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Abstract

We discuss the problem of elucidating mechanisms of visual search. We begin by considering the 

history, logic, and methods of relating behavioral or cognitive processes with neural processes. We 

then survey briefly the cognitive neurophysiology of visual search and essential aspects of the 

neural circuitry supporting this capacity. We introduce conceptually and empirically a powerful 

but underutilized experimental approach to dissect the cognitive processes supporting performance 

of a visual search task with factorial manipulations of singleton-distractor identifiability and 

stimulus-response cue discriminability. We show that systems factorial technology can distinguish 

processing architectures from the performance of macaque monkeys. This demonstration offers 

new opportunities to distinguish neural mechanisms through selective manipulation of visual 

encoding, search selection, rule encoding, and stimulus-response mapping.
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INTRODUCTION

This introduction surveys the literature on visual search in the context of describing the 

underlying neuro-computational mechanisms and motivating a new experimental approach. 

To understand the neural mechanisms of visual search requires discovering the mapping 

between neural processes and visual, attention, and motor processes. Neural processes 

supporting visual search have been investigated in human studies using noninvasive 

measures of EEG and fMRI and in nonhuman primates using invasive sampling of neural 

discharges. Hence, to understand the neural mechanisms of visual search requires building a 

conceptual and empirical bridge between levels of explanation, neural measures, and 

species. This paper will situate the problem more definitely, briefly survey relevant 

performance and neural data, and introduce a program of research that can elucidate more 

specifically how neural circuits accomplish visual search.
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Seeking to understand the relationship between neural and mental processes is hardly a new 

problem. For example, in 1865 Ernst Mach explained, “To every psychical there corresponds 

a physical, and conversely. Like psychical processes correspond to like physical, unlike to 

unlike. If a psychical process can be resolved, in a purely psychological manner, into a 

multiplicity of qualities, a, b, c, then to these there correspond an equal number of different 

physical processes, α, β, γ. Particulars of the physical correspond to all the particulars of the 

psychic.” (Boring, 1942). In 1970 Donald Davidson wrote, “… mental characteristics are in 

some sense dependent, or supervenient, on physical characteristics. Such supervenience 

might be taken to mean that there cannot be two events alike in all physical respects but 

differing in some mental respects, or that an object cannot alter in some mental respect 

without altering in some physical respect.” (Davidson 1970). These axioms frame cognitive 

neurophysiology research.

The relationship between mental and physical descriptions can be articulated through linking 

propositions that specify the nature of the mapping between particular behaviors or cognitive 

states and associated neural states (Brindley 1970; Teller & Pugh 1983; Teller 1984). 

Different kinds of linking propositions can be distinguished, e.g., identity, similarity, and 

analogy (Teller 1984). To illustrate, consider this linking proposition: the nerve impulse is an 

action potential. The nerve impulse is an event that caused muscle contraction after nerve 

irritation that was discovered by Galvani and characterized by Swammerdam (McComas 

2011). Its speed was first measured by Helmholtz in 1850. The action potential (or nerve 

current) was first measured by du Bois-Reymond in 1848 and its ionic nature was first 

described by Bernstein and Lillie and elucidated by Hodgkin and Huxley. How do we know 

that the behavioral nerve impulse is the ionic action potential? This may seem obvious today, 

but it was not always. Indeed, the identity was established beyond doubt only by Huxley and 

Stämpfli (1949). They reported, “It was found that the muscle twitched when the nerve was 

stimulated if, but only if, the thread connecting the fluids on the two sides of the gap was in 

place. … This demonstrates that the transmission of the nervous impulse depends on 

currents flowing outside the myelin sheath…”

What linking propositions are necessary to explain how the brain does visual search? How 

should such linking propositions be articulated and tested? Adopting Marr’s hierarchy of 

computational theory, algorithm, and implementation, it seems clear that explaining how the 

brain does visual search requires translating between these levels of explanation. Several 

complementary and competing computational theories of visual search and attention have 

been formulated. These include the Theory of Visual Attention (Bundesen 1990), COntour 

DEtector (Logan 1996), Feature Gate (Cave 1999), and Guided Search (Wolfe et al. 1989; 

Wolfe 1994; Wolfe 2007; Wolfe et al. 2015). Other computational approaches are designed 

to solve pragmatic, real-world search problems (e.g., Itti & Koch 2000; Bruce et al. 2015). 

Some of these computational models have been articulated in terms of neural circuits at 

various levels of specificity from identification with specific brain structures and circuits 

(e.g., Bundesen et al. 2011; Schwemmer et al. 2015; Adeli et al. 2017; Murray et al. 2017) to 

microcircuitry of a cortical area (Heinzle et al. 2007) and with convolutional neural networks 

(e.g., Adeli & Zelinsky, 2018). Another approach has embedded neural signals measured 

during visual search performance into the stochastic accumulator framework (Purcell et al. 

2010, 2012b).
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These diverse computational and algorithmic approaches offer tools appropriate to translate 

between the neural and cognitive processes producing an observed pattern of performance. 

They serve another scientific function too. The literature on visual search and selective 

attention is governed by ambiguous and vague terms such as attention (both as cause and as 

effect), capacity, capture, disengage, efficiency, engage, map, priority, salience, selection, 

and shift. Formal models are needed to explain what these terms mean by identifying them 

with specific components, processes, or outputs.

Human and nonhuman primate visual search performance

Visual search has been investigated in many laboratories in many ways. Nevertheless, some 

general attributes have been established in human studies and replicated in macaque studies. 

The first key attribute is this: visual search takes time. A minimal amount of time is needed 

for visual encoding and response preparation. Not much more time is needed if the sought 

for object is easily discriminated from distracting objects, but progressively more time is 

needed if the distracting objects are more visually similar to the sought for target object and 

there are more such distracting objects (e.g, Treisman & Gelade 1980; Duncan & 

Humphreys 1989). Additional time may be taken if one of the non-target items is especially 

conspicuous (e.g., Theeuwes 1994; Bacon & Egeth 1994) or if the target item is in the same 

location as a previously attended target (Posner & Cohen 1984; Klein 2000). More time is 

needed if the response to the target object requires any kind of arbitrary mapping from 

stimulus location or property to response.

To investigate mechanisms of visual search at the neural circuit level requires systematic 

testing in nonhuman primates. For such studies to be relevant for understanding human 

performance, we must verify that nonhuman primates exhibit chronometric characteristics of 

search performance corresponding to humans. Fortunately, when sought, this confirmation 

has been found. Macaque monkeys exhibit dependence of visual search on target-distractor 

similarity and set size during singleton search (e.g., Azzato & Butter 1984; Buracas & 

Albright 1999; McPeek & Keller 2001; Sato et al. 2001; Arai et al. 2004; Camalier et al. 

2007; Motter & Holsapple 2000, 2007; Balan et al. 2008; Song et al. 2008; Cohen et al. 

2009; Nothdurft et al. 2009; Lee & McPeek 2013) and conjunction search (Motter & Belky 

1998; Bichot & Schall 1999; Shen & Paré 2006). They can exhibit feature search 

asymmetries (Nakata et al. 2014). They can exhibit inhibition of return (Bichot & Schall, 

2002; Fecteau & Munoz 2003; Torbaghan et al. 2012). Visual search is guided by memory 

as well as sensation. On the shortest time scale, performance of popout search varies if the 

search feature dimensions change (Malkovic & Nakayama, 1994). Called priming of popout, 

this demonstrated the limits of automaticity in visual search. Monkeys also exhibit priming 

of pop out (Bichot & Schall 2002; Purcell et al. 2012a). Macaque monkeys can also perform 

visual search filtering tasks that require search on one feature dimension and response 

according to another (Sato & Schall, 2003; Katnani & Gandhi 2013). Most recently, we have 

shown that monkeys also show contingent capture of attention by conspicuous non-target 

items (Cosman et al. 2018). Hence, macaque monkeys are a valid model of human visual 

search.
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Nonhuman primate visual search neurophysiology

Establishing that macaque monkeys perform visual search like humans provides the 

opportunity to investigate at the neurophysiological level the various operations, processes, 

and stages supporting visual search. To orient the reader to this literature, we offer a 

selective survey of the neurophysiological correlates of visual search.

The first such studies were published by Chelazzi et al. (1993) in inferotemporal cortex and 

Schall and Hanes (1993) in frontal eye field. Both studies found that neurons that initially 

did not distinguish the target from distractors eventually came to discharge more spikes 

when the target relative to a distractor was in the response field. Subsequent studies across 

numerous laboratories have replicated and extended the original observations during visual 

search tasks in frontal eye field (Schall et al. 1995; Thompson et al. 1996, 1997; Bichot et al. 

