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Abstract

Prevailing strategies in genome-wide association studies (GWAS) mostly rely on principles of medical genetics emphasizing one gene, one
function, one phenotype concept. Here, we performed GWAS of blood lipids leveraging a new systemic concept emphasizing complexity of
genetic predisposition to such phenotypes. We focused on total cholesterol, low- and high-density lipoprotein cholesterols, and triglycerides
available for 29,902 individuals of European ancestry from seven independent studies, men and women combined. To implement the new
concept, we leveraged the inherent heterogeneity in genetic predisposition to such complex phenotypes and emphasized a new counter
intuitive phenomenon of antagonistic genetic heterogeneity, which is characterized by misalignment of the directions of genetic effects and the
phenotype correlation. This analysis identified 37 loci associated with blood lipids but only one locus, FBXO33, was not reported in previous
top GWAS. We, however, found strong effect of antagonistic heterogeneity that leaded to profound (quantitative and qualitative) changes
in the associations with blood lipids in most, 25 of 37 or 68%, loci. These changes suggested new roles for some genes, which functions
were considered as well established such as GCKR, SIK3 (APOAT1 locus), LIPC, LIPG, among the others. The antagonistic heterogeneity
highlighted a new class of genetic associations emphasizing beneficial and adverse trade-offs in predisposition to lipids. Our results argue
that rigorous analyses dissecting heterogeneity in genetic predisposition to complex traits such as lipids beyond those implemented in current
GWAS are required to facilitate translation of genetic discoveries into health care.

Keywords: Genome-wide association studies, Pleiotropy, Age-related phenotypes, Aging, Health span, Life span

The field of genetics provided unprecedented insights into the gen-
etic mechanisms underlying predisposition to various health-related
phenotypes, commonly referred to as traits. This progress was accel-
erated by invention of genome-wide association studies (GWAS) (1),
which resulted in discovery of thousands of genetic variants associated
with diseases and related traits (2). Despite progress in the GWAS era
(3), linking genetic variants and traits is not straightforward, especially
for complex (non-Mendelian) phenotypes characterizing human health
span and life span (4). These connections are complicated by an in-
herent complexity of metabolic networks in human organisms adapted
to different environments (5), which is supported by four principles
of macromolecular organization including evolutionary conserved
elementary components, organization in pathways and networks, plei-
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otropy, and redundancy (6), and by the lack of apparent and direct
connections between factors maximizing fitness and health/life-span—
related phenotypes (7,8). For example, one hypothesis of such con-
nections is so-called antagonistic pleiotropy (9,10). Traditional GWAS,
built on principles of medical genetics, follows the same strategy re-
gardless of the nature of traits to be examined. Better understanding of
genetic predisposition to complex traits requires shifting of this para-
digm to the concept that “one gene, one function, one trait is the wrong
way to view genetic variation in the human genome” (11). This change
in the paradigm requires appropriate approaches, which are not yet a
routine practice in currently prevailing GWAS.

Current article introduces a new systemic concept of GWAS of
complex traits within the new paradigm relaxing the medical genetics
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hypothesis on “one gene, one function, one trait.” Originally, this para-
digm was introduced to emphasize the role of pleiotropy (ie, one gene,
multiple traits) in genetics of complex traits (12) following an intuitive
assumption that the directions of genetic associations with correlated
traits are aligned with the direction of correlation between these traits
(11,13). We performed large-scale GWAS of four lipid traits within the
new concept. These traits included total cholesterol (TC), high-density
lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol
(LDL-C), and triglycerides (TG), which are a vivid example of complex
traits. The new concept emphasizes the inherent heterogeneity in genetic
predisposition to such traits and a new counter intuitive phenomenon
of antagonistic genetic heterogeneity. Unlike the commonly known con-
cept of antagonistic pleiotropy, implying that genes beneficial at the
reproductive age can become disadvantageous in late life (9,10), antag-
onistic heterogeneity refers to a phenomenon characteristic for hetero-
geneous traits when the directions of genetic associations with different
traits can be misaligned with correlation between them (14,15). Thus,
besides the directions of genetic associations as in the case of antag-
onistic pleiotropy, the concept of antagonistic heterogeneity considers
an additional characteristic of the trait correlation. For example, an-
tagonistic heterogeneity can be manifested as opposite directions of
the genetic effects (eg, the same genetic variant is associated with in-
creased level of one trait and decreased level of the other trait) despite
direct correlation between traits (eg, increased level of one trait tends to
co-occur with increased level of the other trait). We show that dissecting
complex relationships between single nucleotide polymorphisms (SNPs)
and traits following this new concept results not merely in quantitative
improvement of the association signals, but suggests qualitatively new
roles of genes in complex traits, including genes, which functions are
considered as well characterized by previous studies.

