p0 + p1t

where p0, and p1 are generated from N(0, 0.1). The number of subjects with background 

only is I/2. Two subject clusters are considered and each subject cluster is with size of I/4. 

Within each subject cluster, variables are further grouped into two clusters. Thus in total, we 

have four clusters. The patterns of these four distinct variable clusters are
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clust11:f2 = 7 − 23t
clust12:f2 = 2
clust21:f2 = − 3
clust22:f2 = − 27 + 3t − 6t2,

where clust11 denotes the first variable cluster in subject cluster 1. We consider one 

covariate, Xi ~ N(0, 1), and coefficient for Xi in the background is β0 = 20. The coefficient 

of Xi for each subject cluster is generated from N(0, 10), which is shared for all subject in 

this cluster, i.e. subject cluster specific. Random subject effect si, and random error ϵih are 

both generated from N(0, 0.5) and they are independent of each other.

For each setting in terms of sample size and the number of variables, we generated 100 

Monte Carlo (MC) replicates. We then applied our method to each MC replicate. The 

precision parameter α is set at 0.01. Fast convergence of MCMC chains are observed. In 

general, the chains converge within the first 500 iterations (Figure 1), after which the chains 

become very stable and the sampled values are around the true values. We also calculated 

the potential scale reduction statistics R suggested by [7], which supports the fast 

convergence observed in Figure 1. In particular, for τ, σs2, Rτ = 1.0018, RσS
2 = 1.0017

calculated based on multiple MCMC chains, are both close to 1, indicating potential 

convergence of the sampling sequences.

Figure 2 demonstrates the fit of the model to the data. The true patterns, fitted curves, and 

95% empirical bands are displayed for data set with the sample size of 600 and 20 variables. 

The fitted curves are closer to the true patterns and confidence bands are narrower in the 

background than in other unique clusters. This is likely due to the larger sample size as well 

as the larger number of variables in the background. Similar results are observed in other 

settings of sample size and number of variables.

To assess the overall performance of the method, we present the clustering sensitivity and 

specificity in different scenarios in Table 1 and Table 2. Sensitivity and specificity in 

background are expectedly higher than in unique clusters because of the larger sample size. 

Overall sensitivity and specificity for subject clusters are clearly increased as the sample size 

increases. When the number of variables is increased from 10 to 20, both sensitivity and 

specificity in unique clusters are improved, indicating stronger underlying clustering 

information as the number of variables increases.

Results displayed in Table 1 and Table 2 are for variable clusters such that the number of 

variables in each variable cluster is the same. We also considered unevenly distributed 

variables in each variable cluster. To demonstrate the performance of the method under this 

setting, we simulated 100 MC replicates such that variables in subject cluster 1 are 

unequally split into two variables clusters, with one cluster of 8 variables and the other of 

12. The sample size is set at I = 600. Other settings are the same as before. Results of 

summary statistics for sensitivity and specificity are included in Table 3. As expected, the 

overall clustering accuracy is slightly reduced compared to balanced cases. This is due to the 

stronger uncertainty in the smaller variable clusters. Overall, results from the simulations 
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provide an evidence that the proposed method is capable of jointly clustering both subjects 

and variables.

4. Real Data Applications

We apply the proposed method to an epidemiology data collected from 595 subjects, each 

having wheal sizes measured at ages 4, 10, and 18 years in reaction to 11 allergens (Grass, 

Dog, Cat, House dust mite [HDM], peanut, soy, cod, egg, milk, Alternaria, Cladosporium). 

Our goal is to detect clusters of subjects sharing similar overall temporal wheal size patterns 

across the allergens, and within each subject cluster, we would like to detect clusters of 

allergens sharing similar temporal patterns. The underlying motivation is that some subjects 

may react to certain allergens different from other subjects.

Without loss of generality, we standardized the age variable before analyzing to avoid 

potential bias in clustering caused by heterogeneous scale.

We set α as 0.01, assuming small numbers of clusters in subjects as well as variables. We 

run one long chain with 10,000 iterations in total, among which 8,000 iterations are for burn 

in, and the posterior inferences are based on the remaining 2,000 iterations.