2001a,b, 2002; Sato & Schall 2003; Sato et al. 2001, 2003; Schall et al. 2004; Thompson et 

al. 2005a,b; Cohen et al., 2007; Monosov et al. 2008; Trageser et al. 2008; Woodman et al. 

2008; Cohen et al. 2009; Murthy et al. 2009; Monosov & Thompson 2009; Phillips & 

Segraves 2010; Zhou & Desimone 2011; Heitz & Schall 2012; Purcell et al. 2013; Miller & 

Buschman 2013; Costello et al. 2013; Nelson et al. 2016; Ramkumar et al. 2016; Mirpour et 

al. 2018; Sapountzis et al. 2018), in other prefrontal regions (Hasegawa et al. 2000; Iba & 

Sawaguchi 2003; Bichot et al. 2015), in extrastriate visual areas like MT (Buracas & 

Albright 2009) and V4 (Motter 1994; Chelazzi et al. 2001; Mazer & Gallant 2003; Bichot et 

al. 2005; Ogawa & Komatsu 2006; Gee et al. 2010; Zhou & Desimone 2011; Ipata et al. 

2012; Arcizet et al., 2018), as well as areas in the temporal lobe (Chelazzi et al. 1998; 

Mruczek & Sheinberg 2007a,b, 2012; Monosov et al. 2010) and the parietal lobe 

(Constantinidis & Steinmetz 2001; Ipata et al. 2006a,b; Thomas & Paré 2007; Balan et al. 

2008; Ogawa & Komatsu 2009; Mirpour et al. 2009, 2010, 2013; Nishida et al. 2013, 2014; 

Steenrod et al. 2013; Tanaka et al. 2015; Meyers et al. 2017; Arcizet et al. 2018; Sapountzis 

et al., 2018) as well as subcortically in the superior colliculus (McPeek & Keller 2002; Shen 

& Paré 2007, 2014; Song & McPeek 2015; Lovejoy & Krauzlis 2017; White et al. 2009, 

2017; Reppert et al. 2018), substantia nigra of the basal ganglia (Basso & Wurtz 2002), and 

central thalamus (Costello et al. 2016).

Viewing these diverse results with a goal of formulating a mechanistic model of visual 

search, we must appreciate that each of these cortical areas and subcortical structures is 

comprised of a diversity of neurons distinguished by morphology and connectivity. Only 

some of the neurons in these various neural loci contribute to visual search. The detailed 

connectivity of this network has yet to be worked out, but some results point toward nuances 

that will constrain such a mechanistic model. For example, different neurons in FEF project 

to V4 and to MT, and the two pools of neurons have different frontal lobe inputs (Ninomiya 

et al. 2012). Also, FEF is connected with at least 80 cortical areas (e.g. Schall et al. 1993, 

1995b; Markov et al. 2014). Similarly, the superior colliculus receives inputs from 

effectively as many cortical areas (Fries 1984; Cerkevich et al. 2014). Crucially, pyramidal 

neurons in the cerebral cortex do not project to more than one cortical area (Markov et al. 

2014). Likewise, pyramidal neurons in layer 5 that project to the superior colliculus do not 

also project to cortical areas (Pouget et al. 2009). Hence, if each pyramidal neuron 

projecting to a different target conveys a different signal, then a cortical area like FEF must 
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have dozens of distinct types of pyramidal neurons. The extent of this functional variability 

has only recently been investigated quantitatively (Lowe and Schall 2018).

Research has demonstrated that different neurons support different operations. For example, 

the target selection process manifest by visually responsive neurons is distinct from saccade 

production. For example, in FEF the target selection process happens if no saccade to the 

target is made (Thompson et al. 1997; Thompson et al. 2005b) or if the endpoint of the 

saccade is not at the search target (Sato & Schall 2003; Murthy et al. 2009). Moreover, the 

target selection process does not automatically produce saccade preparation (Juan et al 2004; 

cf. Katnani and Gandhi 2013). Corrective saccades are produced by FEF (and related) 

movement neurons independent of state of the visual neurons (Murthy et al. 2007).

The claim that anatomically and functionally different populations of neurons accomplish 

visual search requires an explanation of the relationship between those populations. One 

approach was formalized in the Gated Accumulator Model (Purcell et al. 2010, 2012b). This 

model explains the relationship between visual target selection and saccade preparation by 

using the observed responses of FEF visual neurons as inputs to a network of accumulators. 

The salience evidence that is accumulated is just the spike trains recorded from visually 

responsive neurons in FEF. Accumulated variability in the firing rates of these neurons 

explains choice probabilities and the distributions of correct and error response times with 

search arrays of different set sizes if the accumulators are mutually inhibitory. The dynamics 

of the stochastic accumulators quantitatively predict the activity of presaccadic movement 

neurons that initiate eye movements if gating inhibition prevents accumulation before the 

representation of stimulus salience emerges. This formal modeling approach demonstrates 

the viability of combining neurophysiological data and computational models to identify 

neural substrates of visual attention and to formalize the otherwise vague concepts and terms 

listed above.

Human and nonhuman primate visual search electrophysiology

Establishing similarities between macaque and human measures of visual search is 

necessary to enable mapping between monkey neurophysiology and human cognition. We 

reviewed similarities of macaque and human performance above. Here, we briefly 

summarize another empirical bridge, recording event-related potentials in nonhuman 

primates to obtain measures parallel to those of human studies. First, the ERP signature 

known as contralateral delay activity has been measured in macaque monkeys (Reinhart et 

al. 2012), so the contribution of working memory in guiding search can be investigated with 

macaque monkeys in parallel to human studies (e.g., Woodman, Luck, and Schall 2007). 

Next, the allocation of visual attention during visual search is indexed by an event-related 

potential known as the N2pc (e.g., Luck & Hillyard 1994; Liesefeld et al. 2017; McCants et 

al. 2018). Also, the suppression of salient distractors is indexed by an event-related potential 

known as the Pd (e.g., Hickey et al. 2009; Sawaki & Luck 2010; Liesefeld et al. 2017). 

Previous research has confirmed that macaque monkeys manifest the N2pc (Woodman et al. 

2007; Cohen et al. 2009; Heitz et al., 2010; Purcell et al., 2013). Recent work has also 

demonstrated monkeys manifest the Pd component associated with suppression of salient 

distractors (Cosman et al. 2018). The relationship of intracranial single-unit signals and 
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extracranial EEG signals requires much further investigation, because for unknown reasons 

the neural events signaling search target location arise in FEF before the N2pc (Cohen et al. 

2009). To understand these timing relationships, data from a likely generator of the N2pc, 

such as area V4, is needed (e.g., Hopf 2000).

Linking propositions through combined neural and mental chronometry

To claim that we understand the neural mechanisms of visual search, we will need to explain 

the neural processes that occupy the different amounts of time taken during visual search 

under various conditions. As visual search time increases, do a fixed number of neuro-

computational processes just take longer? Or does an increase of visual search time happen 

because additional neuro-computational processes are inserted between encoding and 

responding? If additional processes are invoked, how do the multiple processes interact?

We believe that the answers to these questions will end with neurophysiological data, but 

they must begin with a clear appreciation of the psychological perspective on visual search 

and the history of response time models. A conceptually and historically foundational 

hypothesis posited that response time (RT) in complex tasks is the summation of 

functionally distinct stages (Donders 1868). This stage assumption is foundational to the 

predominant model of “decision-making”, which consists of a single stochastic sequential-

sampling process following an uninteresting visual encoding stage and preceding a delayed 

response production stage (Ratcliff et al. 2016; Shadlen & Kiani 2013). Such models explain 

performance and account for neural activity in visual discrimination tasks as well as visual 

search with direct stimulus-response mapping (Purcell et al. 2010, 2012b). But, if RT is not 

comprised of dissociable stages, or if RT is comprised of multiple stochastic sequential-

sampling processes, then models like drift diffusion seem disqualified. If that is so, then 

alternative models must be considered. One possibility is a cascade architecture in which 

multiple levels of processing are arranged serially with information continuously 

propagating from one level to the next (e.g., McClelland 1979). Another, intermediate 

possibility is known as asynchronous discrete flow in which the processing of multiple 

features is accomplished discretely, independently but in parallel and finishing at different 

times (Miller 1988). These qualitatively different mechanisms with aspects of simultaneity 

of processing have been overlooked in the canonical literature on the neural mechanisms of 

decision making.