Methods
Study Cohorts

This manuscript was prepared using a limited access datasets
obtained through dbGaP, accession numbers: phs000007.v28.p10
(FHS), phs000280.v3.p1 (ARIC), phs000285.v3.p2 (CARDIA),
phs000209.v13.p3 (MESA), phs000287.v5.p1 (CHS), phs000428.
v2.p2 (HRS), phs000200.v10.p3 (WHI). Phenotypic HRS data
are available publicly and through restricted access from http://
hrsonline.isr.umich.edu/index.php?p=data.

Data were obtained from seven studies (Supplementary Table
1) including the Atherosclerosis Risk in Communities (ARIC)
study (16,17), Coronary Artery Risk Development in Young Adults
(CARDIA) study (18), the Cardiovascular Health Study (CHS)
(19), the Multi-Ethnic Study of Atherosclerosis (MESA) (20), the
Framingham Heart Study (FHS) (21-23), the Health and Retirement
Study (HRS) (24), and the Genomics and Randomized Trials Network
(GARNET) substudy of the Women’s Health Initiative (WHI) (25,26)
for individuals who identified themselves as of European ancestry.
Taking into account complex structure of the FHS study, three co-
horts comprising parental (FHS_C1), offspring (FHS_C2), and
grandchildren (FHS_C3) generations were examined separately.

Phenotypes

The analyses focused on four lipid traits including HDL-C, LDL-C,
TC, and TG (Supplementary Table 1). These health-related pheno-
types were defined using data from the first examination at which all
these lipids were measured. We used the same scale, mg/dl, harmon-
ized across cohorts.

Genotypes

SNPs were available from Affymetrix 6.0 (1 M SNPs) chip in ARIC,
CARDIA, and MESA, lllumina HumanCNV370v1 chip (370K SNPs)
in CHS, Affymetrix S00K in FHS, Illumina HumanOmni 2.5 Quad
chip (2.5 M SNPs) in HRS, and Illumina HumanOmnil-Quad_
v1-0_B chip (1 M SNPs) in WHI. SNPs were included in the analyses
after quality control in each study (call rate>95%, Hardy—Weinberg
equilibrium p > 107). Given small overlap of SNPs between CHS,
FHS, and other arrays, we imputed SNPs in CHS and FHS to have ap-
proximately 2.5 M SNPs overlapping with the Illumina HumanOmni
2.5 Quad chip. Nongenotyped SNPs were imputed (SHAPEIT2 (27)
and Minimac3 (28)) according to the 1000 Genomes Phase 3 data
reference panel in the NCBI build 37 (hg19) coordinate after re-
moving low-quality SNPs. Only SNPs with high imputation quality
(info>0.7) were retained for the analyses. SNPs with average minor
allele frequency (MAF) >2% across all studies were selected for the
analyses independently of their MAF in a specific study.

Mapping to Genes

SNPs were mapped to genes using NCBI SNP database (assembly
GRCh37.p13). We reported either a plausible biological candidate
gene in the locus or a gene within ~100kb of the reported SNP.

GWAS

GWAS was performed for each trait in each cohort separately. An addi-
tive genetic model with minor allele as an effect allele was adopted in
all analyses throughout this article. We used the generalized estimating
equation model with unstructured correlations (gee package in R) to
correct for familial structure, when applicable, except the FHS. As
the FHS included participants from large families, we used the linear
mixed effects model (lme4 package in R) with random effects to cor-
rect for familial structure because the generalized estimating equation
model was not efficient due to memory constraints.