On top of background patterns (i.e., patterns in the general population), three unique subject 

clusters are identified, in which unique variable clusters with respect to longitudinal wheal 

size patterns are further detected. As shown in Figure 3, the wheal sizes in the general 

population are overall close to zero. Wheal size longitudinal patterns with respect to 

allergens soy, cod, egg, milk, Alternaria, and Cladosporium are in the background, implying 

an extremely low prevalence of allergic sensitization to these allergens. Wheal sizes in the 

unique clusters are clearly much larger, but show different temporal patterns in different 

clusters of allergens. In the first subject cluster, the unique patterns are brought by allergens 

Grass, Dog, Cat, and House dust mite and the pattern of the remaining 7 allergens are 

constant with patterns in general population. In particular, wheal sizes against Cat allergen 

are smaller and increase more slowly over time compared to the wheal sizes against the 

other three allergens. Among Grass, Dog, and HDM, wheal sizes in reaction to Grass and 

Dog follow similar temporal trend, increasing over time and increasing faster compared to 

the trend for HDM. In subject cluster 2, compared to allergens in unique clusters of subject 

cluster 1, Peanut allergen joins in. For subjects in this cluster, wheal sizes for allergens 

Grass, Dog, HDM, and Peanut increases quickly over time to an expected wheal size larger 

than 3.5mm. On the other hand, wheal sizes in reaction to Cat for subjects in this cluster are 

much smaller. Wheal sizes are small at an earlier age (around 4 years, unstandardized age) 

and start to increase around 10 years of age. In the last subject cluster, wheal sizes for all the 

allergens except for HDM and Milk follow a pattern as in the background. Wheal sizes for 

HDM and Milk are small in expectation and share similar patterns.

Because sizes of wheals reflect a potential severity of allergic sensitization (atopy) and atopy 

is linked to asthma, we further examined whether subjects in each of the clusters ever had 

asthma. The prevalence of asthma ever in each unique subject cluster and among the 

subjects with a background pattern is recorded in Table 4. Linking the prevalence of asthma 
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to the longitudinal patterns in each unique cluster, subjects with larger wheal sizes 

increasing over time certainly have a higher risk of having asthma compared to those in the 

background. However, two points may deserve a further consideration. Firstly, among 

subjects allergic to the four allergens, Grass, Dog, Cat, and HDM, wheal size in reaction to 

Cat allergen seems to play a role in the prevalence of asthma. If wheal sizes for Cat allergen 

are relatively small compared to reaction to the other three allergens, even though a subject 

is allergic to peanut as well, the risk of having asthma can be smaller compared to subjects 

with large wheal sizes for Cat allergen (cluster 1 and 2 in Table 4). Secondly, there exists a 

group of subjects such that they have a slight reaction to a small number of allergens, in our 

case, HDM and Milk. For those subjects, the prevalence of asthma (13.6%) is slightly lower 

but similar to that in the general population (16.4%). It is unclear whether a small reaction to 

a small number of allergens is actually protective and surely deserves further investigation.

5. Summary

We proposed a nested joint clustering method built upon Dirichlet process to jointly cluster 

longitudinal data. Under the proposed mechanism, variables are clustered within each 

subject cluster based on their agreement in possibly non-linear temporal trends and 

associations with external variables. Dirichlet process (DP) is implemented in the clustering 

of subjects as well as in the jointed clustering of variables nested within each subject cluster.

To our knowledge, methods with the ability to jointly cluster longitudinal data are not 

available. In the absence of competitive methods, we evaluated the proposed methods via 

simulations under different settings defined by sample sizes and numbers of variables. 

Results from simulations demonstrate the effectiveness of the proposed approach with 

respect to sensitivity and specificity in clustering. As expected, sensitivities and specificities 

improve with the increase of sample sizes and with the increase of number of variables. The 

application of the method to the longitudinal wheal size assessment of children at ages 4, 10, 

and 18 years detected 6 unique clusters with each showing a different temporal pattern of 

wheal size for different groups of allergens and subjects. After connecting the features of the 

unique clusters to the proportions of ever having asthma among the children, it was found 

that being allergic to Cat allergen (but not other allergens) in addition to other common 

allergens (Dog, Grass, and House dust mite) can potentially increase the risk of asthma.

Common to all analytical methods, the proposed nested joint clustering approach has its 

limitations. The sensitivity and specificity of variable clusters require improvement when the 

number of variables is small. This is likely due to the characteristics of DP, e.g., producing 

clusters with a small number of observations. Another limitation is in the assumption of 

independence between variables. With variables being dependent, the likelihood constructed 

under the independence assumption can be treated as a composite likelihood. Since the goal 

is clustering, we do not expect this assumption will deteriorate the ability of cluster 

detections; rather, the dependency among the variables is expected to have the underlying 

variable clusters emerge more easily, and subsequently benefit the clustering and improve 

the quality of clustering.
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6.: Appendix

In the following, we present the conditional posterior distributions, followed by the sampling 

scheme used to draw posterior samples for posterior inferences.