Crucially, models with a single stochastic decision process cannot explain tasks that require 

multiple, sequential operations. Consider a visual search filtering task like the one used in 

this study. In the vernacular of this literature, accomplishing such a task requires a 

“decision” about the location of a color singleton, a “decision” about the shape of the 

singleton, a “decision” about the shapes of distractors, a “decision” about the congruency of 

the singleton and distractor shapes, a “decision” about the instructed stimulus-response 

mapping, a “decision” about the correct endpoint of the saccade, and a “decision” about 

when to initiate the saccade. This confusion can be eliminated by using the term “decision” 

to describe the deliberations and actions of agents but not to characterize particular neuro-

computational processes (Schall 2001).
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If neuro-computational modules are distinct and independent, then it should be possible to 

change one process without changing another. This idea underlies the logic of separate 

modifiability formulated by Saul Sternberg (1969, 2001). If mental modules are distinct and 

independent, then it should be possible to change one process without changing the other. 

The logical, mathematical, and statistical formulation developed by Sternberg specifies how 

to interpret the effects of specific causal manipulations on performance and neural measures. 

For example, if factors F (e.g, singleton-distractor identifiability) and G (stimulus-response 

cue discriminability) influence two sequential processes, A and B, selectively, then RT = 

DurationA(F) + DurationB(G). If A and B are distinct, sequential processes, then in an F x G 
factorial experiment, changes of RT over variation of F will be independent of changes of 

RT over variation of G (Figure 1). This approach has already revealed additivity and mutual 

invariance of singleton-distractor similarity and response interference in monkey cognitive 

neurophysiology studies (Mouret & Hasbrouq 2000; Sato et al. 2001) and human ERP 

studies (e.g., Osman et al. 1992; Smulders et al. 1995; Servant et al. 2015; see also Liesefeld 

2018).

Although this approach has proven effective, distinct and independent modules need not 

result in total additivity. If factors F and G selectively influence distinct but simultaneous 

processes, A and B, then RT < DurationA(F) + DurationB(G) (Figure 1). The literature is 

divided on how filtering tasks, like the one we used, are performed. The most common view 

is that selection and categorization of an object are separate sequential stages (Figure 1A) 

(e.g., Broadbent 1971; Hoffman, 1978; Treisman 1988; Wolfe et al. 2015). An alternative 

view is that objects are selected and categorized through parallel processes (Figure 1B) (e.g., 

Bundesen 1990; Logan 2002).

The fundamental problem of distinguishing serial from parallel processing has proven 

challenging because particular serial and parallel architectures can be mathematically 

indistinguishable (e.g, Townsend 1972, 1990). However, a mathematically rigorous approach 

to investigating alternative process architectures was developed by James Townsend and 

colleagues, known as systems factorial technology (Townsend & Nozawa, 1995; Houpt et 

al., 2014; Harding et al. 2016). Based on mathematical axioms, postulates, and theorems, 

systems factorial technology offers strong tests of alternative architectures. Under conditions 

of selective influence, distinct predictions about response time dynamics are made for serial 

and parallel models with different decision stopping rules. Through a series of specific 

analyses of response time distributions, systems factorial technology can discriminate 

between five types of information processing architectures that could accomplish a task. 

These are (1) serial self-terminating, (2) serial exhaustive, (3) parallel self-terminating, (4) 

parallel exhaustive, and (5) coactive. Of course, distinguishing serial from parallel 

processing in visual search has a long and some may say discouraging history (e.g., 

Treisman & Gelade 1980; Townsend 1990; see also Thornton & Gilden, 2007; Moran et al. 

2016; Liesefeld & Müller 2019); yet, progress on this issue remains possible. Through 

systems factorial technology, when selective influence is applied effectively in visual search, 

predictions of serial and parallel models and their stopping rules are mathematically distinct 

and experimentally discriminable (Fifić et al. 2008b).
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Prerequisites for linking neurophysiology and systems factorial technology

The integration of neurophysiology and systems factorial technology has three prerequisites: 

(1) the existence of distinct operations or stages that can be selectively influenced by 

experimental manipulations; (2) a factorial task design that selectively influences these 

distinct operations or stages; and (3) evidence that macaque monkeys can perform such a 

factorial experiment in a manner that can be analyzed by SFT. For perspective, prerequisites 

like this had to be satisfied when this laboratory began using the stop signal saccade 

countermanding task (Hanes & Schall 1995).

The first prerequisite has already been satisfied empirically. During cognitive 

neurophysiological experiments, RT can be divided into distinct processing stages during 

visual search (Thompson et al. 1996; cf. Costello et al. 2013). The singleton selection stage 

takes longer during less efficient search when the target is more similar to distractors (Sato 

et al. 2001). Saccade preparation is delayed in less efficient relative to more efficient visual 

search (Woodman et al. 2008). Requiring arbitrary stimulus-response mapping reveals more 

neuro-computational processes because it requires more operations that occupy different 

intervals including singleton selection, encoding the stimulus-response rule, and saccade 

endpoint selection (Sato and Schall 2003; Schall 2004).

Here, we present the second and third prerequisites. We have developed a filtering task that 

requires search on color and response on shape with factorial manipulations of singleton 

selection through singleton-distractor chromatic similarity and of stimulus-response 

mapping through stimulus elongation. We then provide the first demonstration that such 

tasks can be performed by macaque monkeys. We also show that performance can be 

analyzed using the methods of systems factorial technology producing results that support 

substantive inferences about the processing architectures underlying the performance. 

Importantly, the processing architectures discovered for two monkeys differed. We regard 

this as a positive indication about the utility of systems factorial technology to discriminate 

different strategies. Using the large datasets provided through cognitive testing of macaque 

monkeys, we addressed other questions that have not been possible using systems factorial 

technology with the smaller datasets typical of human studies. These include relating 

processing architecture to the quality of performance and to the production of error 

responses. These novel results establish a foundation for neurophysiological investigation 

using the logic of separate modifiability and the tools of systems factorial technology, which 

will provide unprecedented insights into the neuro-computational mechanisms of visual 

search.

METHODS

Subjects, surgical procedures, and gaze acquisition

All procedures were approved by the Vanderbilt Institutional Animal Care and Use 

Committee in accordance with the United States Department of Agriculture and Public 

Health Service Policy on Humane Care and Use of Laboratory Animals.

Behavioral data were collected from two macaque monkeys, Macaca mulatta and M. radiata, 

identified as Le and Da. The monkeys weighed approximately 12 kg (Le) and 8 kg (Da) and 
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were aged 6 years (Le) and 12 years (Da) at the time of the study. Monkeys were surgically 

implanted with a headpost affixed to the skull via ceramic screws under aseptic conditions 

with isoflurane anesthesia. Antibiotics and analgesics were administered postoperatively. 

Monkeys were allowed at least 6 weeks to recover following surgery before being placed 

back on task. Gaze was tracked using an Eyelink 1000 system (SR Research; sampling rate 

= 1,000 Hz).

Task design and protocol

Monkeys performed 30 sessions of a go-nogo visual search task in which response was cued 

by the shape of a color singleton. Trials began with the monkey fixating a central stimulus 

for 800–1200 ms, after which eight iso-eccentric, isoluminant stimuli were presented with 

eccentricity = 6.0 deg. Stimuli were either square or rectangular. All eight stimuli had the 

same shape on each trial. If the singleton and distractors were square, cueing a no-go trial, 

monkeys were rewarded for maintaining fixation at the central spot for 1000 ms. No-go 

trials comprised ~20% of all trials in each session. If stimuli were rectangular, monkeys 

were rewarded for shifting gaze to the singleton and maintaining fixation for 800 ms 

(monkey Le) or 1000 ms (monkey Da). The inter-trial interval was fixed at 2 sec.

Task difficulty varied along two dimensions (Figure 2): singleton-distractor color similarity 

and stimulus elongation. Singleton-distractor color similarity manipulated singleton 

identifiability. Stimulus elongation manipulated cue discriminability. All stimuli had four 

possible colors: red (CIE x 628, y 338, Y 4.4 or x 604, y 339, Y 5.2), off-red (CIE x 552, y 

399, Y 4.5 or x 520, y 405, Y 6.6), green (CIE x 280, y 610, Y 4.6 or x 292, y 575, Y 6.1), 

and off-green (CIE x 322, y 558, Y 4.6 or x 364, y 426, Y 6.8) presented on a gray 

background (CIE x 275, y 228, Y 0.54 or x 334, y 375, Y 0.6). Stimuli had three possible 

aspect ratios: square for nogo trials, and either 1.4 or 2.0 for go trials. The orientation of 

elongation was counterbalanced between the two monkeys; for monkey Da a vertical 

rectangle signaled go, whereas for monkey Le a horizontal rectangle signaled go.