The following basic adjustments were used for all models: (all
studies) age and sex; (ARIC, CHS, and MESA) field center; (HRS)
HRS cohorts, and (FHS) whether the DNA samples had been subject
to whole-genome amplification (29). The analyses focused on indi-
viduals of European ancestry to offset population stratification. The
results were reported for four models for each lipid trait. One model
was with the basic adjustment alone (herein referred to as an uncon-
ditional model) whereas the other three models (herein referred to as
conditional models) were additionally adjusted for one of the three
remaining lipid traits, for example, the models for HDL-C were ad-
justed for (i) LDL-C, (ii) TC, or (iii) TG. No other adjustments were
considered. Therefore, for each SNP we have the results from 16
models for four traits in the same sample.

Fixed-Effects Meta-analysis

We combined statistics across nine cohorts from each of the 16
models using the traditional GWAS fixed effects model with
inverse-variance weighting (METAL software (30)). This meta-test
accounts for the directions of the effects and it is more powerful
than those combining p-values or Z-scores (31). The weighted
average of the effect sizes was calculated as () /%;(i;) with
variance 1/ 3 ;(i;), where i; is the inverse variance of effect size j;
in the cohort j € (1,9) for a given model. Wald test was then used
to obtain p-value. Given these results, we selected SNPs that at-
tained genome-wide significances, p<p ., = 5 x 107, in at least one
of 16 meta-tests.
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Heterogeneity Coefficient

We used METAL software (30) to evaluate the heterogeneity
coefficient 2. The I* can be interpreted as the percentage of the
total variability in a set of effect sizes due to between-sample
variability.

Anterior and Posterior Antagonistic Heterogeneity
Antagonistic heterogeneity as a phenomenon is characterized by an
inverse (ie, opposite) relationship between the directions of the trait
associations and the trait correlation. For example, it can be mani-
fested as opposite directions of the effects B (ie, positive and nega-
tive fBs) in the associations with directly correlated traits (ie, when
7 > 0 implying that, for example, increased level of one trait tends
to co-occur with increased level of the other trait). Having the re-
sults from the unconditional and conditional models, we can distin-
guish two cases of antagonistic heterogeneity, herein referred to as
anterior and posterior antagonistic heterogeneity, respectively. The
anterior antagonistic heterogeneity was assessed as misalignment of
the directions of associations (regardless of their significance) of a
SNP with lipid traits in either of six pairs (HDL-C&LDL-C, HDL-
C&TC, HDL-C&TG, LDL-C&TC, LDL-C&TG, and TC&TG) in
unconditional model and the direction of correlation between traits
in that pair. The posterior antagonistic heterogeneity was assessed
from the results from two conditional models. One model included
a trait from a pair as an outcome and the other trait as covariate,
whereas the other model swapped these traits, for example, a model
for HDL-C adjusted by LDL-C and a model for LDL-C adjusted
by HDL-C. The criterion for posterior antagonistic heterogeneity
was the same as for the anterior one. However, because conditional
analysis has power to amplify the association signals (see next), this
criterion was strengthened by the requirement of the increase of sig-
nificance in the conditional models compared to the unconditional
models.

Antagonistic Heterogeneity Has Power to Amplify
the Association Signals
Hallmark of antagonistic heterogeneity is that it has power to amp-
lify the association signals leveraging misalignment of the directions
of associations with traits and the direction of correlation between
them. This property can be conveniently illustrated by pleiotropic
statistic for associations of a SNP with two traits provided by an
omnibus test (32-34). This statistic follows a chi-squared distribu-
tion with K degrees of freedom corresponding to the number of the
considered traits (ie, K = 2 in this case),

757 = [(85n - 205 + (850 - 21450

/ det () ~ xk.

1
from which a combined p-value for a pleiotropic association w(itlz
traits is obtained. Here 2 = 3/ is a z-score vector of associations
of a SNP with two traits, j3; is an estimated effect size and &; is a
standard error for the trait i = 1,2, and X is the correlation matrix
of traits (34). Prime symbol denotes transposition.