6.1. Derivations of conditional posterior probabilities for key parameters

We present below conditional posterior distributions for two key parameters θ0, θi· in the 

step of clustering subjects and omit the posterior distributions for parameters θ·h for 

clustering variables as its posterior can be derived in the same way as θi·. Analogously, μ0, 

Σ0 have standard posteriors with similar derivations as for θ0. However, for τ, σs2, we use M-

H sampling to draw samples based on the joint posterior probabilities in (7).

1. Conditional posterior of θ0,

P θ0 Y , θih, i = 1, 2, ⋯, I, ℎ = 1, …, H; ζ\θ0 ∝ exp − 1
2 θ0

T Σθ0
−1θ0

× exp − 1
2 ∑

i = 1

I
∑

ℎ = 1

H
Y ih − Mih

T(Σ)−1 Y ih − Mih

where θ0 = (β0, γ0, b0). Because Σθ0 is a diagonal matrix, let 

Σθ0 = diag Σβ0, Σγ0, Σb0 , Rih β0 = Y ih − f ti; γ0, b0 − Xiβih − f ti; γih, bih , 

which does not involve β0 any more. The conditional posterior of β0 is 

proportional to Analogously, the posterior probability of β0 is proportional to

exp − 1
2 β0

T Σβ0
−1β0 × exp − 1

2 ∑
i = 1

I
∑

ℎ = 1

H
Rih β0 − Xiβ0

T(Σ)−1 Rih β0 − Xiβ0

= exp − 1
2 β0

T Σβ0
−1 + H ∑

i = 1

I
XiT(Σ)−1Xi β0

+ 1
2 ∑

i = 1

I
∑

ℎ = 1

H
Rih β0

T(Σ)−1Xi β0 + β0
T 1

2 ∑
i = 1

I
∑

ℎ = 1

H
XiT(Σ)−1Rih β0 + c

β0 ( . ) MN(μ, Δ), witℎ

μ = Δ ∑
i = 1

I
∑

ℎ = 1

H
XiT Σ −1Rih β0 ,

Δ = Σβ0
−1 + H ∑

i = 1

I
XiT(Σ)−1Xi

−1
.

Analogously, the posterior probability of γ0 is proportional to
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exp − 1
2 γ0

T Σγ0
−1γ0 − 1

2 ∑
i = 1

I
∑

ℎ = 1

H
Rih γ0 − IT × T ⊗ γ0

T Ti
T

(Σ)−1

Rih γ0 − IT × T ⊗ γ0
T Ti

where ⊗ is the outer product, 

Rih γ0 = Yiℎ − Xiβ0 − b0
T ∇T1 *

(i) , ⋯, b0
T ∇TT *

(i) T
− Xiβih − f ti; γih, biℎ , Ti = 

(Ti1,⋯, TiT)T, ∇T l *
(i) = til − ti1* +

2 , ⋯, til − tiN* +
2 , l = 1, 2, ⋯, T . After 

simplifications,

γ0j | ( . ) N Π
2 Δ + 1

σγ0i
2 , 1

Δ + 1
σγ0i

1 , witℎ

Δ = ∑
i = 1

I
∑

ℎ = 1

H
∑

t = 1

T
∑

k = 1

T
(Σ)kt

−1tik
2j,

Π = ∑
i = 1

T
∑

ℎ = 1

H
∑

t = 1

T
∑

k = 1

T
Riℎ γ0i k + Riℎ γ0i t Σ kt

−1tik
j ,

j = 0,1,2 .

Similarly,

b0j | ( . ) N Π
2 Δ + 1

σb0j
2 , 1

Δ + 1
σbi

2
, witℎΔ = ∑

i = 1

I
∑

ℎ = 1

H
∑

t = 1

T
∑

k = 1

T
(Σ)kt

−1 tik − tij +
4 ,

Π = ∑
i = 1

I
∑

ℎ = 1

H
∑

t = 1

T
∑

k = 1

T
Riℎ b0j k + Riℎ b0j t Σ kt

−1 tik − tij +
2 ,

j = 1, 2, ⋯, N,

where R(*)k is the kth element of the “residual” of *.