Assessment of operations, stages and strategies

To assess alternative process architectures supporting performance of this task, we applied 

systems factorial technology (Townsend & Nozawa, 1995; Houpt et al., 2014; Harding et al. 

2016). Statistical details of systems factorial technology and reporting conventions can be 

found in these references. Systems factorial technology typically requires a 2×2 

manipulation of factors that selectively influence distinct processing operations (cf. Yang et 

al. 2014). As illustrated in Figure 2, the first manipulation was singleton identifiability 
through interleaved presentation of search arrays with low singleton-distractor similarity 

(e.g., red among green) (High Identifiability, HIdent) and search arrays with high singleton-

distractor similarity (e.g., red among off-red) (Low Identifiability, LIdent). The second 

manipulation was cue discriminability through interleaved presentation of array items with 

higher aspect ratio (High Discriminability, HDiscrim.) and array items with lower aspect ratio 

(Low Discriminability, LDiscrim.). The cue discrimination was enforced by interleaving 20% 

nogo trials. This 2×2 design results in four types of trial. The easiest were High 

Identifiability with High Discriminability (HIdentHDiscrim.). The most difficult were Low 

Identifiability with Low Discriminability (LIdentLDiscrim). The two intermediate difficulty 
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were Low Identifiability with High Discriminability (LIdentHDiscrim) and High Identifiability 

with Low Discriminability (HIdentLDiscrim).

Statistical analyses

All t-tests presented are two-sided, unless otherwise stated. ANOVA were calculated on 

across-session mean response times and accuracy rates. Also, to account for incidental 

variation across sessions while preserving relative relationships between conditions, 

ANOVA were repeated with per-session response times after subtracting the session mean 

from each response time (adjusted session means). To avoid edge effects, accuracy rates 

were transformed using the logit transformation (Wharton & Hui, 2011).

RESULTS

Each monkey performed 30 sessions of the search task. On average, Da performed 649 

correct trials per session providing a total of 19470 correct trials, and Le performed 642 

correct trials per session, providing a total of 19260 correct trials.

Monkeys are sensitive to cue discriminability and singleton identifiability

Response times (RT) of both monkeys were affected by both task manipulations. The RTs 

for each condition are plotted in Figure 3A and listed in Table 1. As expected, response 

times were longer for trials in which the singleton was more chromatically similar to 

distractors and thus harder to identify. Likewise, response times were longer when the cue 

was less discriminable. These differences were statistically significant when evaluated as 

simple session means or when accounting for variation in means across sessions (Table 1). 

In session means we found a significant interaction of the factors for monkey Da but not Le. 

In adjusted session mean values, the interaction was evident for both monkeys.

The endpoints of errant saccades were not distributed randomly and were thus informative. 

Both monkeys made false alarm saccades toward the color singleton when it was a square 

(Da: 11.5 ± 5.2% HIdent, 11.3 ± 3.3% LIdent; Le: 26.7 ± 15.0% HIdent, 7.2 ± 7.1% LIdent). 

This demonstrates that squares and the less elongated rectangles were sufficiently similar to 

invoke cue discriminability confusion.

Saccade endpoint was affected more by singleton identifiability than by shape 

discriminability (Figure 3B, Table 2). As expected, accuracy was significantly higher under 

high identifiability relative to low identifiability for both monkeys. However, the effect of 

cue discriminability on saccade endpoint accuracy was different for the two monkeys. 

Monkey Le was equally accurate when stimulus shape was more or less discriminable. 

Curiously, monkey Da was more accurate when stimulus shape was less discriminable. 

Finally, as observed previously (e.g., Findlay 1997), on error trials both monkeys more 

commonly shifted gaze to a distractor adjacent to the color singleton (Figure 3B).

The average trends are commonly all that is reported. However, the approach we will use 

begins with recognizing that singleton identifiability and cue discriminability influenced the 

shape of the RT distributions. To prepare for the systems factorial analysis, we illustrate the 

variation of the RT distributions in three formats. The first is the simple probability density 
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(f(t) = Prob(t < RT < t+Δt)), which is the probability of a response at a given time (Figure 

3C). The second is the cumulative distribution (F(t) = ∫f(t)dt = Prob(RT≤t)), which is the 

probability of a response being produced at a time less than or equal to t (Figure 3D). The 

third is the survivor function (S(t) = Prob(RT > t) = 1 – F(t)), which is the probability that a 

response has not yet been produced by time t (Figure 3E). The influence of both factors on 

the shape of these distributions is clear for both monkeys. However, much deeper 

computational insights are available through the next analytical steps.

Systems factorial technology-based assessment of visual search performance

Systems factorial technology is used to assess processing stage architecture and performance 

strategy by analyzing the RT distributions of each condition within a 2×2 factorial design 

(Townsend and Nozawa 1995; Houpt and Townsend 2010; Houpt et al. 2014; Harding et al. 

2016). Given that each factor (singleton identifiability and cue discriminability) affected RT, 

we assessed the manner in which one factor affected RT while the other factor was fixed. In 

other words, how stimulus shape affects RT on trials with dissimilar singleton and 

distractors may or may not be the same as how shape affects RT on trials with similar 

singleton and distractors.

To illustrate the rationale and implementation of systems factorial technology, we performed 

a system of simple simulations (Figure 4). The 5 alternative architectures were simulated 

with pairs of linear accumulators embodying two processes, designated A and B (Carpenter 

& Williams 1995; Brown & Heathcote, 2008). The finishing times of the accumulators were 

determined by four parameters: threshold, drift rate, drift rate variability, and non-decision 

time. To simplify, both accumulators shared an equivalent arbitrary threshold and a non-

decision time of zero. An arbitrary mean drift rate was assigned for the more efficient 

condition of each factor, and a slower drift rate was assigned for the less efficient condition 

of each factor. Each manipulation was also assigned identical drift rate variability. For the 

combined manipulation, the drift rate effects were added. Each replicate for each condition 

had a drift rate sampled from a normal distribution centered on the assigned mean drift rate 

and with a standard deviation of the assigned drift rate variability. The parameters of each 

simulation were adjusted to produce similar ranges of RT. The resultant process durations 

were assessed by 10000 random samples defined by each manipulation’s drift rate 

parameterization.

We explore the influence of two factors, designated F and G, either of which can cause 

higher (H) or lower (L) efficiency. For example, factor F could be identified with singleton-

distractor similarity that influences the duration of singleton identification (process A), and 

factor G could be identified with singleton elongation that influences the duration of 

response cue discrimination (process B). Importantly, depending on task demands not all 

processing architectures are candidates for task performance. For example, if a response is 

specified by a conjunction of two features, self-terminating architectures will result in high 

error rates. Conversely, if a response can be determined from a single source of information 

and not necessarily both, exhaustive architectures will result in inefficient performance. 

Nevertheless, because no particular task is being modeled in these simulations, SFT can be 

applied to simulated outcomes produced by all 5 architectures. We present these simulations 
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to aid in conceptualizing the differences in the architecture details and in recognizing how 

the signatures of each architecture are produced. We now present the 5 possible processing 

architectures resolved by SFT.

Consider first processes A and B as serial self-terminating processes (Figure 4A). The two 

processes are queued sequentially, but only one needs to be completed for the overt response 

to be produced. Formally, the order of sub-processes is unknown and random. The two levels 

of factor F result in two distributions of process finishing times that overlap but have 

different modal values. Similarly, the two levels of factor G result in two distributions of 

finishing times that overlap but have different modal values. In this architecture, RT on each 

trial corresponds to the finishing time of the fastest process. Of course, process A or B might 

finish first on a given trial, but on average the systematic variation of RT will depend on the 

influence of the respective factors on each process. Crucially, under this architecture the 

influence of each factor on each process is independent. This results in mutually invariant, 

additive differences in average RT (<RT>) of both processes across both factors. In other 

words, a plot of average RT produced for each combination of the 2×2 design will produce 

parallel relations with no interaction across factors. The nature of the interaction across 

factors can be summarized by a value known as the Mean Interaction Contrast (MIC), which 

is calculated as

MIC = < RT >HH − < RT >HL – < RT >LH − < RT >LL .