Because antagonistic heterogeneity is characterized by an inverse
relationship between the effect directions and the trait correlation,
the chi-square in Eq. (1) increases because 212,%51,212:X12 < 0 in
this case that corresponds to larger value of y% and, consequently,
to smaller p-value.
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Figure 1. Loci with predisposition to lipid traits. (A) Loci identified in our
study. (B) Loci reported in (35,36) (black/gray) and in our study (bold italic
font [red on-line] and non-italic font with * symbol [blue on-line]); the latter
were given in figure (B) for convenience. Rounded rectangles indicate
associations with HDL-C (black), TG (green), TC (red), and LDL-C (purple). Loci
with variants associated with multiple lipid traits are located in intersects of
the corresponding rounded rectangles. Bold font emphasizes loci strongly
affected by antagonistic heterogeneity: non-italic font with ' symbol (blue
on-line) denotes loci from Supplementary Table 3 and bold italic font (red
on-line) fromTable 2. Nonbold italic font (red on-line) highlights loci showing
new associations with minor effect of antagonistic genetic heterogeneity
(with strength <20%) reported in Table 2. Black font indicates replicated
loci with at most minor effect of the antagonistic heterogeneity reported in
Supplementary Table 2. Gray font indicates loci affected by the antagonistic
heterogeneity that resulted in quantitative and qualitative changes in the
associations. If the same locus is reported in several tables, it was placed
only once using information from the first table in the following order: Table
2, Supplementary Table 3, and Supplementary Table 2. Underlining in figure
(B) indicates loci with SNPs, which did not attain genome-wide (p <5 x 107%)
significance in our unconditional analyses with the same lipid traits as in
(35,36). HDL-C = High-density lipoprotein cholesterol; LDL-C = Low-density
lipoprotein cholesterol; TC = Total cholesterol; TG = Triglycerides.
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Table 1. Loci Showing Novel Associations with Lipid Traits

Current Study Prior Studies

Locus Effect Sign N, New Associations N, Effect Sign N,
ANGPTL3 -?-- 1 HDL-C* 3 - 3
APOB -++? 1 HDL-C 3 P42 2
GCKR e+ 2 HDL-C*; LDL-C 4 22++ 2
RAB3GAP1 2442 1 LDL-C 2 2242 1
COBLL1 2?2 1 TG 1 +22? 1
HLA —+-- 2 HDL-C; TG 4 2442 2
MLXIPL P4 2 LDL-C; TC 3 +22- 2
KLF14 +22- 1 TG 2 +22? 1
LPL +24- 1 TC* 3 +27- 2
ABCA1 ---? 1 LDL-C* 3 -2-? 2
MVK 2?-2 1 TC 1 =222 1
SBNO1 +242 1 TC 2 +222 1
FBXO33 2242 1 TC 1 2222 0
LIPC o+t 1 LDL-C 4 +24+ 3
LCAT 42 2 LDL-C; TC 3 +222 1
LIPG -+-? 1 LDL-C 3 -2-? 2

w, »

Note: Locus = locus name as used in previous studies. Effect Sign = directions of genetic associations with HDL-C, LDL-C, TC, and TG where “+” and “-” denote

wy»

positive (increase) and negative (decrease) signs of statistical effects, respectively, and indicates associations, which did not attain either GW (ie, p = p ., in the
current and prior studies) or suggestive effect (ie, p = 10~ in the current study) significance. N, = count of new genetic associations with lipid traits in a given
locus. Current Study, N, = count of total associations attained suggestive effect (ie, p,<p<10~ for four associations denoted by an asterisk “*”) or genome-wide
(P<p_,) significance in a given locus in the current study. Prior Studies, N, = count of total genome-wide significant associations reported in a given locus in prior

studies; the associations with traits denoted by the asterisk did not attain suggestive level of significance for the same SNPs in prior studies.
Sixteen loci in this table are a subset of 17 loci shown by italic font (red on-line) in Figure 1.

respective SNPs. We found that only FBXO33 locus was not re-
ported in these top GWAS. Our analyses, however, identified strong
role of the new phenomenon of antagonistic heterogeneity that