2. Conditional posterior of θi·,

Following the same way, it is straightforward to derive the conditional posterior 

for θi·. As for βi,

βi ( ⋅ ) MN(μ, Δ),  witℎ 

μ = Δ Σβi
−1μβi + ∑

i = 1

I
∑

ℎ = 1

H
XiT(Σ)−1Rih βi ,

Δ = Σβi
−1 + H ∑

i = 1

I
XiT(Σ)−1Xi

−1
,

where Rih(βi) = Yih − Xiβ0 − f(ti; β0, b0) − f(ti; γi, bi).
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For γi,

γis ( . ) N(μ, Δ), witℎ

μ = Δ Π
2 +

μγis
σγis

2 ,

Δ = 1
Φ + 1

σγis
2

,

Φ = ∑
j:subject j   ℎas θi ⋅

∑
t = 1

T
∑

k = 1

T
(Σ)kt

−1tik
2s,

Π = ∑
i = 1

I
∑

ℎ = 1

H
∑

t = 1

T
∑

k = 1

T
Riℎ γis k + Riℎ γis t Σ kt

−1tik,
s

s = 0,1,2 .

Finally, for bi,

bis ( . ) N(μ, Δ), witℎ

μ = Δ Π
2 +

μbis
σbis

2 ,

Δ = 1
Φ + 1

σbis
2

,

Φ = ∑
j:subject j ℎas θi ⋅

∑
t = 1

T
∑

k = 1

T
(Σ)kt

−1 tik − tis +
4 ,

Π = ∑
i = 1

I
∑

ℎ = 1

H
∑

t = 1

T
∑

k = 1

T
Riℎ bis k + Riℎ bis t Σ kt

−1 tik − tis +
2 ,

s = 1, 2, ⋯, N .

6.2. Overall sampling procedure

In this section, we present details about how the overall sampling procedure proceeds and 

we use algorithm 8 in [14] to sample unique parameters. At every full iteration, we start 

from clustering subjects. Suppose currently we have k subject clusters for all I subjects.

Step 1 Update cluster assignment: Use DP to reassign all I subjects into different 

clusters. Subject i will be assigned into one of the existing k clusters with some 

probability, or into one extra cluster with the remaining probability, i = 1, 2,⋯ , I, 
resulting in new cluster assignments such that all I subjects are re-distributed into new 

k* clusters.

Step 2 Sampling unique parameters: Based on new assignments of all subjects, draw 

posterior samples of unique parameters θi·, i = 1, 2,⋯, k* (could be different from k). 

Information on subjects in cluster i is used for sampling θi·, i = 1, 2,⋯ k*.

Step 3 Sampling common parameters: Draw posterior samples of common 

parameters.
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Step 4 Nested variables clustering: Within each subject cluster i, i = 1, 2,⋯ , k* 
concluded in Step 2, cluster variables as in Steps 1–3, but with subject index i 
replaced by variable index h.

Step 5 Repeat Steps 1–4: One full iteration is finished. Go back to step 1 to start the 

next iteration.
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Figure 1. 
Trace plots of one chain of MCMC simulations for the two scale parameters, τ (left) and σs2

(right). The x-axis represents the number of iterations and values on the y-axis are the 

sampled values of each parameter in the MCMC simulation process.
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Figure 2. 
True curve (solid lines), fitted curve (dashed lines) and confidence bands (dotted lines) with 

sample size of 600 and 20 variables.
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Figure 3. 
Background pattern.
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Figure 4. 
Pattern of allergen variables in subjects cluster 1 which has 43 subjects. Variable cluster 11: 

Grass, Dog; Variable cluster 12: Cat; Variable cluster 13: HDM.

Han et al. Page 17

J Stat Comput Simul. Author manuscript; available in PMC 2020 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Pattern of allergen variables in subject cluster 2 with 84 subjects. Variable cluster 21: peanut, 

Grass, Dog, HDM; Variable cluster 22: Cat.
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Figure 6. 
Pattern of allergen variables in subject cluster 3 with 31 subjects. Variable cluster 31: milk, 

HDM.
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Table 1.

Summary of sensitivity and specificity across 100 MC replicates for both subject clusters and variable clusters 

with varying subject sample sizes. The number of variables is 10. Background: background patterns applied to 

all subjects and variables. sub.clust1: subject cluster 1, sub.clust2: subject cluster 2, clustij: variable cluster j in 

subject cluster i, i, j = 1, 2.