In this formula <RT>HH is the mean RT on trials with both factors allowing high efficiency 

for their respective processes, which tends to make it the smallest value. In comparison, 

<RT>LL is the mean RT on trials with both factors allowing low efficiency for their 

respective processes, which tends to make it the largest value. Likewise, <RT>HL and 

<RT>LH are the mean RT on trials with one factor allowing high efficiency for its process 

with the other factor allowing only low efficiency for its process, which tends to make these 

intermediate values.

For the serial self-terminating processes, MIC = 0, which indicates perfect additivity of the 

underlying processes. Non-zero values of MIC signify an interaction among the processes. 

Such an interaction can be underadditive (MIC < 0) or overadditive (MIC > 0). MIC > 0 

identifies either parallel self-terminating or coactive process architectures, and MIC < 0 

identifies parallel exhaustive processes. Thus, the MIC offers some insight into the nature of 

the interaction between sub-processes. However, MIC cannot discriminate between the self-

terminating or exhaustive stopping rules for serial architectures or discriminate between 

coactive and parallel self-terminating architectures (Townsend and Nozawa 1995).

Further insight is available through examination of the production of responses through time 

across conditions. The effects of the combination of conditions can be assessed as a function 

of time over the production of the responses by measuring the difference of the survivor 

functions. The justification and rationale for this approach is detailed by Townsend and 

colleagues (Townsend and Nozawa 1995; Houpt and Townsend 2010; Houpt et al. 2014). 

The purpose of the analysis is to determine the extent to which the two levels of each factor 

influence the rate of response production through time. This is quantified by measuring the 
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difference between response production when one factor is highly efficient (HF) and when it 

is less efficient (LF), while the other factor is more (HG) or less (LG) efficient.

The interaction between the two manipulations is known as the survivor interaction contrast 
(SIC). The SIC is a distribution-free measure for assessing the architecture (i.e., serial or 

parallel) and stopping rule (i.e., race minimum time or exhaustive maximum time) of 

information processing, which indexes the difference in levels of G between the levels of F, 

is calculated similar to the MIC by subtracting the two resulting difference functions over 

time:

SIC t = SHH t – SHL t – SLH t – SLL t

where SHH(t) is the value of the survivor function at time t when both factors are more 

efficient (HFHG), SLL(t) is the value of the survivor function at time t when both factors are 

less efficient (LFLG), SHL(t) is the value of the survivor function at time t when factor F is 

more efficient and factor G is less efficient (HFLG), and SLH(t) is the value of the survivor 

function at time t when factor F is less efficient and factor G is more efficient (LFHG). These 

operations are commutative thus the effect of varying G with respect to varying F is 

expected to be equivalent. The SIC measures the interaction contrast throughout the duration 

of all processes. The basic concepts of additivity, underadditivity, and overadditivity apply to 

the SIC; they just apply through time. Under the assumptions of systems factorial 

technology (e.g., stochastic independence of the processes), the form of SIC(t) is diagnostic 

of the 5 processing architectures. The statistical issues involved in evaluating SIC curves 

have been detailed (Houpt and Townsend 2010).

The purely additive influence of factors in the serial self-terminating architecture result in 

SIC values that do not vary over time. However, the SIC produced by the other 4 

architectures varies through time, each producing a different pattern of variation. 

Accordingly, the pattern of variation of the SIC curves can diagnose which underlying 

architecture produced a given pattern of RTs in the 2×2 factorial experimental design.

Consider next the serial exhaustive architecture. The processes are queued sequentially and 

the overt response is produced only when both processes have finished. Formally, the order 

of processes is unknown and SFT is unable to identify which one acted first. The mean RTs 

across factors exhibit no sign of interaction, so the MIC = 0 for this architecture as well. 

However, through time this architecture produces first underadditivity then overadditivity. 

That is, the SIC exhibits a negative-going followed by a positive-going deflection. 

Importantly, to satisfy the requirement that MIC = 0, the areas under the negative-going and 

positive-going deflections are equivalent. This time varying SIC is then used to resolve 

ambiguities when MIC = 0.

Consider next the parallel self-terminating architecture. Both processes operate 

simultaneously, so a stopping rule must be specified. Specifically, if a response can be made 

when one stage is complete, then the combined process is parallel self-terminating. In this 

architecture, the overt response is produced as soon as either process finishes. This 
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architecture is also known as a race and predicts overadditivity. Thus, MIC > 0, and the SIC 

curve deviates only positively.

Consider next the parallel exhaustive architecture in which a response can only be made 

when both stages are complete. Both processes operate simultaneously, but the overt 

response is produced only after both processes have finished. This architecture predicts 

underadditivity. Thus, MIC < 0, and the SIC curve deviates only negatively. The 

performance of one of the monkeys will have this appearance.

Consider finally the coactive architecture. While more complex and less explicit in form, it 

can be distinguished in function through these methods. In this architecture processes 

interact in a manner that can be characterized as finer grain coordination such as summation 

of the respective states through time. This can be realized if neither of the two processes A 
nor B produce the overt response but instead provide activations to a third process that sums 

the activations from A and B and thereby produces the overt response. This architecture, like 

a serial exhaustive architecture, predicts first underadditivity and then overadditivity. 

However, unlike a serial exhaustive architecture, for the co-active architecture, MIC > 0. 

Therefore, the area under the positive-going, over-additive deflection is greater than the area 

under the negative-going under-additive deflection and the architecture predicts a net 

overadditivity. Accordingly, although this architecture has an initial negative dip and a 

positive deflection (like serial processing) and has an MIC greater than 0 (like parallel self-

terminating), the combination of SIC and MIC differentiates it from either of these other 

architectures. The performance of another monkey will have this appearance.

Processing architectures supporting visual search

We applied systems factorial technology to the visual search data obtained from two 

macaque monkeys. Figure 5A presents mean survivor functions for each level of the 2×2 

factorial design for each monkey. At a fixed level of singleton identifiability, the difference 

between survivor functions represents the effect of shape discriminability. Figure 5B plots 

the difference in survivor functions for each level of singleton identifiability. The shape of 

these differences reveals the effect of the separate factors on response production through 

time. Figure 5C plots the difference of these differences, which is the survivor interaction 

contrast (SIC). The SIC summarizes the influence of the two factors through time. We will 

report SIC results by first describing the shape of the curve, then reporting the MIC, then 

reporting the inferred architecture.

For monkey Le, the SIC exhibited a pronounced period of underadditivity followed by a 

prolonged period of overadditivity. The integral of the period of overadditivity exceeded that 

of the underadditivity, indicative of a positive mean interaction contrast (MIC = 14.3). This 

outcome is characteristic of the coactive processing architecture (Figure 4, fifth 

architecture).

For monkey Da, the SIC exhibited only a prolonged underadditive deflection with MIC = 

−15.3. This outcome is characteristic of the parallel exhaustive architecture (Figure 4, fourth 

architecture). Note that neither monkey exhibited a self-terminating architecture. This is 

reassuring because a correct response requires both singleton identification and cue 

Lowe et al. Page 14

Vis cogn. Author manuscript; available in PMC 2020 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



discrimination. Either serial or parallel self-terminating architectures would produce a 

response with only half of the necessary information and thus nearly chance performance.

SFT analyses are typically performed on a per-subject basis rather than the present repeated 

testing across many sessions that can be done with monkeys. Thus, it is possible that the 

performance strategy associated with different processing architectures or dynamics varies 

across sessions. If so, then the multiphasic SIC curves could be artifacts of averaging 

sessions performed with different strategies. To assess whether the average SIC curve is a 

mixture of multiple architectures across different sessions, we performed a hierarchical 

agglomerative cluster analysis of SIC curves. We contrasted the use of Euclidean distance, 

which emphasizes the magnitudes of the SIC curves, and correlation distance, which 

emphasizes the shapes of the SIC curves, as similarity metrics.

For monkey Da, using Euclidean distance as the similarity metric, we identified four clusters 

(Figure 6A). Using correlation distance as a similarity metric was less discriminating. We 

believe this indicates that the major differences in SIC are in magnitude rather than shape. 

To examine the systematic variability across sessions, we plotted the SIC for each cluster 

(Figure 6B). With MIC > 0 and a later overadditive deflection exceeding the early 

underadditive deflection of the SIC, two of the clusters identified the coactive architecture. 

With MIC < 0 and only underadditive SIC deflections, the other two clusters identified the 

parallel exhaustive architecture. Notably, the biphasic SIC was evident in individual clusters. 

Even the most clearly underadditive SIC cluster had bimodal characteristics.