Results

Study Overview

Analyses were performed for 29,902 individuals of European an- substantially changed the associations with lipid traits in 25 of 37

(67.6%) loci (Figure 1, bold italic font [red on-line] and non-italic
font with T symbol [blue on-line]) and resulted in 19 associations in
15 of 24 known loci with lipid traits not reported in (35,36) (Table
1). To characterize these findings, we discuss below 98 associations
with lipid traits for 50 lead SNPs representing these 37 loci.

cestry from 7 independent studies comprised of 9 cohorts, men and
women combined, using an additive genetic model with minor allele
as an effect allele. The systemic concept was implemented as syn-
thesis of the traditional univariate (unconditional) GWAS of complex
traits such as TC, HDL-C, LDL-C, and TG (Supplementary Table 1),
and conditional GWAS using models adjusted by one of the three re-

maining lipid traits, that is, each trait was considered as an outcome Replication of the Previously Reported Associations

and a covariate in different models resulting in four meta-statistics . . . .
8 Our analysis replicated 40 associations for 28 SNPs from 28 loci

for each trait. For example, one statistic was provided by the uncon-
ditional GWAS of HDL-C and three statistics by GWAS of HDL-C
conditional on TC, LDL-C, or TG, separately. Conditional analysis

(Supplementary Table 2) with lipid traits (at p < p) reported in
(35,36). Of these SNPs, selected as one SNP per locus for a given
trait, there were 30 associations for 20 SNPs reported in these
GWAS or their proxies (with linkage disequilibrium [LD] 7* > 70%;
1000 Genomes Project), and 10 associations for 8 nonproxy SNPs

dissected antagonistic heterogeneity leveraging misalignment of the
directions of associations with lipid traits and the directions of cor-
relation between them. We used the simplest approach to characterize
and dissect antagonistic heterogeneity by considering pair-wise com-
binations only, that is, HDL-C&LDL-C, HDL-C&TC, HDL-C& TG,
LDL-C&TC, LDL-C&TG, and TC&TG with pair-wise correlations
ranging from 7 = -.4 for HDL-C and TG to r = .9 for LDL-C and TC
(see Supplementary Figure 1). Other details are given in “Methods.”

showing associations with the same traits, regardless of the effect
directions. These replicated associations were not strongly affected
by the antagonistic heterogeneity. The strength of the effect of an-
tagonistic heterogeneity was characterized by the ability of the
conditional analysis to increase the significance of the estimates

by decreasing p-values (p compared to p-values from the un-

cond)

conditional analysis (p,, ), that is, by the relative change of log-
Unconditional and Conditional GWAS transformed p-values in percents: 100 x (log, (p.,,,)108,(P,,,c0ns))/
Meta-analysis of the results from unconditional GWAS identified 29 10g,(D,,.0ng)- Ad hoc cutoff for the weak strength was set as less

loci with SNPs associated with lipid traits at genome-wide (GW) than 20%.

level of significance, p<p ., = 5 x 10 Dissecting antagonistic het-

erogeneity, conditional GWAS identified 8 additional loci (ASAP3; The Role of Antagonistic Heterogeneity and Novel

PCSK9; ABCA1; LRP4; MVK; SBNO1; FBXO33; TOP1), totaling
37 loci. We used the strongest evidences for the associations from
top lipid GWAS performed in the largest samples so far (35,36) to
characterize known associated loci and statistical estimates for the

Associations

Comparative analysis of the results from conditional and uncon-
ditional models showed that antagonistic heterogeneity affected
most loci (25 of 37) including those reported as replicated in
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Figure 2. Correlation between strength of the effect of antagonistic
heterogeneity and phenotypic correlation. Symbols are mean values for
the strength defined as the relative change of log-transformed p-values
in unconditional (p, .., and conditional (p_ ) analyses in percents, ie,