Subject 200 Sample 400 Size 600

Background Sensitivity Mean 0.9539 0.9775 0.9898

SD 0.0990 0.0617 0.0375

Specificity Mean 0.9870 0.9891 0.9930

SD 0.0556 0.0370 0.0180

sub.clust1 Sensitivity Mean 0.7494 0.8631 0.9161

SD 0.2760 0.2315 0.1912

Specificity Mean 0.9539 0.9659 0.9731

SD 0.0648 0.0512 0.0437

sub.clust2 Sensitivity Mean 0.7761 0.8730 0.9089

SD 0.2331 0.2017 0.1702

Specificity Mean 0.9753 0.9816 0.9916

SD 0.0582 0.0411 0.0217

clust11 Sensitivity Mean 0.6904 0.7168 0.7407

SD 0.2472 0.2447 0.2445

Specificity Mean 0.6250 0.6225 0.7004

SD 0.3339 0.2742 0.2244

clust12 Sensitivity Mean 0.6738 0.7071 0.7218

SD 0.2103 0.2061 0.2123

Specificity Mean 0.7640 0.7658 0.7531

SD 0.3254 0.2347 0.2617

clust21 Sensitivity Mean 0.6992 0.6787 0.6699

SD 0.2333 0.2339 0.2458

Specificity Mean 0.6711 0.6596 0.6771

SD 0.2789 0.2943 0.2911

clust22 Sensitivity Mean 0.6718 0.6690 0.6800

SD 0.2117 0.2105 0.1956

Specificity Mean 0.7060 0.7212 0.7834

SD 0.3035 0.2886 0.2584
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Table 2.

Summary of sensitivity and specificity across 100 MC replicates for both subjects clusters and variable 

clusters with varying subject sample sizes. The number of variables is 20. Background: background patterns 

applied to all subjects and variables. sub.clust1: subject cluster 1, sub.clust2: subject cluster 2, clustij: variable 

cluster j in subject cluster i, i, j = 1, 2.

Subject 200 Sample 400 Size 600

Background Sensitivity Mean 0.9763 0.9848 0.9916

SD 0.0658 0.0483 0.0433

Specificity Mean 0.9891 0.9943 0.9902

SD 0.0265 0.0130 0.0397

sub.clust1 Sensitivity Mean 0.8005 0.8579 0.9217

SD 0.2652 0.2383 0.1874

Specificity Mean 0.9575 0.9659 0.9745

SD 0.0663 0.0559 0.0423

sub.clust2 Sensitivity Mean 0.8134 0.8825 0.9318

SD 0.2260 0.1924 0.1557

Specificity Mean 0.9810 0.9817 0.9911

SD 0.0669 0.0350 0.0211

clust11 Sensitivity Mean 0.8028 0.8351 0.8567

SD 0.2504 0.2323 0.2264

Specificity Mean 0.6612 0.7464 0.7087

SD 0.2787 0.2356 0.2273

clust12 Sensitivity Mean 0.8072 0.8092 0.8271

SD 0.1878 0.2051 0.1890

Specificity Mean 0.8654 0.8424 0.8725

SD 0.2057 0.2209 0.1800

clust21 Sensitivity Mean 0.8064 0.7865 0.8598

SD 0.2438 0.2502 0.2153

Specificity Mean 0.7417 0.6572 0.7422

SD 0.2733 0.2750 0.1658

clust22 Sensitivity Mean 0.7745 0.7697 0.8169

SD 0.2195 0.2075 0.1953

Specificity Mean 0.8518 0.8143 0.8366

SD 0.2588 0.2310 0.1904
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Table 3.

Sample size 600, 20 variables: Unevenly distributed variables, in subject clust1, there are 8, 12 variables in 

variable cluster 1, and 2 respectively, and in subject cluster 2, there are 10, 10 variables in variable cluster 1 

and 2 respectively. Background: background patterns applied to all subjects and variables. sub.clust1: subject 

cluster 1, sub.clust2: subject cluster 2, clustij: variable cluster j in subject cluster i, i, j = 1, 2.

Mean (SD)

Sensitivity Specificity

Background 0.9785 (0.0537) 0.9883 (0.0301)

sub.clust1 0.9143 (0.1995) 0.9530 (0.0641)

sub.clust2 0.9278 (0.1556) 0.9808 (0.0382)

clust11 0.7961 (0.2476) 0.8039 (0.1566)

clust12 0.8672 (0.1565) 0.7409 (0.2130)

clust21 0.8335 (0.2360) 0.6571 (0.2422)

clust22 0.7393 (0.1607) 0.8433 (0.2211)
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Table 4.

Asthma prevalence in each subject cluster and background.

Unique Subject Cluster/Background Size % asthma

Cluster 1 43 29.4

Cluster 2 84 22.2

Cluster 3 31 13.6

Background 437 16.4

J Stat Comput Simul. Author manuscript; available in PMC 2020 September 25.


	Abstract
	Introduction
	Model Specification
	Model
	Nested joint clustering Scheme
	Parameter Priors
	Subject clustering
	Nested variable clustering

	Prior distributions for other parameters
	Joint and conditional posterior distributions

	Simulated Experiments
	Real Data Applications
	Summary
	Appendix
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Table 1.
	Table 2.
	Table 3.
	Table 4.

