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Abstract

Second order linear differential equations can be used as models for regulation since under a range 

of parameter values they can account for return to equilibrium as well as potential oscillations in 

regulated variables. One method that can estimate parameters of these equations from intensive 

time series data is the method of Latent Differential Equations (LDE). However, the LDE method 

can exhibit bias in its parameters if the dimension of the time delay embedding and thus the width 

of the convolution kernel is not chosen wisely. This article presents a simulation study showing 

that a constrained fourth order Latent Differential Equation (FOLDE) model for the second order 

system almost completely eliminates bias as long as the width of the convolution kernel is less 

than two thirds the period of oscillations in the data. The FOLDE model adds two degrees of 

freedom over the standard LDE model but significantly improves model fit.

Introduction

One of the fundamental principals of life is that it undergoes change. Mathematically, 

change as an outcome has long been represented by differential equations (see, e.g., Butcher, 

2016; Hotelling, 1927; Hubbard & West, 1991; Laplace, 1779). Dynamical systems are a 

useful way to think about differential equations as applied to many types of biological (Glass 

& Mackey, 1988), psychological (Nesselroade, 2002; Boker, 2002), social (Laurenceau, 

Barrett, & Pietromonaco, 1998), emotional (Butler, 2017), cognitive (Port & vanGelder, 

1995), and developmental (Smith & Thelen, 1993) phenomena. In the past two decades there 

has been rapidly increasing interest in modeling psychological systems using differential 

equations. A few of the many examples in recent literature are developmental change 

(Gerstorf, Ram, Röcke, Lindenberger, & Smith, 2008), fluctuations and self-regulation of 

mood (Russell et al., 2011), resilience in the face of adversity (Bisconti, Bergeman, & 

Boker, 2004; Montpetit, Bergeman, Deboeck, Tiberio, & Boker, 2010; Ong, Bergeman, 

Bisconti, & Wallace, 2006), day to day changes in hunger and appetite (Klump, Keel, Burt, 

et al., 2013; Racine et al., 2013), monthly change in hormones (Klump, Keel, Kashy, et al., 

2013), age-related change in brain functioning and cognitive performance (Gerstorf et al., 

2015; Raz et al., 2005; Salthouse & Davis, 2006), and dyadic-regulation of romantic couples 

(Boker & Laurenceau, 2007; Laurenceau et al., 1998). Fitting differential equation models to 

data using Structural Equation Modeling (SEM) has become increasingly popular (e.g, 
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Benson, Ram, & Stifter, 2018; Bisconti, Bergeman, & Boker, 2006; Boker, Neale, & Klump, 

2014; Driver & Voelkle, 2018; Hurley, Fink, & Janata, 2018; Montpetit et al., 2010; Morales 

et al., 2017; Oud & Jansen, 2000).

When one considers individual differences from the perspective of dynamical systems 

models, it is not the measurements themselves that comprise important differences between 

people. We like to think of this in the context of the questions “what”, “where”, “why”, and 

“how”. Traditional cross-sectional individual differences designs ask the question, what is 

the difference in the observed scores? Dynamical systems theory encourages us to think 

about the process of change within each individual. Then individual differences can be 

separated into three main categories (Boker, 2013; Boker, Staples, & Hu, 2016). First, we 

must consider individual differences in equilibria, that is to say, where is the natural 

homeostatic condition of each individual and how do people differ in the state to which they 

tend in the absence of contextual pressure (or perturbation in the language of dynamical 

systems)? So the first category of dynamical systems question asks, where do an individual’s 

observations tend to return to when perturbed away from equilibrium? Second, we must find 

a model for the return to equilibrium, in other words, why does a person return to 

equilibrium? There might be individual differences in the model by which the dynamic 

return to equilibrium occurs. Third, we are interested in the question, how does an individual 

return to equilibrium? The answer to this question is manifest in the parameters of the 

differential equation model. Even if the same model can account for everyone in the 

population, individuals may still differ in the parameters of that model.

In order to test a dynamical systems theory for regulation within individuals we need time-

intensive measurements of each individual. Each person in the sample must be measured a 

sufficient number of times in order to have power to be able to reject a hypothesis that 

everyone is the same. In addition, when the models are fit to the data, if some individuals’ 

dynamic return to equilibrium happens relatively rapidly and for others the return is slower, 

we must have methods that do not induce bias towards a value that is an artifact of the 

design of the experiment. Unfortunately, when fitting traditional discrete time auto- and 

cross-regressive SEM models the measurement interval is nonlinearly confounded with the 

estimated parameters (e.g., Montfort, Oud, & Voelkle, 2018; Oud, 2007). Bias in parameter 

estimates will be a function of their values and thus individual differences in parameter 

estimates may either be inflated or reduced depending on the data, the measurement interval, 

and the model. Continuous time models (i.e., differential equations models) are used so as to 

avoid the trap of having the measurement interval confounded with the estimated parameter.

Differential equations express dynamics as predictive relationships between variables of 

continuous time change (see Hubbard & West, 1991; Kaplan & Glass, 1995, for useful 

introductions). Suppose that an individual has been measured on a variable, X, on p
occasions each separated by an interval of time, Δt, so that X = x0,xΔt,x2Δt,x3Δt,…,x(p − 1)Δt . 

Now consider an individual’s score at a chosen time t (denoted xt) and its derivatives, e.g., 

how fast is the score changing at time t (denoted as dx(t)/dt or ẋ(t)), and how fast is this 

change accelerating or decelerating at the same moment of time t (denoted as d2x(t)/dt2 or 

ẍ(t)). If there are predictable covariance relationships between the score and its instantaneous 
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derivatives then we can define a differential equation composed of predictive relations 

between the score and its derivatives and this differential equation defines the continuous 

time dynamic of the system.

The field of dynamical systems analysis is large and growing and it is beyond the scope of 

this article to provide a substantial introduction to the field. There are many sources (e.g., 

Montfort et al., 2018; Smith & Thelen, 1993; Thompson & Stewart, 1986) that may help the 

interested reader to become more familiar with the terms and uses of dynamical systems 

models. The current article will focus on second order linear differential equations that can 

provide an appealing model for self-regulating psychological processes.

Second order linear differential equations

Second order linear differential equations are those in which a target variable and its first 

and second derivatives are linearly related. This may be expressed by a regression equation 

where the second derivative is an outcome variable predicted by the variable and the first 

derivative such that,

d2x(t)/dt2 = ηx(t) + ζdx(t)/dt + e(t) (1)

where η is often termed the frequency parameter and ζ the damping parameter. The residual 

term, e(t), can be interpreted as the degree to which the second derivative is not predicted by 

the displacement from equilibrium and first derivative. But this residual term may include 

stochastic (non-deterministic) variance as well as deterministic variance that does not 

conform to this linear model. We will return to this problem when we describe the 

constrained fourth order LDE.

A stable damped linear oscillator (DLO) occurs when η < 0 and η + ζ2/4 < 0. In this case, 

oscillation will occur with a period λ = 2π
−(η + ζ2/4)

. If ζ < 0 then if the system is perturbed 

away from its equilibrium, the system will over time tend towards its point equilibrium value 

along a negative exponential curve. If ζ > 0 then the system is unstable and any perturbation 

away from equilibrium will induce exponential increase in displacement from equilibrium. 