For monkey Le, neither Euclidean nor correlation distance yielded distinct clusters. The 

coactive architecture was identified by the MIC values and SIC forms from each session, 

although MIC magnitude varied across sessions.

The variation in MIC values across sessions offers a unique opportunity to assess whether 

qualitative or quantitiative differences in processing strategies result in predictable 

differences in performance. Hence, we examined the relationship between the per-session 

MIC, accuracy and response times (Figure 6C). For monkey Da, we found a significant 

negative correlation between percent correct and MIC (r = −0.69, p < 0.001). We also found 

a significant negative correlation between RT of correct responses and MIC (r = −0.49, p < 

0.01). However, we found no relationship between MIC and RT on error trials (r = −0.30, p 

= 0.11).

For monkey Le, some early sessions had MICs much greater than the majority of sessions. 

Treating these as outliers, we found no relationship between percent correct and MIC (r = 

−0.21, p = 0.32), but RT and MIC trended toward a significant negative correlation for 

correct RTs (r = −0.38, p = 0.058) and were significantly negatively correlated for error trials 

(r = −0.45, p = −0.022). Relationships like these have not been reported before.

Processing architectures for correct and error performance

SFT analyses commonly assume a low error rate (Townsend and Nozawa 1995). The 

performance of our monkeys had relatively high error rates. However, other investigators 

have demonstrated that conclusions from SFT are reliable in spite of error rates 
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approximating what we obtained (Fifić et al. 2008a). We utilized the large amount of data 

obtained across sessions to investigate for the first time whether performance strategies 

differed between correct trials and errors. Given the prevalence of erroneous saccades to the 

distractor adjacent to the singleton, we distinguished two categories of errors. First, we will 

examine informed errors made to the stimulus adjacent to the singleton. Second, we will 

examine guess errors made to any other location.

Figure 7 illustrates the progression of distributions used for the SFT analysis for correct 

responses, informed errors, and guesses for both monkeys. The factorial manipulation trial 

types were assigned according to the configuration of the search array and not saccade 

endpoint. That is, HI, LI, HD, and LD were assigned with respect to the identifiability and 

discriminability of the singleton.

For monkey Da, both informed errors and guesses were generated with SIC deflecting only 

in the underadditive direction (MIC < 0), like the correct responses. Hence, like correct 

responses, errors were identified with the parallel exhaustive architecture. In other words, 

qualitatively a single architecture produced both correct and error responses. However, 

quantitatively, MIC for guesses was more underadditive than MIC for informed errors, 

which was more underadditive than MIC for correct responses. Also, the SIC for error 

responses was prolonged but lacked the pronounced multiphasic pattern obtained from 

correct trials. Thus, the evidence suggested that monkey Da employed similar architectures 

on both error and correct trials.

For monkey Le, we observed qualitative variation in MIC and SIC for error relative to 

correct trials. As noted, correct trial performance produced MIC and SIC values that 

identified the coactive architecture. However, for guess errors, the SIC deviated only in the 

underadditive direction (MIC < 0), which identify the parallel exhaustive architecture. 

Meanwhile, for the informed errors, the SIC deflected more in the under- than overadditive 

direction (MIC slightly greater than zero). This pattern seems to approximate at least the 

parallel exhaustive architecture. Thus, for monkey Le, errors may originate from a 

processing architecture different from that resulting in correct trials.

For both monkeys, although their overall SIC curves have different shapes, the MIC for 

correct responses (Da: MIC = −15.3; Le: MIC = 14.3) was more positive than the MIC for 

informed errors (Da: MIC = −18.1; Le: MIC = 2.6), which was more positive than the MIC 

for guess errors (Da: MIC = −30.8; Le: MIC = −5.5). It should be noted that for both 

monkeys this difference appears most pronounced around the time of the second negative 

peak in Da’s biphasic SIC curve.

DISCUSSION

Through the present results, we have demonstrated the ability of monkeys to perform a 

speeded response task with 2×2 factorial manipulations of difficulty. To our knowledge, this 

is a first application of this experimental design in nonhuman primate research. We have also 

demonstrated the utility of systems factorial technology in assessing behavioral responses to 

infer underlying processing architectures. These findings pave the way for developing 
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studies in monkeys that are directly comparable to studies in humans and to extend 

investigation to the neurophysiology producing the performance. We discuss two potential 

limitations of these current results: inter-monkey differences and error-prone performance. 

We conclude that neither of these considerations undermines the utility of this new 

experimental approach for nonhuman primate cognitive neurophysiology. In fact, the inter-

monkey differences highlight the utility of systems factorial technology in diagnosing visual 

search strategy. We then situate this work in the context of related research using other 

approaches.

Individual differences between monkeys

We identified a plausible processing architecture for both monkeys. Technically, it should be 

noted that the approach could have resulted in implausible architectures. Interestingly, the 

results differed, indicating that the two monkeys used different strategies. While such lack of 

replication invites further research with more subjects, we believe useful insights are still 

available for two reasons. First, although both monkeys showed the same main effects of the 

factorial manipulations, subtle differences in RT distributions were evident across monkeys. 

However, in and of themselves, these differences offer no insights into the source of those 

differences. The use of systems factorial technology provided distinctively different results 

for both monkeys. This outcome offers additional inferences about the mechanisms 

producing the RT distributions.

Second, these different inferences provide starkly contrasting predictions for the 

neurophysiological underpinnings of this behavior. For example, for monkey Da, whose RT 

distributions suggest a parallel exhaustive processing architecture, separate populations of 

neurons may carry signals related to singleton identifiability or cue discriminability. In 

contrast, for monkey Le, whose RT distributions suggest a coactive processing architecture, 

one population of neurons may carry signals related to singleton identifiability and cue 

discriminability. These are just two of multiple alternatives that can be formulated but are 

beyond the scope of this paper. Further insights are available through quantifying the degree 

and timing of saccade preparation assessed through the activity of movement neurons (e.g., 

Hanes and Schall 1996; Bichot et al. 2001a; Woodman et al. 2008).

The differences across monkeys could be due to one of two differences in the task. First, the 

two monkeys were required to fixate the search stimuli for different amounts of time. We 

doubt that this modest difference in fixation duration can explain the major difference in 

strategy. Because the fixation interval follows both array presentation and response time and 

are identical for all go-trial conditions, we do not see a mechanism by which this post-

response fixation interval would affect the processing of the array during the trial. Still, 

further research can verify this supposition. Second, the elongated stimuli seen by Da were 

vertical whereas those seen by Le were horizontal. The orientations of the stimuli result in 

different edge-to-edge distances of stimulus pairs which may influence stimulus salience. 

We doubt that stimulus shape explains the difference in strategy. This rotation of the stimuli 

would be balanced across the two monkeys, where the edge-to-edge distance of the stimuli 

on the left and right for monkey Da would be the same as the edge-to-edge distance of the 

stimuli on the top and bottom for monkey Le. Similarly, the stimuli on the top and bottom 
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for Da have the same edge-to-edge distance as the stimuli on the left and right for Da. If this 

did explain the difference in processing architectures, then these stimulus location sets (Da: 

left/right, Le: top/bottom and Da: top/bottom, Le: left/right) should also be systematically 

different. We have compared results across these stimulus configurations and found no 

differences. Therefore, differences in array configuration cannot explain the differences in 

inferred processing architectures.

Further, the dissociation between parallel exhaustive and coactive architectures has been 

described previously. Fifić and colleagues (2008a) had human participants perform a 

multidimensional classification task for stimuli with dimensions that were either separable 

or integral. Performance during classification of separable-dimension stimuli was marked by 

the use of a parallel exhaustive architecture whereas performance during classification of 

integral-dimension stimuli was marked by the use of a coactive architecture. This 

performance strategy difference, revealed only through systems factorial technology, 

resembles the performance strategy difference identified here. Because the shape and 

chromatic dimensions of the current stimuli are different, they could be treated as separable 

dimensions. However, because both dimensions are carried by the same object they could be 

seen as integral. Monkey Da had performed several visual search tasks prior to this study in 

which shape and color cue different aspects of the response rules (e.g., Heitz & Schall, 2012; 

Reppert et al., 2018). This experience may enable the parallel exhaustive strategy by treating 

these feature dimensions separately. Monkey Le, on the other hand, had not performed other 

tasks prior to this study and thus may integrate the two feature dimensions through a 

coactive strategy. Alternatively, monkey Le may have analyzed the distractors, or the whole 

array holistically, to determine the stimulus-response rule. If he did not individuate stimuli, 

this may also explain the coactive processing strategy, pooling all sources of information.