100 x (109,0(P,4.0)1090( Py ncona)/10G10(Puncong)- The  strength was  evaluated
for the associations reported in Supplementary Table 3 and Table 2, which
demonstrated anterior and posterior antagonistic heterogeneity. Phenotypic
correlation is given for each of five pairs of lipid traits, ie, HDL-C&LDL-C, HDL-
C&TC, HDL-C&TG, LDL-C&TC, and TC&TG, as representatively assessed in
the ARIC study (Supplementary Figure 1). LDL-C&TG pair is not presented
in this figure because of lack of SNPs that demonstrated the anterior and
posterior antagonistic heterogeneity. The y-axis shows natural logarithm (In)
of the strength. The x-axis shows magnitude (modulus) of the correlation
coefficient r between phenotypes. Straight line in figure shows exponential
increase of the strength with linear increase of the phenotypic correlation.
Insert shows equation for the fit and the coefficient of determination (ie,
goodness of fit). This figure indicates that different biological mechanisms
may be implicated in regulation of even highly correlated traits. HDL-C = High-
density lipoprotein cholesterol; LDL-C = Low-density lipoprotein cholesterol;
TC = Total cholesterol; TG = Triglycerides.

Supplementary Table 2. We found that the antagonistic hetero-
geneity strengthened 23 associations for 17 SNPs in 15 loci (with
the strength >20%) with the same lipid traits as those reported in
(35,36) (Supplementary Table 3). These associations were of sug-
gestive effect (p < 10~°) or genome-wide (p<p ., = 5 x 10-*) signifi-
cances in our unconditional analysis and all of them were of GW
significance in our conditional analysis. The increased significance
in the conditional analyses was observed for the same SNPs as re-
ported in (35,36), their proxies (r* > 70%), and nonproxy SNPs.

Table 2 shows the results for 35 associations for 21 SNPs in 18
loci. We found that 15 of these 35 associations (Table 2, asterisks)
were with the same lipid traits as those reported in (35,36), although
the reported SNPs were mostly in small LD with ours. All these 15 as-
sociations for 10 SNPs in 7 loci were strongly affected by the antagon-
istic heterogeneity with the strength >200% for 12 of 15 associations.
Dissecting this strong effect in the conditional analyses, they attained
either GW (11 associations) or suggestive-effect (4 associations) sig-
nificances despite not having even suggestive-effect significances (ie, p
> 107) in our univariate analysis. The remaining 20 associations for
17 SNPs in 16 loci were with lipid traits not reported in (35,36). They

attained GW (15 associations) or p,<p<10~ (5 associations) levels
mostly because of strong effect of antagonistic heterogeneity (with
strength >60% for 14 of 20 associations for 11 SNPs in 10 loci). We
found that 10 of 35 associations attained GW (8 of 10 associations)
or p,<p<10~ levels in conditional analysis despite they were even
not nominally significant (p > .05) in the unconditional analyses, that
is, the significance which is often considered as noise. Dissecting an-
tagonistic heterogeneity strengthened the associations via three modes
by: (i) decreasing standard errors, (ii) increasing magnitude of the ef-
fect sizes, and (iii) both (Table 2 and Supplementary Tables 3 and 4).

The results of the unconditional and conditional analyses pro-
vided an opportunity to characterize anterior and posterior an-
tagonistic heterogeneities, respectively (“Methods”). The anterior
antagonistic heterogeneity was characteristic for 40 of 58 associ-
ations for 23 SNPs in 19 loci in Table 2 and Supplementary Tables 3
and 4 (see columns “A”). All these associations were replicated as pos-
terior antagonistic heterogeneity. Conditional analysis identified 18
new associations characterized by posterior antagonistic heterogen-
eity for 12 SNPs in 11 loci. Some new cases were identified because
of increased precision in determining the effect directions in the con-
ditional models for non-significant associations in the unconditional
ones, for example, = -0.06, p = 8.65 x 107! (unconditional) versus
B =1.14,p = 2.59x107" (conditional) for rs10438978 (LIPG locus).
For the others, the effect directions changed in opposite fashion des-
pite the associations in unconditional models attained at least nom-
inal (p < .05) significance, for example, § = 0.68, p = 1.92 x 107
(unconditional) versus 8 = -0.84, p = 8.73 x 107'? (conditional) for
rs7120963 (APOA locus). Stronger effects of antagonistic heterogen-
eity were observed for lipid traits with larger correlation (see Eq. (1)
in “Methods”). The strength of the effect increased with the increase
of magnitude of correlation in an exponential fashion (Figure 2).