Also, if η > 0 then the system is unstable and will exponentially diverge from equilibrium. 

Finally, if η = 0 or η + ζ2/4 > 0 then the system behaves similarly to a first order system with 

exponential damping or divergence depending on the sign of ζ. The simulation presented 

here will only consider parameter values that result in a stable DLO, the conditions most 

often of interest in self-regulating systems.

The flexibility in the types of curves that the second order linear differential equation can 

approximate is one reason that the use of this equation has become popular: Individual 

differences in trajectories can be modeled with a single equation even when some 

individuals exhibit simple damping towards equilibrium and others exhibit oscillating 

trajectories. Another reason is that the second order differential equation model has 

appealing and intuitive interpretations for its parameters. If one is interested in variability 

analysis, the second order differential equation model separately estimates the variance of a 

variable’s value (amplitude of fluctuations) and the variance of its first derivative (intuitively 

Boker et al. Page 3

Struct Equ Modeling. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the “roughness” of the fluctuation trajectories) which can be independent qualities of 

variability in the behavior of a system (Deboeck, Monpetit, Bergeman, & Boker, 2009). If 

one is interested in modeling self-regulating systems, then the η parameter can give an 

estimate of the average cycle time inherent in an individual’s self-regulation. The ζ
parameter can give an estimate of overall return to equilibrium. The two parameters together 

can be interpreted as being related to resilience to adversity (Boker, Montpetit, Hunter, & 

Bergeman, 2010; Montpetit et al., 2010; Tarter & Vanyukov, 2002). There is increasing 

interest in using the second order linear (i.e., DLO) model for many types of human systems 

(e.g., Butler, 2017; Hurley et al., 2018; Morales et al., 2017).

Parameters of second order differential equations models can be estimated from data using 

two main approaches. The first approach is to analytically integrate the differential equation 

model and then use the resulting specific integral to predict a score at a known interval of 

time in the future based on scores in the immediate past using state space methods (see, e.g., 

Chow, Hamaker, Fujita, & Boker, 2009; Ho, Shumway, & Ombao, 2005; Petris & Petrone, 

2011). The exact and approximate discrete methods (Bergstrom, 1966, 1984; Singer, 1993; 

Oud & Jansen, 2000; Oud, 2017) and latent Kalman filtering methods (Kalman, 1960; 

Chow, Ferrer, & Nesselroade, 2007; So, Ott, & Dayawansa, 1994) are examples of this 

approach. The second approach uses convolution filtering methods such as Latent 

Differential Equations (LDE, Boker, Neale, & Rausch, 2004; Boker et al., 2016; McKee, 

Rappaport, Boker, Moskowitz, & Neale, 2018) or Generalized Local Linear Approximation 

(GLLA Boker, Deboeck, Edler, & Keel, 2010) to estimate the parameters of the differential 

equation without integrating the differential equation. The current article will focus on an 

improvement to the LDE method of estimation of parameters for the second order linear 

differential equation.

LDE Advantages and Disadvantages

The LDE method of fitting a differential equation model to data is a variant of a class of 

operations known as convolution filtering (Levinson, 1946, 1947; Wiener, 1949), a 

technique that multiplies a filter with windowed samples of a time series in order to obtain a 

result with desired characteristics. This technique has been widely used in image processing 

(e.g., Gonzalez & Wintz, 1977; Ozaktas, Barshan, Mendlovic, & Onural, 1994), audio 

processing (e.g., Reilly & McGrath, 1995), and physics (e.g., Byerly, 1965). In particular, 

this technique has been applied to time series data to estimate derivatives (Savitzky & Golay, 

1964). Time delay embedding is a closely associated technique that was developed for 

nonlinear dynamical systems attractor reconstruction (Ruelle & Takens, 1971; Sauer, Yorke, 

& Casdagli, 1991) and was proven to be able to capture the dynamical properties of a time 

series (Takens, 1985) even when that series was nonlinear and had no analytic solution. 

Efficient calculation of a convolution filter with a time series can be produced by a matrix 

multiplication of the filter with a time delay embedding of a time series as is used in the 

LDE method (see Boker et al., 2016, for an extended discussion).

There are advantages and disadvantages to the use of the LDE method for specifying and 

fitting differential equations to time series data. The first advantage is that the LDE method 

uses time delay embedding as its data representation, which in the context of second order 
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linear differential equations has been shown to increase precision of parameter estimates 

(Oertzen & Boker, 2010) and has surprising robustness to violations of time interval 

homogeneity (Boker, Tiberio, & Moulder, 2018).

The second advantage of using an LDE model is that the model is easily specified in 

commonly understood latent variable terms. This means that it becomes easier to consider 

many alternative models for the same system, specify parameter constraints, create coupled 

systems, and even specify nonlinear systems that can lead to bifurcation. The second order 

linear system of differential equations is flexible and useful, but one cannot reasonably 

assert that no better model exists for human systems. The use of an easily specified and 

applied modeling method helps encourage exploration of model alternatives and model 

comparisons.

A third advantage to the convolution filtering in LDE becomes apparent when nonlinear 

systems of more than one variable are considered. In many physical systems there exist 

dynamics that both diverge and converge in a balanced way. When a system is converging to 

a known equilibrium, errors in measurement of the true signal at time t imply smaller 

prediction errors at time t + Δt, giving an advantage to integration forward predictive 

methods. But when a system is diverging, errors in measurement of the true signal at time t
imply larger prediction errors at time t + Δt. If a system is only diverging and one has the full 

time series in hand it becomes easy to circumvent this problem by running time backwards, 

i.e., predicting the value at time t from the value at time t + Δt. So, in this case, a forward 

prediction method can be shown to not be at a disadvantage to a filtering method. But what 

happens when a system with more than one variable is both diverging and converging, i.e, 

when one Lyapunov exponent is positive and another is negative? The time reversal trick no 

longer works for prediction, and one variable is always at a built-in prediction disadvantage 

to another variable. Convolution filtering circumvents this problem by maintaining 

symmetry of the filter and thus does not advantage one variable in the system over any other 

variable no matter the sign of the associated Lyapunov exponents.

These advantages of the use of time delay embedding are offset by two main disadvantages 

of the method. First, if the time series are very short, less than about 20 observations per 

person, the advantages of the overlapping samples of time delay embedding disappear and 

one would be advised to use another method (Oud, 2017). For longer time series, time delay 

embedding and convolution filtering remain viable and appealing methods for estimation.