Many other investigators have addressed the problem of the architecture underlying visual 

search. All now agree that the slope of RT with set size is not an effective criterion. More 

complex tasks are needed. For example, previous work studying a wide variety of visual 

search displays with multiple targets concluded that whereas most search conditions are 

accomplished through parallel limited-capacity process, a few conditions require serial 

search (Thornton & Gilden, 2007; see also Moran et al. 2016). A previous investigation of 

visual search with manipulation of target-distractor similarity employed systems factorial 

technology (Fifić et al. 2008b). These authors reported systematic departure from parallel or 

serial processing and concluded that the results were consistent with co-active processing.

Potential problems of error-prone performance

Systems factorial technology generally assumes perfect or near-perfect performance, 

because errors can contaminate RT distributions through speed accuracy tradeoffs. However, 

performance was not perfect in the data presented here. Thus, it is valid to wonder whether 

the SIC calculations and processing architecture inferences are invalidated by contamination 

of errors. This seems unlikely for two reasons. First, the SIC curves for both monkeys are 

qualitatively similar to those obtained in several other studies in humans with low error rates. 

Thus, the inferences supported by the findings are sensible in the context of separable and 

integral feature dimensions as discussed above.
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Second, simulation approaches that are allowed to produce errors have shown that the MIC 

and SIC signatures are robust with moderately high error rates (Fifić et al., 2008; Townsend 

& Wenger, 2004). Specifically, only the coactive architecture signatures degrade with errors 

by losing their overadditivity. However, such an outcome means that a coactive architecture 

would be mistakenly identified as serial exhaustive. Hence, if performance supports the 

inference of the coactive architecture in spite of high error rates, then this should only 

increase confidence in the validity of the inference. If anything, we suspect that the high 

error rate may have resulted in the uncharacteristic bimodality of the SIC curve for monkey 

Da, but the nature of this bimodality is not at odds with the overall inference of a parallel 

exhaustive architecture.

Further evidence that errors do not prevent interpretation of system factorial results is found 

in the interesting relationships we discovered between MIC and SIC values and error 

production. For monkey Da, although both error and correct responses arose from the same 

parallel exhaustive architecture, the magnitude of additivity assessed through MIC values 

was lower for errors relative to correct trials. This indicates that errors arose from 

quantitative, not qualitatively different processing. In contrast, for monkey Le, errors arose 

from qualitatively different processing. Correct trials arose from the coactive architecture, 

but errors arose from the parallel exhaustive architecture. We surmise, therefore, that rather 

than system factorial technology being challenged by errors, with large enough samples, 

errors can be interpreted by systems factorial technology. This is an innovative extension.

The logic of selective influence, additivity, race inequalities, and systems factorial 
technology

As noted above, the overall goal of applying the logic of selective influence is to distinguish 

cognitive, motor, and sensory, or, more generally, computational processes. The 

experimental approach of creating dissociations to discover separable processes is well-

known in ocular motor and visual neuroscience. For example, memory-guided saccades 

were devised to dissociate visual processing from saccade production (Hikosaka and Wurtz, 

1983; Bruce and Goldberg, 1985). Double-step saccades were devised to dissociate retinal 

location and eye position in saccade production (Hallett and Lightstone 1976). Anti-

saccades are contrasted with pro-saccades to distinguish contributions of voluntary stimulus-

response mapping (Hallett and Adams 1980). Bistable visual stimuli afford a distinction 

between explicitly perceiving an object from simply responding to stimuli (Logothetis and 

Schall 1989; Blake and Logothetis 2002). Visual search was used to dissociate presentation 

of a stimulus in a neurons response field from that stimulus being the target of a saccade 

(Schall and Hanes 1993). And so on.

The straightforward framing hypothesis that RT is the summation of functionally distinct 

stages (Donders 1868) was challenged on multiple grounds during the early years of 

experimental psychology. Indeed, in the 1938 edition of his textbook Experimental 
Psychology, Robert S. Woodworth wrote, “If we cannot break up the reaction into 

successive acts and obtain the time of each act, of what use is the reaction time?” (page 

310). However, this pessimistic conclusion was removed from a revised edition (Woodworth 

and Schlosberg 1954). Further progress on inferring processing architecture from systematic 
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variation of RT was sparked by the formulation of the additive factors method (Sternberg 

1969). To determine whether two factors affect the same or separate stages, the method 

assesses additivity of mean response times and of their variances. When response times from 

two or more factors are additive, the factors are taken to affect separate independent stages.

The formulation of critiques (Townsend 1972) and extensions (e.g., Taylor 1976; 

Schweickert 1978; Ashby and Townsend, 1980; Townsend 1984) energized more 

sophisticated approaches to decomposing RT. For example, additive factors assumes a 

strictly serial architecture. As demonstrated in Figure 1, though, in a parallel architecture 

two factors can independently affect processing stages without affecting response times in an 

additive fashion. Today, the theoretical foundation and empirical effectiveness of the 

approach has been established in multiple research domains of experimental psychology and 

cognitive neuroscience (e.g., Townsend and Ashby, 1983; Sternberg, 2001).

Today, systems factorial technology offers the most complete method to infer processing 

architectures from performance of a double-factorial task (Townsend and Nozawa 1995). 

Here, we manipulated singleton identifiability by varying singleton-distractor similarity and 

cue discriminability by varying singleton elongation. Other factors can be manipulated, of 

course. Indeed, the selective influence approach enables discovery of which factors 

influence common or different sub-ordinate processes. In the context of visual search, 

additional factors that merit investigation include set size, feature conjunctions, inhibition of 

return, priming of popout, attentional capture, and stimulus-response mapping difficulty. For 

example, the relationship between singleton-distractor similarity and stimulus-response 

mapping could be assessed by adding an additional stimulus-response mapping rule, e.g. 

instructing pro-saccades or anti-saccades (Sato & Schall, 2003). By iteratively and 

systematically testing the independence and interactions of pairs of factors, we will gain a 

deeper understanding of the existence of and relationships among the computational 

processes accomplishing visual search. Further validation would entail simulation as 

illustrated in Figure 4 and identification of neural signaling corresponding to the timing of 

the hypothetical constituent processes.

We should note that other, more specific approaches to inferring processing architecture and 

duration have been developed. For example, Miller (1982) described the race model 

inequality to distinguish between parallel channels and coactive processing. In this 

conception, if two sources of information are in separate parallel channels, then the 

probability of responding to two sources of information at a given time t must be less than 

the probability of responding to either individual source alone at time t. Otherwise, 

processing must be coactive. This model holds for self-terminating architectures, such as a 

race model, because it assumes that either piece of information can elicit a response. 

However, if both pieces of information are needed to produce a response, then this 

assumption does not hold and violations of the inequality do not necessarily indicate 

coactivity.

Similarly, Logan and Cowan (1984) used the race model formulation to explain performance 

of the stop signal (countermanding) task. This model affords estimation of the duration of a 

covert stopping process that happens to correspond precisely to the moment of modulation 
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of particular sensory-motor neurons (Hanes et al. 1998; Paré and Hanes 2003; Murthy et al. 

2009; Costello et al. 2013; Mallet et al. 2016). The relationship between the abstract race 

model and the neurophysiological findings was elucidated through development and 

validation of the interactive race model (Boucher et al. 2007; Logan et al. 2015).

Systems factorial technology improves upon both of these methods by distinguishing self-

terminating and exhaustive stopping rules and is not limited to additivity which allows the 

assessment of both serial and parallel processing architectures. Thus, if an experiment can be 

designed such that the response times are amenable to systems factorial technology, it is the 

more powerful method because it can differentiate all possibilities. Ultimately, we believe 

that similar mappings between abstract model architectures and neural processes can be 

achieved using the logic of selective influence and the tools of systems factorial technology.

Conclusions

RT in complex tasks is the summation of functionally distinct operations or stages. While 

not emphasized, the stage assumption is fundamental to the predominant model of 

“decision- making” – a single sequential-sampling process intervening between 

uninteresting visual encoding and response production stages. Such models explain 

performance and account for neural activity in visual discrimination tasks as well as visual 

search with direct stimulus-response mapping. But, if RT is not comprised of dissociable 

stages, then models like drift diffusion may be disqualified and alternative models are 

endorsed, such as cascade (e.g., McClelland 1979) or asynchronous discrete flow (Miller 

1988), which are qualitatively different mechanisms.