Replication of Antagonistic Heterogeneity

We examined consistency of the directions of the effects in different
studies that is widely regarded as replication (3). We show that the
patterns of misalignment of the directions of associations of SNPs
with traits and the directions of correlation between the traits,
which is hallmark of the antagonistic heterogeneity, were replicated
in 5 (one association), 6 (10 associations), and 7+ cohorts (47 asso-
ciations) (see columns “N” in Table 2 and Supplementary Tables 3
and 4). Antagonistic heterogeneity was replicated in larger number of
cohorts when the associations attained at least nominal significance.
Replication of the antagonistic heterogeneity is further strengthened
by consistent changes in the effects in conditional analysis com-
pared to the unconditional one in most cohorts, including cases of
nonsignificant associations (p > .05) in the unconditional analyses
(Figure 3, Supplementary Tables 3 and 4). We also show that three
modes of strengthening the associations by dissecting antagonistic het-
erogeneity (ie, decreasing standard errors, Figure 3B, increasing mag-
nitude of the effect sizes, Figure 3A, and both, Figure 3C) were not due
to dominant effect in one cohort but were replicated in most cohorts.
Likewise, the change in the effect directions in the opposite fashion in
the conditional models compared to the unconditional ones is repli-
cated across cohorts (Figure 3D, Supplementary Tables 3 and 4).

Discussion

This article supports a promising avenue in studies of genetic predis-
position to complex traits leveraging the concept relaxing the med-
ical genetics hypothesis on “one gene, one function, one trait” (11).
Relaxing this hypothesis is, particularly, inevitable in genetics of traits
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Figure 3. Forest plots for selected associations with strong effect of the
antagonistic genetic heterogeneity. Black and gray (blue on-line) show
associations from the unconditional and conditional models, respectively,
for minor alleles of: (A) rs780094 (GCKR locus) with HDL-C; conditioning is
on TG, (B) rs17145738 (MLXIPL locus) with TC; conditioning is on LDL-C, (C)
rs289715 (CETP locus) with LDL-C; conditioning is on TC, and (D) rs780094

that make human bodies vulnerable to diseases in postreproductive
life because of an inherent heterogeneity in genetic predisposition
to such traits due to the undefined role of evolution in establishing
their genetic mechanisms (7). This is relevant to lipid traits because:
(i) they have not been selected against or in favor of their pathological
dysregulation causing age-related diseases (37) and (ii) genes involved
in regulation of lipid metabolism were selected in principally different
conditions than those in modern societies (8,38,39). Accordingly, the
lipid-associated genetic variants may show complex, even antagon-
istic, relationships to age-related traits (40,41). Here, we used the sim-
plest approach to illustrate our concept by contrasting unconditional
and conditional GWAS of four lipid traits. We show that most SNP
associations identified in the current study (52 of 98) from loci that
were reported in the largest GWAS of lipids (35,36) are not trivial and
are strongly affected by the novel phenomenon of antagonistic hetero-
geneity, which is different from commonly regarded interpopulation
ancestry-related heterogeneity. Dissecting the role of antagonistic het-
erogeneity leads to quantitative and qualitative changes in the associ-
ations with lipid traits in a population of the same individuals even
for SNPs from genes/loci, which are considered as having well estab-
lished functions (Table 1). Quantitative change refers to attaining GW
significance, or substantial decrease of p-values, by dissecting the an-
tagonistic heterogeneity for the associations with lipid traits reported
in (35,36), which attained at least suggestive-effect significances (p <
107%) in our unconditional analysis. Qualitative change refers to novel
associations with lipid traits at GW or suggestive-effect significances
for SNPs, which either did not attain suggestive-effect significances in
our univariate analysis or were not reported in (35,36). For 10 of these
52 associations such changes were so strong that GW (or suggestive-
effect) significances were attained even when no nominally significant
signals (p < .05) were identified in a traditional univariate analysis.
Notably, this strong effect of antagonistic heterogeneity was observed
for well-known lipid genes such as GCKR, SIK3 (APOA1 locus),
LIPC, LIPG, etc. The findings of quantitative changes show that
GWAS of such complex traits as lipids can be substantially improved
just by leveraging more comprehensive analyses of inherently hetero-
geneous genetic predisposition to such traits. The observed qualitative
changes suggest new roles for even those genes, which functions are
considered as well established that strongly supports the view on re-
laxing the medical genetics hypothesis on “one gene, one function, one
trait” in GWAS of complex health-related phenotypes (11,12).