The second disadvantage is that choosing the number of columns in the time delay 

embedding matrix (known as the embedding dimension) has consequences for the 

estimation of the parameters. Parameter bias increases markedly when the embedding 

dimension is poorly chosen. Reduction of the dependence between the embedding 

dimension and parameter bias would be a significant improvement in the performance of the 

LDE method. The current article derives a constrained fourth order system of equations and 

demonstrates through simulation that implementing this system of equations as an LDE 

reduces parameter bias to near zero over a wide range of choices of embedding dimension.
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Methods

Constrained Fourth Order LDE

A linear second order differential equation can be transformed into a system of two first 

order equations. Consider the equation

d2x(t)/dt2 = ηx(t) + ζdx(t)/dt + e(t) . (2)

If

dx(t)/dt = y(t) , (3)

then

dx2(t)/dt = dy(t)/dt , (4)

and now we can substitute Equations 3 and 4 into Equation 2 so that the following system of 

linear first order equations

dx(t)/dt = y(t) (5)

dy(t)/dt = ηx(t) + ζy(t) + e(t)

becomes equivalent to the second order linear differential equation in Equation 2. By this 

well-known method, a higher order linear differential equation can be reduced to a system of 

first order differential equations.

Using the same logic, we can start this substitution process with higher order derivatives and 

end up with the second order linear differential equation. Consider that if

d3x(t)/dt3 = ηdx(t)/dt + ζd2x(t)/dt2 + e(t) (6)

and

dx(t)/dt = z(t) , (7)

then by substituting Equation 7 into Equation 6 we find that

d2z(t)/dt2 = ηz(t) + ζdz(t)/dt + e(t) , (8)

the familiar second order differential equation for the variable z. By the same logic, two 

substitutions

dx(t)/dt = z(t) (9)

dz(t)/dt = w(t) (10)
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will transform

d4w(t)/dt4 = ηd2w(t)/dt2 + ζd3w(t)/dt3 + e(t) (11)

into Equation 2.

From this logic, we propose a constrained system of equations such that the second, third, 

and fourth order forms hold simultaneously:

d4x(t)/dt4 = ηd2x(t)/dt2 + ζd3x(t)/dt3 + e4(t)
d3x(t)/dt3 = ηdx(t)/dt + ζd2x(t)/dt2 + e3(t)
d2x(t)/dt2 = ηx(t) + ζdx(t)/dt + e2(t) .

(12)

If these were entirely deterministic equations, in other words if the residual terms were zero, 

e4(t) = e3(t) = e2(t) = 0, then if any one of the equations held, then all of the equations would 

hold. In this case, there would be nothing to be gained by estimating these equations 

simultaneously. However, if e4(t) ≠ e3(t) ≠ e2(t) ≠ 0, then each regression estimation has the 

opportunity to improve on the others. These two extra degrees of freedom (three residual 

terms versus one residual term) are, as presented in Equation 13, still mixtures of 

deterministic and stochastic residuals. By specifying the derivatives as latent variables, the 

deterministic and stochastic (non-deterministic) residual variances can be separately 

estimated. When a traditional second order LDE is estimated, parameter bias can be 

introduced either when stochastic variance is mistaken for deterministic variance or vice 

versa. By allowing higher order latent derivatives, the separation between stochastic and 

deterministic variance is improved and thus parameter bias is reduced.

A path diagram of an LDE model of the second order linear differential equation in Equation 

2 applied to a time delay embedding of dimension 5 is shown in Figure 1–a. This LDE 

model is a simplified form that does not estimate the equilibrium or have any individual 

differences in parameters. Alternative forms of this second order model that estimate DLO 

when there are individuals differences in parameters, individual differences in equilibrium 

value, and within person change in equilibrium are available elsewhere as downloadable 

scripts (Boker et al., 2016). Figure 1–b presents the fourth order constrained approximation 

to the second order model that is simulated and tested in the current article against the model 

shown in Figure 1–a.

Model A, as shown in Figure 1–a was specified and fit in OpenMx (Neale et al., 2016) using 

the script in Appendix A. In the simulation condition where the data are time delay 

embedded with an embedding dimension of 5, a matrix X(5) is the data to which the model is 

fit (see, e.g., Boker et al., 2016, for an explanation of this matrix). Then the LDE model in 

Figure 1–a would be specified as

X(5) = GL ′ + U , (13)
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where G  is a matrix of unobserved latent derivative scores, U  is a matrix of unobserved 

unique scores and L  is a fixed matrix that specifies the convolution filter kernel and is in 

this case defined as

L =

1 −2Δt ( − 2Δt)2/2
1 −1Δt ( − 1Δt)2/2
1 0 0
1 1Δt (1Δt)2/2
1 2Δt (2Δt)2/2

, (14)

where Δt is the elapsed time between adjacent lagged columns in the time–delay embedded 

matrix X(5).

Using the Reticular Action Model (RAM) algebra (McArdle & McDonald, 1984) and path 

diagram conventions (McArdle & Boker, 1990), the expected covariance of the time delay 

embedded matrix, ε(Cov(X(5))) is

ε Cov(X(5)) = LCov(G)L′ + Cov(U), (15)

where Cov(U ) is a diagonal matrix in which all elements on the diagonal are constrained to 

be equal to one another. The covariance of the latent variables, Cov(G), can now be specified 

as

Cov(G) = I − A −1S I − A −1′. (16)

where I  is the identity matrix,

A =
0 0 0
0 0 0
η ζ 0

, and (17)

S =
V g Cg,dg/dt 0

Cg,dg/dt V dg/dt 0
0 0 V d2g/dt2

. (18)

The parameters η and ζ are the frequency and damping parameters, V g and V dg/dt are the 

variances of the latent variables g and dg/dt, V d2g/dt2 is the residual variance for d2g/dt2, and 

Cg,dg/dt is the covariance between g and dg/dt.

Model B, the constrained fourth order model in Figure 1–b is specified and fit in OpenMx as 

shown in the script in Appendix B. The same 5 dimensional time delay embedded matrix 

X(5) was again predicted by Equation 13 but now there are 5 columns in the matrix of latent 
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scores G . The convolution kernel matrix, L , for Model B is now a fourth order geometric 

approximation that can be defined as

L =

1 −2Δt ( − 2Δt)2/2 ( − 2Δt)3/6 ( − 2Δt)4/24
1 −1Δt ( − 1Δt)2/2 ( − 1Δt)3/6 ( − 1Δt)4/24
1 0 0 0 0
1 1Δt (1Δt)2/2 (1Δt)3/6 (1Δt)4/24
1 2Δt (2Δt)2/2 (2Δt)3/6 (2Δt)4/24

, (19)

where Δt is the elapsed time between adjacent lagged columns in the time–delay embedded 

matrix X(5). Note that the divisors of the columns of L  are due to the differentiation of the 

geometric series approximation to the derivatives used in the respective columns. If a time 

interval is cubed, Δt3, then in order for it to be an appropriate weight for its corresponding 

third derivative, d3g/dt, one must consider that d(Δt3)/dt = 3Δt2 and in the same way 

d(3Δt2)/dt = 6Δt. Thus, Δt3/6, provides the same timescale contribution of the weights in the 

third column as in the other columns.

The expected covariance of X(5) is again defined as in Equation 15 except that now

A =

0 0 0 0 0
0 0 0 0 0
η ζ 0 0 0
0 η ζ 0 0
0 0 η ζ 0

, and (20)

S =

V g Cg,dg/dt 0 0 0
Cg,dg/dt V dg/dt 0 0 0

0 0 V d2g/dt2 0 0
0 0 0 V d3g/dt3 0
0 0 0 0 V d4g/dt4

. (21)

Note that since L  has no free parameters and every time η (or ζ) appears in A  it is 

constrained to be equal to the other ηs (or ζs), there are only 2 more degrees of freedom in 

Model B than in Model A. Also note that if we were to start with Model B and constrain to 

zero the variance terms for the third and fourth derivatives as well as their corresponding η
and ζ regression predictors, we would have constructed a model identical to Model A and 

nested within Model B. Thus the difference between the fit of Models A and B is chi square 

distributed with 2 degrees of freedom and the maximum likelihood ratio test can be applied 

to test for the difference in fit between Models A and B.
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Simulation Conditions

A simulation was run in which the traditional LDE model (Model A from Figure 1–a) and 

the fourth order constrained approximation LDE model (Model B from Figure 1–b) were 

each run on the same simulated data and the results compared. The simulation was designed 

to test the boundaries of the applicability of each model and so we used a univariate version 

of the LDE, which has been shown to perform substantially worse than the multivariate 

version (Boker et al., 2004). Our results thus show both Model A and Model B in a 

particularly poor light and highlight the differences between the models and their points of 

failure.

Since bias in the LDE model of the DLO has been shown to be a function of embedding 

dimension (Hu, Boker, Neale, & Klump, 2014), the simulation has the greatest number of 

conditions applied to embedding dimension. In addition, LDE parameter bias in the DLO 

has been shown to be a function of noise in the data and so we also varied the signal to noise 

ratio (SNR) in the simulated data and the decay time of the DLO so that, in some conditions, 

the signal is only present in the part of the target data prior to when the DLO has returned to 

close to its equilibrium. When the true simulated signal is close to its equilibrium, it is 

swamped with noise. In the case of a quickly damped system, the SNR is varying markedly 

over the course of the time series.

In the last condition, we varied the number of observations in the time series. Since often a 

researcher will have some prior hypothesis about the cycle time of the system when an 

experimental design is constructed, we kept the total elapsed time and frequency of the 

simulated data constant and varied the number of observations within that total elapsed time. 

Note that frequency is defined as cycles per interval of time. Thus this condition varied the 

number of samples per cycle. A critical feature of continuous time estimation is that 

parameter values should not change based on the interval of time between samples. 

Parameters of the second order differential equation include an estimate of the frequency of 

oscillations. Therefore, parameters from continuous time estimation cannot depend on how 

many samples are collected within one cycle. The simulation conditions were constructed so 

that two critical conditions could be independently varied: the number of samples per cycle 

and the embedding dimension used to construct the time delay embedding matrix.

The simulation conditions were chosen to be representative of the range of parameters 

reported in articles presented in the Introduction. Reported frequency and damping 

parameters were converted into a common metric and number of observations were 

determined so that commonly reported frequencies would be contained in the conditions. In 

all cases, the number of observations between columns in the time delay embedding matrix 

(commonly referred to as the τ parameter) were set to be equal to τ = 1. In practice, we have 

found that setting tau = 1 and only adjusting the embedding dimension produces more 

precise estimates than setting tau to any other value.

With the previous paragraphs in mind, the frequency parameter was fixed, η = − 0.50, for all 

cells of the simulation. There were two conditions for the damping parameter, 

ζ = −0.10, − 0.30  corresponding to long and short decay times. The signal to noise ratio 

had three conditions SNR = {1, 2, 4} corresponding to poor, medium, and good SNRs. 
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While these do not have exact correspondence to reliability, these SNR conditions are 

roughly equivalent to reliabilities of .5, .65, and .8 when defined by true score over total 

score. There were three conditions in the length of the series, N = 50,100,300
corresponding to a short, medium, and long time series for a single individual. Different 

conditions for time intervals between observations were used in order to spread the total 

time interval variation across one full cycle of the simulated DLO. Convolution kernels 

spanning a total time interval greater than the cycle length were not considered since they 

violate the sampling theorem (the so-called Nyquist Limit) and thus produce invalid 

estimates a priori. In the N = 50 condition, the embedding dimensions were set to 

D = 4,5,6,7,8,9,10,11,12,13,14,15 , for a total of 12 conditions when the length of the 

simulation was short. In the N = 100 condition, the embedding dimensions were set to 

D = 5,7,9,11,13,15,17,19,21,23,25,27,29 , for a total of 13 conditions. In the condition when N 
= 300, the embedding dimension conditions were 

D = 5,9,13,17,21,25,29,33,37,41,45,49,53,57,61 , for a total of 15 conditions. In this way, each 

condition of N had similar spread of embedding dimension conditions across a full 

simulated cycle interval. The full simulated data design included 

2 × 3 × 3 × (12 + 13 + 15) = 360 conditions in all.

In each of the 360 condition cells 1,000 time series were simulated conforming to the 

parameters of the cell while for each time series randomizing the initial conditions of the 

DLO and the normally distributed measurement error conforming to the SNR condition. 

Both Model A and Model B were fit to each data set and the parameters were saved. Thus 

overall, the simulation ran 720,000 LDE models. Total wall-clock time for the simulation 

was less than 16 hours when run on a recently manufactured laptop. When strict model 

convergence criteria were not obtained, the reasons for non-convergence were saved, but the 

parameters of the non-converging models did not contribute to the analysis of the results. No 

attempt was made to restart non-converging models and so the non-convergence statistics 

can be considered to be worst-case figures: a lower bound on convergence percentages.

Results

The mean and standard deviation of each parameter was calculated for the 1000 replications 

in each cell. This provides the mean point estimate of each parameter and the variability of 

the parameter over the replications. The mean squared error (MSE) was calculated as the 

mean of the squared difference between each parameter point estimate and its associated 

simulated value. The percent bias was calculated as the mean of the difference between each 

point estimate and its simulated value divided by the simulated value and multiplied by 100. 

This measure of bias allows comparisons in bias performance independent of the chosen 

simulated parameter value. The percent of convergence was calculated as the percent of 

1000 replications that had no convergence errors. Overall, Model A converged 79.1% and 

Model B converged 89.5% over all the cells in the simulation. Convergence errors that 

occurred were either the failure of a boundary walk by the optimizer (the SLSQP option in 

OpenMx) or that the optimizer exceeded the maximum allotted iterations (the default “Auto” 

option for SLSQP). The above calculated values are shown in Table 1 for all simulated 

conditions when the width of the convolution kernel covered half of one cycle of the 
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simulated DLO (i.e., the embedding dimension was one half the number of samples in one 

cycle of the simulated DLO).

It is evident from Table 1 that in every condition and for both estimated parameters, the bias 

as a percent of the parameter value was lower for Model B than it was for Model A. Model 

B’s bias was in all but three conditions between −5% and +5% and the mean across all 

conditions was −0.5%, leading to the conclusion that, overall, Model B was performing as 

an unbiased estimator. On the other hand, Model A’s bias ranged from −7% to −18% and the 

mean bias was −12.1%. Overall, Model A always estimated oscillator parameters that 

indicated slower cycle times and slower decay than was simulated. Thus, if percentage bias 

is the sole consideration, Model B is always preferred, and to a large degree.