The antagonistic genetic heterogeneity highlights a new class
of associations emphasizing trade-offs in a potential role of a gen-
etic variant in traits, which is manifested, in this study, as decrease
of p-values in the conditional models compared to the unconditional
ones. For example, attaining GW significance for the association of
rs11216162 with LDL-C in the model conditional on TC (8 = -1.11,
SE =0.15,p = 4.53 x 107%) compared with the unconditional model

(GCKR locus) with LDL-C; conditioning is on TC. Figures (A)-(C) illustrate
three modes of strengthening the associations by dissecting the antagonistic
genetic heterogeneity, ie, (A) increasing magnitude of the effect size, (B)
decreasing the standard error, and (C) both. Figure (D) illustrates changes
in the effect directions in opposite fashion in conditional and unconditional
models. Bars show standard errors (SE). Cohorts: Atherosclerosis Risk in
Communities Study (ARIC); Coronary Artery Risk Development in Young
Adults (CARDIA); Cardiovascular Health Study (CHS); Framingham Heart
Study (FHS) original cohort (FHS_C1); FHS offspring (FHS_C2); FHS 3rd
generation cohort (FHS_C3), Health and Retirement Study (HRS); the Multi-
Ethnic Study of Atherosclerosis (MESA), and Women'’s Health Initiative (WHI).
HDL-C = High-density lipoprotein cholesterol; LDL-C = Low-density lipoprotein
cholesterol; TC = Total cholesterol; TG = Triglycerides.
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(B=-0.18, SE = 0.36,p = 6.25 x 10™) implies that the same carriers
of the rs11216162 minor allele tend to have smaller concentrations of
LDL-C and larger concentrations of TC (Supplementary Table 4). TC
is a measure of the total amount of cholesterol in the blood. It includes
“good” (HDL-C) and “bad” (LDL-C) cholesterol and a fraction of
TG. Depending on whether the trade-off between TC and LDL-C for
carriers of minor allele of rs11216162 is driven by the increased TC
concentrations due to HDL-C or TG, it can be classified as the bene-
ficial or adverse, respectively. Both types of these trade-offs are of un-
precedented importance for translation to health care. The beneficial
trade-off in this example would help identify the genetic predispos-
ition to two beneficial factors of having low concentrations of LDL-C
and, simultaneously, high concentrations of HDL-C for carriers of
the same allele. The adverse trade-off opens an avenue in studies of
the genetic mechanisms of potential side effects in medical treatment,
which is especially important in the framework of personalized medi-
cine (42) and geroscience (43,44). Side effect in this example would
be manifested as predisposition to the beneficial effect of having low
LDL-C concentrations and an adverse effect of having high TG con-
centrations for carriers of the same allele. The importance of these
findings for translation strategies in health care is augmented by the
ability of such analysis to identify: (i) more homogeneous popula-
tions (as evidenced by the decreased standard errors after dissecting
antagonistic heterogeneity) and/or (ii) populations in which genetic
effects can become stronger (as evidenced by the increased magni-
tudes of the effect sizes). Genetics of trade-offs strengthens the im-
portance of identifying mechanistic pathways linking genetic variants
with complex traits through intermediate factors including omics, bio-
markers, physiological regulation, evolutionary adaptation, etc. Our
findings show that implementation of genetic discoveries in health
care requires substantially more comprehensive analyses of genetic
predisposition to complex traits in each potentially promising locus
beyond those implemented in current strategies in large-scale GWAS.

Supplementary Material

Supplementary data is available at The Journals of Gerontology,
Series A: Biological Sciences and Medical Sciences online.
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