However, in every condition the standard deviations of Model B parameter estimates were 

larger than those of Model A estimates and so if bias is not taken into account, Model A 

would be preferred. This would be a poor criterion in practice, since Model A provides 

estimates that are more precisely inaccurate. One way to balance precision and bias is to use 

a criterion such as MSE, which is a combined measure of bias and estimation variability. 

Here we see that in 27 out of 36 cases the MSEs of Model B are smaller than those of Model 

A, indicating that Model B is to be preferred 75% of the time by the criterion of MSE. The 

results for percentage convergence do not prefer one model over the other: Out of 18 model 

conditions, Model A converged more often in 9 conditions and Model B converged more 

often in 9 conditions.

While the results presented in Table 1 indicate that Model B gives an unbiased estimate of 

both the η and ζ parameters, this is under the condition that the convolution kernel is 

approximately one half of the period of the DLO. Since previous work has shown that bias 

in η is sensitive to the proportion of the period of the DLO covered by the convolution 

kernel, Figure 2 plots the results of estimating η and ζ with Models A and B for 12 different 

embedding dimensions under the simulation condition of the medium length time series 

(N = 100), medium signal to noise ratio (SNR=2:1), and longer decay (ζ = − 0.1).

The relationship between the bias in estimation of η and the choice of embedding dimension 

for Model A can be clearly seen in Figure 2–a and its suppression by Model B can be seen in 

Figure 2–b. Model B is unbiased for all embedding dimensions up to 22: in other words, 

when the convolution kernel covers less than about 2/3 of a single 30 observation cycle of 

the DLO. For embedding dimensions greater than 20, the bias for Model B increases rapidly 

until at 30 observations the Nyquist limit is reached. However, for all embedding 

dimensions, the bias for η in Model B is smaller than the bias in Model A.

Model B has similar relationships between the bias in η or ζ and the associated embedding 

dimension. That is to say, up to embedding dimension 22, Model B provides unbiased 

estimates of ζ. However, for embedding dimensions between 24 and 30, the bias increases 

markedly. Model A performs better than Model B in this regard, since Model A’s bias in ζ is 

small over the whole range of embedding dimensions between 5 and 30.
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With respect to convergence, it can be seen that both Model A and Model B have much more 

trouble converging when the convolution kernel covers more than 2/3 of the period of the 

DLO. It should be noted that this means that the parameter estimate results plotted in 

Figures 2–a, b, c, and d are based on substantially reduced sample cell sizes when the 

embedding dimension is greater than 22.

In order to understand the effects of length of the time series, two figures were created 

where, as in Figure 2, the SNR was set to its medium value (SNR=2:1) and simulated 

ζ = − 0.1 but the length of the time series differed. Figures 3 and 4 plot the results for the 

shorter (N = 50) and longer (N = 300) time series length respectively. In Figure 3, it is 

unsurprising that fewer observations in the time series lead to more variable estimates. The 

Model A results plotted in Figures 3–a and c show the previous pattern of results, but with 

larger standard deviations. However, Figures 3–b and d are somewhat surprising since 

parameter bias begins to be different from zero as the coverage of the convolution kernel is 

increased to be greater than 8, which is only 1/2 the period of the DLO in this simulation 

condition.

If we now look at the results of estimating the parameters of the longer simulated time series 

(N = 300) plotted in Figure 4, it is again unsurprising that all parameter estimates have 

smaller standard deviations at all embedding dimensions. Model B now performs well over 

all but the smallest choice of embedding dimensions whereas the bias in η for Model A is 

improved, but does not go away. For the longer time series, Model B is preferred in every 

way, giving unbiased performance with good efficiency and good convergence rates.

Since Model A and B are nested models, the difference between their respective optimized 

minus two log likelihood function values is distributed as chi-square with two degrees of 

freedom—a likelihood ratio difference test. Table 2 displays the results of calculating the 

difference between Model A and Model B function value for each replication in which both 

models successfully converged when fit using the same embedding dimension as used for 

Table 1. The mean, μ, and standard deviation, σ, of this difference are displayed. Since 

Model B has two more degrees of freedom than Model A, Model B is guaranteed to always 

fit at least as well as Model A. However, as can be seen from the column of means of the 

difference in fit values, the fit for Model B is almost always much better than would be 

expected by chance for two degrees of freedom. The column labeled p < 0.05 displays the 

percentage of replications for which this difference is larger than the chi-square two degree 

of freedom critical value of 5.991. Only when the time series are short and noisy is this 

percentage not greater than 95%.

Discussion

The current article presents the results of simulated second order linear differential equations 

that have parameters which result in damped linear oscillators, DLOs. The results of the 

simulation are quite clear with respect to bias. When a time delay embedding is chosen such 

that the elapsed time between the first and last column of the time delay embedded matrix 

was less than 1/2 of a cycle, a constrained fourth order LDE (Model B) had less bias in 

estimating the frequency parameter, η, in every tested condition than did the traditional 
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second order latent differential equation (Model A). In estimating ζ, the damping parameter, 

Model B also exhibited low bias similar to that of Model A in every condition except when 

the time series were short and noisy. In that case, Model A performed better than Model B in 

estimating ζ, although worse than Model B in estimating η. When time series included 100 

or more observations per person, Model B was unbiased when the elapsed time between the 

first and last column of the time delay embedded matrix was less than 2/3 of a cycle.

The improvement in estimation can also be observed when comparing Model A and Model 

B using a likelihood ratio difference test. In all but two conditions, Model B was 

significantly better fitting than chance at an alpha level of p = 0.05 more than 95% of the 

time. In all but four conditions, Model B was significantly better fitting than Model A in 

100% of the replications where both Model A and Model B converged.

The choice of embedding dimension has been of concern to many researchers interested in 

using the LDE method to estimate parameters of models for fluctuating data. The current 

results suggest that when there are at least 8 observations per cycle and at least 100 total 

observations per person, a constrained fourth order LDE can perform as an unbiased 

estimator of both the frequency and damping parameter of a second order linear differential 

equation model. Fewer observations per person will require a experimental or observational 

design in which there are more observations per cycle in order for the method to perform 

optimally.

Limitations

While the constrained fourth order LDE substantially reduces bias relative to a second order 

LDE in most of the simulated conditions, it did not do so in all conditions. In particular, 

when the embedding dimension created a convolution kernel of width more than 2/3 the 

cycle interval, bias was no longer attenuated. We believe that this bias may be able to be 

corrected up to a full cycle interval, but at present do not have a method to do so. This is a 

potential area of further exploration.

The simulation conditions were extensive (720 total conditions), but certainly were not 

comprehensive. The constrained fourth order LDE needs to be tested in a variety of other 

commonly used conditions. The current article only simulated stable DLOs—unstable 

systems and non-oscillating systems need to be tested. The current article only explored 

univariate LDE, but could be easily extended to multivariate LDE. We chose to explore the 

univariate case because univariate LDE is more prone to bias than multivariate LDE and so 

the simulation provided a worst-case scenario for the constrained fourth order LDE test. 

Future work needs to test whether multivariate LDE can be improved in the same manner.

The latent differential equation that was tested was a second order linear system with one 

latent variable. While this is one of the common use cases for the LDE estimation method, 

there are many possible differential equation models that are of use to the psychological, 

sociological, educational, and life sciences. One common instance is the case of coupled 

damped linear oscillators. In this case, the dynamics of two latent variables are linearly 

coupled. Estimation bias for this type of model seems to be likely to be reduced by 

constrained fourth order LDE, simulation work needs to be done to test this hypothesis. 
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Reduction of bias in the coupled oscillator model is particularly important when the two 

latent variables are not oscillating at the same rate. In this case, the choice of embedding 

dimension in second order LDE becomes difficult, and the two latent variables end up being 

biased to appear to be more similar than they actually are. If FOLDE exhibits similar bias 

suppression in coupled oscillator models, it will be particularly helpful for modeling these 

types of systems.

We did not test the case of estimation of time varying equilibria (e.g., Boker et al., 2016), but 

our intuition is that this will prove to not affect the results presented here. We also did not 

test the case of individual differences in parameters or equilibria, but again, the results of the 

current simulation are expected to apply just as well to these two cases. As for the coupled 

oscillator case, when there are individual differences in parameters of a DLO, the choice of 

embedding dimension is difficult and every choice will tend to attenuate individual 

differences in parameters when traditional LDE is used. Future work on these two cases 

would be especially useful to those interested in predicting individual differences in 

dynamics.

We did not test the case of time series phase resets. This is when a sudden jump occurs in a 

time series and then the dynamic continues from the new initial condition. This case 

produces bias particularly in the estimation of the damping parameter in LDEs (McKee et 

al., 2018). In the use of interpolation splines, fourth order splines reduce what is called 

“overshoot” by the spline (e.g., El Tarazi & Sallam, 1987). It seems reasonable that the 

fourth order LDE would similarly reduce bias in the damping parameter when the time 

series is interrupted by phase resets. Future simulation work is needed to explore this 

possibility.

We did not test the case of missing data and/or time interval misspecification. While these 

are important problems to consider, time delay embedding has proved to be surprisingly 

robust to this type of misspecification. (Boker et al., 2018) report four methods for 

accounting for time interval misspecification when using time delay embedding and find that 

imputation methods are outperformed by accounting for the time misspecification in each 

row using OpenMx’s definition variable feature. Simply ignoring the time misspecification 

produced estimates that were correct for the mean time interval and outperformed the two 

imputation methods. Future work needs to be done to test whether time interval 

misspecification and/or missing data interfere with the positive attributes of FOLDE.

Finally, the simulation was limited in that it did not include any nonlinearity or 

nonstationarity in the differential equation. The recently proposed Adaptive Equilibrium 

Regulation (AER) models for conditioning and withdrawl observed in addictive substance 

use (Boker, 2015; McKee et al., 2018) address nonstationarity as a dynamic in and of itself. 

Future research is needed to understand how the FOLDE technique might be adapted to 

AER models.

Given so many recommendations for future work appear here and in the interest of 

reproducibility, the authors include as supplemental materials the full set of simulation 
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scripts used in the current article in hopes of encouraging others in making rapid progress in 

testing additional hypotheses.

Conclusions

The use of constrained fourth order LDE reduces parameter estimation bias relative to 

second order LDE in almost all of the conditions simulated here. When a second order 

model is fit to data with at least 100 observations per person and at least 8 observations per 

cycle, FOLDE reduces bias and significantly improves model fit with no apparent 

downsides, and thus is recommended as an improvement over the use of a standard LDE on 

these data. When time series are short and noisy, i.e., 50 observations per person and a 1:1 

signal to noise ratio, there are tradeoffs to the use of FOLDE such that its recommendation is 

not so clear. Given short and noisy time series, if the estimation of the damping parameter, ζ, 

is most critical, we recommend LDE over FOLDE. However, if the frequency parameter, η, 

is most critical, FOLDE is recommended even for short, noisy time series. For panel data, 

i.e., very short time series with 4 to 20 observations per person, the advantages of time delay 

embedding are much reduced and other continuous time methods such as the exact discrete 

(Singer, 1993), approximate discrete (Oud & Jansen, 2000) or unscented Kalman filter 

(Chow et al., 2007) methods are may produce better parameter estimates than convolution 

filtering methods such as LDE and FOLDE (Oud, 2017).

One of the surprising findings of the simulation is how quickly the large (720,000 model 

fits) simulation ran. The average time per model fit was less than 12 seconds over all the 

conditions and replications when run with OpenMx on a modern laptop. Thus there does not 

appear to be a computational complexity downside to FOLDE. Given that, a safe 

recommendation is to fit both LDE and FOLDE to ones data. In all simulated conditions 

when FOLDE resulted in a large improvement in fit over LDE, the parameter estimates of 

FOLDE were substantially less biased than LDE.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A – R script for MODEL A specification

# ———————————————————————————- 

# Previously created the simulation data and time delay embedded it 

# to create the data “tEmbedded” that are fit by this model. 

# Please see the full scripts in the supplemental material. 
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embedD <- 8 

theTau <- 1 

deltaT <- .1 

# —————————————————————————- 

# Create the fixed 2nd order LDE loading matrix. 

L1 <- rep(1,embedD) 

L2 <- c(1:embedD)*theTau*deltaT-mean(c(1:embedD)*theTau*deltaT) 

L3 <- (L2^2)/2 

LMatrix <- cbind(L1,L2,L3) 

# —————————————————————————- 

# Create 2nd order LDE model. 

manifestVars <- dimnames(tEmbedded)[[2]] 

ldeModel1 <- mxModel(“LDE_Model_1”, 

mxMatrix(“Full”, 

values=LMatrix, 

free=FALSE, 

name=“L”, 

byrow=TRUE 

),

mxMatrix(“Full”, 3, 3, 

values=c( 0, 0, 0,

0, 0, 0, 

−.2,−.2, 0), 

labels=c( NA, NA, NA, 

NA, NA, NA, 

“eta”,”zeta”, NA), 

free=c(FALSE,FALSE,FALSE, 

FALSE,FALSE,FALSE, 

TRUE, TRUE,FALSE), 

name=“A”, 

byrow=TRUE 

),

mxMatrix(“Symm”, 3, 3,

values=c( .8, 

.1, .8, 

0, 0, .8), 

free=c( TRUE, 

TRUE, TRUE, 

FALSE, FALSE, TRUE), 
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labels=c(“Vx”, 

“Cxdx”, “Vdx”, 

NA, NA, “Vd2x”), 

name=“S”, 

byrow=TRUE, 

lbound=c(0.00000001, 

NA, 0.00000001, 

NA, NA, 0.00000001) 

), 

mxMatrix(“Diag”, embedD, embedD, 

values=.8, 

free=TRUE, 

labels=“u1”, 

name=“U”, 

lbound=0.000001 

),

mxMatrix(“Iden”, 3, name=“I”), 

mxAlgebra(L %*% solve(I-A) %*% S %*% t(solve(I-A)) %*% t(L) + U,

name=“R”, 

dimnames = list(manifestVars, manifestVars) 

), 

mxExpectationNormal(covariance=“R”), 

mxFitFunctionML(), 

mxData(cov(tEmbedded), 

type=“cov”, 

numObs=dim(tEmbedded)[1] 

) 

) 

# ———————————- 

# Fit the LDE model and examine the summary results. 

ldeModel1Fit <- mxRun(ldeModel1) 

summary(ldeModel1Fit) 

Appendix B – R script for MODEL B specification

# ———————————- 

# Previously created the simulation data and time delay embedded it 

# to create the data “tEmbedded” that are fit by this model. 

# Please see the full scripts in the supplemental material. 

embedD <- 8 

theTau <- 1 

deltaT <- .1

################################################### 

# Fourth Order model 
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# ———————————- 

# Create the fixed 4th order LDE loading matrix. 

L1 <- rep(1,embedD) 

L2 <- c(1:embedD)*theTau*deltaT-mean(c(1:embedD)*theTau*deltaT) 

L3 <- (L2^2)/2 

L4 <- (L2^3)/6 

L5 <- (L2^4)/24 

LMatrix <- cbind(L1,L2,L3,L4,L5) 

# ———————————- 

# Create 4th order LDE model. 

manifestVars <- dimnames(tEmbedded)[[2]] 

ldeModel1 <- mxModel(“LDE_Model_1”, 

mxMatrix(“Full”, 

values=LMatrix, 

free=FALSE, 

name=“L”, 

byrow=TRUE 

), 

mxMatrix(“Full”, 5, 5,

values=c( 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 

−.2,−.2, 0, 0, 

0,0,−.2,−.2, 0, 0, 

0, 0,−.2,−.2, 0), 

labels=c( NA, NA, NA, NA, NA,

NA, NA, NA, NA, NA, 

“eta”,”zeta”, NA, NA, NA, 

NA, “eta”,”zeta”, NA, NA, 

NA, NA, “eta”,”zeta”, NA), 

free=c(FALSE,FALSE,FALSE,FALSE,FALSE, 

FALSE,FALSE,FALSE,FALSE,FALSE, 

TRUE, TRUE,FALSE,FALSE,FALSE, 

FALSE, TRUE, TRUE,FALSE,FALSE, 

FALSE,FALSE, TRUE, TRUE,FALSE), 

name=“A”, 

byrow=TRUE 

),

mxMatrix(“Symm”, 5, 5, 

values=c( .8,

.1, .8, 

0, 0, .8, 

0, 0, 0, .8, 

0, 0, 0, 0, .8), 

free=c( TRUE, 
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TRUE, TRUE, 

FALSE, FALSE, TRUE, 

FALSE, FALSE, FALSE, TRUE, 

FALSE, FALSE, FALSE, FALSE, TRUE), 

labels=c(“Vx”, 

“Cxdx”, “Vdx”, 

NA, NA, “Vd2x”, 

“Cxd3x”, NA, NA, “Vd3x”, 

“Cxd4x”, “Cdxd4x”, NA, NA, “Vd4x”), 

name=“S”, 

byrow=TRUE, 

lbound=c(0.00000001, 

NA, 0.00000001, 

NA, NA, 0.00000001, 

NA, NA, NA, 0.00000001, 

NA, NA, NA, NA, 0.00000001) 

), 

mxMatrix(“Diag”, embedD, embedD, 

values=.8, 

free=TRUE, 

labels=“u1”, 

name=“U”, 

lbound=0.000001 

), 

mxMatrix(“Iden”, 5, name=“I”), 

mxAlgebra(L %*% solve(I-A) %*% S %*% t(solve(I-A)) %*% t(L) + U,

name=“R”, 

dimnames = list(manifestVars, manifestVars) 

), 

mxExpectationNormal(covariance=“R”), 

mxFitFunctionML(), 

mxData(cov(tEmbedded), 

type=“cov”, 

numObs=dim(tEmbedded)[1] 

) 

) 

# ————————————————- 

# Fit the 4th order LDE model and save the summary results. 

ldeModel1Fit <- mxRun(ldeModel1) 

summary(ldeModel1Fit) 
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Figure 1. 
Second and fourth order LDE models to fit a second order linear differential equation.
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Figure 2. 
Results of simulation of second order differential equations with signal to noise ratio of 2:1, 

N = 100, η = − .5, and ζ = − .1 resulting in 30 observations per cycle as fit with second and 

fourth order models for 12 different embedding dimensions. (a) Second order approximation 

model estimated η parameter for each selected embedding dimension. Simulated η = − .5 is 

shown as horizontal line. Mean and standard deviation of the estimated parameters are 

plotted for all models that converged. (c) Second order approximation results for ζ = − .1. 

(e) Percent of models that converged (green), did not converge (red), and stopped due to 

exceeding the maximum iterations. (b,d,f) The η, ζ, and convergence percentages for the 

fourth order model.
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Figure 3. 
Results of simulation of second order differential equations with signal to noise ratio of 2:1, 

N = 50, η = − .5, and ζ = − .1 resulting in 30 observations per cycle as fit with second and 

constrained fourth order LDEs for 12 different embedding dimensions. (a) Second order 

approximation model estimated η parameter for each selected embedding dimension. 

Simulated η = − .5 is shown as horizontal line. Mean and standard deviation of the estimated 

parameters are plotted for all models that converged. (c) Second order approximation results 

for ζ = − .1. (e) Percent of models that converged (green), did not converge (red), and 

stopped due to exceeding the maximum iterations. (b,d,f) The η, ζ, and convergence 

percentages for the constrained fourth order model.
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Figure 4. 
Results of simulation of second order differential equations with signal to noise ratio of 2:1, 

N = 300, η = − .5, and ζ = − .1 resulting in 30 observations per cycle as fit with second 

order and constrained fourth order models for 12 different embedding dimensions. (a) 

Second order model estimated η parameter for each selected embedding dimension. 

Simulated η = − .5 is shown as horizontal line. Mean and standard deviation of the estimated 

parameters are plotted for all models that converged. (c) Second order approximation results 

for ζ = − .1. (e) Percent of models that converged (green), did not converge (red), and 

stopped due to exceeding the maximum iterations. (b,d,f) The η, ζ, and convergence 

percentages for the constrained fourth order model.
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Table 1

Mean (μ) and standard deviation (σ) of point estimates, mean squared error (MSE), the percent bias (Pct Bias) 

and the percent convergence (Pct Cvrg) for η and ζ for both 2nd and 4th order LDEs over all simulated 

conditions where the convolution kernel covered 1/2 a cycle of the simulated DLO (i.e., the embedding 

dimension was 1/2 the number of samples per cycle).

Simulation MODEL A MODEL B

Est Pct Pct Est Pct Pct

N SNR Sim μ(σ) MSE Bias Cvrg μ(σ) MSE Bias Cvrg

η 50 1 −0.5 −0.425(0.095) 0.015 −14.9 96.6 −0.495(0.107) 0.012 −1.0 95.2

ζ −0.1 −0.088(0.070) 0.005 −12.3 −0.089(0.080) 0.007 −11.0

η 100 1 −0.5 −0.428(0.015) 0.005 −14.3 99.6 −0.507(0.023) 0.001 1.4 98.0

ζ −0.1 −0.093(0.031) 0.001 −7.1 −0.102(0.035) 0.001 2.2

η 300 1 −0.5 −0.427(0.009) 0.005 −14.7 99.1 −0.504(0.014) 0.000 0.9 96.9

ζ −0.1 −0.093(0.016) 0.000 −7.2 −0.102(0.018) 0.000 2.4

η 50 2 −0.5 −0.421(0.042) 0.008 −15.7 95.5 −0.484(0.052) 0.003 −3.1 96.0

ζ −0.1 −0.092(0.033) 0.001 −8.0 −0.092(0.040) 0.002 −7.8

η 100 2 −0.5 −0.427(0.008) 0.005 −14.6 95.6 −0.503(0.011) 0.000 0.6 92.4

ζ −0.1 −0.092(0.015) 0.000 −8.0 −0.101(0.017) 0.000 1.5

η 300 2 −0.5 −0.425(0.004) 0.006 −14.9 75.8 −0.502(0.006) 0.000 0.4 93.3

ζ −0.1 −0.091(0.008) 0.000 −8.6 −0.101(0.009) 0.000 1.4

η 50 4 −0.5 −0.416(0.021) 0.008 −16.9 42.2 −0.480(0.027) 0.001 −4.1 94.6

ζ −0.1 −0.089(0.017) 0.000 −10.6 −0.092(0.020) 0.000 −7.7

η 100 4 −0.5 −0.426(0.004) 0.005 −14.8 51.0 −0.502(0.006) 0.000 0.5 85.3

ζ −0.1 −0.092(0.008) 0.000 −7.9 −0.102(0.008) 0.000 2.0

η 300 4 −0.5 −0.427(0.009) 0.005 −14.5 98.8 −0.505(0.014) 0.000 1.1 96.4

ζ −0.1 −0.093(0.016) 0.000 −7.0 −0.103(0.018) 0.000 2.8

η 50 1 −0.5 −0.418(0.085) 0.014 −16.5 98.0 −0.493(0.105) 0.011 −1.3 95.6

ζ −0.3 −0.276(0.082) 0.007 −8.1 −0.297(0.104) 0.011 −1.0

η 100 1 −0.5 −0.424(0.021) 0.006 −15.2 99.5 −0.508(0.030) 0.001 1.5 97.8

ζ −0.3 −0.273(0.031) 0.002 −8.9 −0.303(0.036) 0.001 0.9

η 300 1 −0.5 −0.424(0.020) 0.006 −15.1 99.7 −0.508(0.029) 0.001 1.6 97.6

ζ −0.3 −0.273(0.030) 0.002 −9.0 −0.303(0.034) 0.001 1.0

η 50 2 −0.5 −0.414(0.040) 0.009 −17.1 94.1 −0.485(0.051) 0.003 −2.9 96.5

ζ −0.3 −0.273(0.039) 0.002 −9.0 −0.294(0.050) 0.003 −2.1

η 100 2 −0.5 −0.422(0.011) 0.006 −15.5 96.0 −0.503(0.015) 0.000 0.6 94.1

ζ −0.3 −0.273(0.016) 0.001 −8.9 −0.304(0.019) 0.000 1.3

η 300 2 −0.5 −0.423(0.014) 0.006 −15.3 66.9 −0.506(0.020) 0.000 1.3 72.1
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Simulation MODEL A MODEL B

Est Pct Pct Est Pct Pct

N SNR Sim μ(σ) MSE Bias Cvrg μ(σ) MSE Bias Cvrg

ζ −0.3 −0.274(0.021) 0.001 −8.7 −0.304(0.024) 0.001 1.5

η 50 4 −0.5 −0.410(0.019) 0.008 −18.0 24.5 −0.484(0.025) 0.001 −3.2 92.5

ζ −0.3 −0.271(0.019) 0.001 −9.6 −0.294(0.025) 0.001 −1.9

η 100 4 −0.5 −0.421(0.005) 0.006 −15.8 63.4 −0.501(0.008) 0.000 0.1 86.3

ζ −0.3 −0.274(0.008) 0.001 −8.6 −0.305(0.009) 0.000 1.7

η 300 4 −0.5 −0.421(0.005) 0.006 −15.9 27.3 −0.502(0.007) 0.000 0.4 31.1

ζ −0.3 −0.274(0.007) 0.001 −8.8 −0.305(0.009) 0.000 1.6
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Table 2

Mean (μ) and standard deviation (σ) of the difference between Model A and Model B minus two log likelihood 

function values over all simulated conditions where the convolution kernel covered 1/2 a cycle of the 

simulated DLO (i.e., the embedding dimension was 1/2 the number of samples per cycle). (p < 0.05 indicates 

the percent of comparisons where this difference exceeded a two degree of freedom chi-square critical value of 

5.991 and Cnvrg indicates the number of times both models converged out of 1,000 replications so that the 

likelihood difference could be calculated)

Simulation (−2LL MODEL A) – (−2LL MODEL B)

N SNR η ζ μ σ p < 0.05 Cnvrg

50 1 −0.5 −0.1 12.53 6.97 83.9% 937

100 1 −0.5 −0.1 30.85 12.60 99.4% 980

300 1 −0.5 −0.1 154.51 35.75 100.0% 967

50 2 −0.5 −0.1 44.04 14.48 100.0% 937

100 2 −0.5 −0.1 118.31 27.13 100.0% 902

300 2 −0.5 −0.1 599.27 83.53 100.0% 724

50 4 −0.5 −0.1 135.48 25.93 100.0% 418

100 4 −0.5 −0.1 408.41 60.36 100.0% 492

300 4 −0.5 −0.1 155.25 36.48 100.0% 963

50 1 −0.5 −0.3 15.07 7.91 91.6% 953

100 1 −0.5 −0.3 29.77 12.33 98.5% 978

300 1 −0.5 −0.3 95.54 34.85 100.0% 976

50 2 −0.5 −0.3 52.92 15.76 100.0% 929

100 2 −0.5 −0.3 111.76 25.83 100.0% 919

300 2 −0.5 −0.3 195.25 53.13 100.0% 607

50 4 −0.5 −0.3 155.30 26.31 100.0% 245

100 4 −0.5 −0.3 377.83 56.21 100.0% 598

300 4 −0.5 −0.3 1420.39 181.39 100.0% 141

Struct Equ Modeling. Author manuscript; available in PMC 2021 January 01.


	Abstract
	Introduction
	Second order linear differential equations
	LDE Advantages and Disadvantages

	Methods
	Constrained Fourth Order LDE
	Simulation Conditions

	Results
	Discussion
	Limitations

	Conclusions
	Appendix A – R script for MODEL A specification
	Appendix B – R script for MODEL B specification
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table 1
	Table 2