The most effective and perhaps only method for assessing the existence and characterizing 

the properties of modules or stages is the logic of separate modifiability. Crucially, single-

stage decision-making models cannot explain tasks that require multiple, sequential 

operations. The term “decision” is hopelessly ambiguous when applied to a task that 

requires a “decision” about the location of a color singleton, a “decision” about the shape of 

the singleton, a “decision” about the shapes of distractors, a “decision” about the congruency 

of the singleton and distractor shapes, a “decision” about the instructed stimulus-response 

mapping, a “decision” about the correct endpoint of the saccade, and a “decision” about 

when to initiate the saccade. We have established that macaque monkeys can perform a task 

with simultaneous, independent factorial manipulations, producing performance measures 

that produce interpretable outcomes using the most advanced computational analytical 

approaches. This paves the way for a next step in cognitive neurophysiology of visual search 

by providing the ability to assess whether individual neural processes are prolonged, more 

numerous, or interacting.
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Figure 1. 
Two alternative architectures for the interaction of two distinct processes. (A) Serial 

exhaustive architecture. Both processes must complete before a response can be initiated. 

The durations of the two stages of processing, A and B, are under the selective influence of 

factors, F and G. Mutual invariance is satisfied when manipulation of factor F (or G) alters 

the duration of stage A (or B) but not B (or A). Additivity is satisfied when the total RT 

equals the sum of the durations of the separate processes. (B) Parallel exhaustive 

architecture. The two processes operate concurrently but both must complete before a 

response can be initiated. Manipulation of factor F (or G) alters the duration of stage A (or 

B) but not B (or A). The variation of RT across the two manipulations is additive or under-

additive.
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Figure 2. 
Visual search task designed to elucidate distinct operations. (A) Visual search task with go-

nogo stimulus-response mapping. Six representative trial types are depicted. Correct gaze 

behavior is illustrated with dotted arrows for go trial saccades or dotted circle for nogo 

maintained fixation. The singleton is illustrated as always red and located on the right for 

purposes of illustration. Singleton shape cued the response rule. If the singleton was square 

(right), it cued withholding of the saccade. If the singleton was elongated (left and middle), 

it cued a pro-saccade. Two factors were manipulated independently. Stimulus-response cue 

discriminability was either High (aspect ratio = 2.0, HDiscrim or HD) or Low (aspect ratio = 

1.4, LDiscrim or LD). On each trial, all distractors shared the degree of elongation with the 

color singleton. Singleton identifiability was either High (larger chromatic difference 

between singleton and distractors, HIdent or HI) or Low (smaller chromatic difference 

between singleton and distractors, LIdent or LI). The task offered 4 basic types of trials: High 

Identifiability and High Discriminability (HIdentHDiscrim), Low Identifiability and High 

Discriminability (LIdentHDiscrim), High Identifiability and Low Discriminability 

(HIdentLDiscrim), and Low Identifiability and Low Discriminability (LIdentLDiscrim). To assess 
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the additivity and mutual invariance of these factors, trial types were interleaved in a 2×2 

design. (B) Alternative processing architectures for the double factorial visual search task. 

Singleton identification is influenced by target-distractor similarity but not singleton 

elongation. Stimulus-response cue discrimination is affected by singleton elongation, but not 

target-distractor similarity. Under the serial exhaustive architecture (top), singleton 

identification is completed before cue discrimination, which must then be completed before 

production of the response. Under the parallel exhaustive architecture (bottom) singleton 

identification and cue discrimination operate concurrently and must both finish before 

production of the response.
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Figure 3. 
Basic performance measures. (A) Mean RT ± SEM for each trial type of the double factorial 

paradigm. There were four trial types: HIdentHDiscrim, HIdentLDiscrim, LIdentHDiscrim, and 

LIdentLDiscrim Trials with High and Low singleton identifiability are shown in black and red, 

respectively. Monkey Da exhibited under-additivity of RT, whereas monkey Le exhibited 

over-additivity of RT across the two manipulations. (B) Log plot of the probability density 

of saccade endpoints relative to singleton location for High (black) and Low (red) singleton 

identifiability and High (bold) and Low (thin) cue discriminability. Spacing between search 
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stimuli was 45° in polar angle. Both monkeys exhibited higher incidence of error saccades to 

the location adjacent to the singleton. Error bands are SE across sessions. (C) Probability 

density of RT, f(t). (D) Cumulative distribution of RT, F(t). Percent correct for each trial type 

is inset. (E) Survivor function of RT, S(t) = 1 – F(t).
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Figure 4. 
Systems factorial technology simulations. (A) Each of five processing architectures were 

modeled using two simple linear accumulator models, each representing an independent 

operation or stage. The two operations, A and B, were assumed to be under the selective 

influence of Factors F and G. Stage A varied with Factor F (but not G), and Stage B varied 

with Factor G (but not F). Essential features of each architecture are shown with depictions 

of relative stage durations. (B) Mean interaction contrast. Plots of mean RT for each trial 

type of the double factorial setup. Lines in red and black refer to Low and High levels of 
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Factor G. (C) Survivor function S(t) for each trial type. The gray and red shadings highlight 

the effects of Factor F on S(t) at fixed levels of Factor G. (D) Difference in survivor function 

S(t) for fixed levels of Factor G. Regions of blue and green denote intervals of 

underadditivity and overadditivity, respectively. (E) Survivor interaction contrast S(t). The 

serial self-terminating architecture produced a SIC that did not differ from 0.0 for all time. 

The serial exhaustive architecture produced a SIC that deviated to under-additivity followed 

by over-additivity, with equal area under each region. The parallel self-terminating 

architecture produced a SIC with overadditivity. The parallel exhaustive architecture 

produced a SIC with underadditivity. The coactive architecture produced a SIC that deviated 

to underadditivity followed by overadditivity, with greater area under the overadditive region 

for net overadditivity.
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Figure 5. 
Systems factorial analysis of RT distributions from the double factorial visual search task. 

(A) Survivor functions S(t) for each combination of singleton identifiability and cue 

discriminability. Black and red lines depict High and Low singleton identifiability. Thick 

and thin lines depict High and Low cue discriminability. The difference between survivor 

functions for High and Low cue discriminability is shaded in black (High singleton 

identifiability) and red (Low singleton identifiability). (B) Difference between survivor 

functions for High and Low cue discriminability, computed at fixed levels of singleton 

identifiability. Shaded regions represent period of underadditivity (blue) and overadditivity 

(green) for Low (red) and High (black) singleton identifiability. Error regions are SE across 

sessions. (C) Survivor interaction contrast curves. The SIC curve for monkey Da was 

exclusively sub-additive, consistent with the parallel exhaustive architecture. The SIC curve 

for monkey Le exhibited a change from under- to over-additivity, consistent with the parallel 

coactive architecture.

Lowe et al. Page 38

Vis cogn. Author manuscript; available in PMC 2020 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Variation of performance across sessions. (A) Dendrogram resulting from clustering of SIC 

curves across sessions for monkey Da based on Euclidean distance. Four clusters were 

evident, suggesting the use of different strategies. (B) Form of the four clusters of SIC 

curves. Two (blue, magenta) corresponded to the co-active architecture, and two (red, green) 

were unlike the SIC of any architecture. (C) (left) Proportion correct as a function of MIC 

across sessions for monkey Da. A strong correlation was observed. MIC across session 

number inset. Points are colored in accordance with their cluster identity. (right) Mean RT 
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for correct (filled) and error (open) trials as a function of MIC across sessions. Error RT 

were longer than correct RT, and a strong correlation with MIC was observed for correct but 

not error RT. (D) (left) Proportion correct as a function of MIC across sessions for monkey 

Le. MIC across session number inset. A significant correlation was not observed. (right) 
Mean RT for correct (filled) and error (open) trials as a function of MIC across sessions. 

Error RT were longer than correct RT, and a correlation with MIC was observed for error RT 

and a trend toward correlation with MIC was observed for correct RT.
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Figure 7. 
SFT analysis for different trial outcomes. (A) SIC curves derived from monkey Da 

performance on correct (left), informed errors adjacent to the singleton (middle) and guess 

errors (right). SIC curves for informed and guess errors exhibit more underadditivity relative 

to correct trials. All three SIC curves resemble that of the parallel exhaustive architecture. 

(B) SIC curves derived from monkey Le performance on correct (left), informed errors 

adjacent to the singleton (middle) and guess errors (right). SIC curves for errors exhibit 

more underadditivity (less overadditivity) relative to correct trials. The SIC curve for guess 
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errors resembles the parallel exhaustive architecture, for informed errors, the serial 

exhaustive architecture, and for correct trials, the coactive architecture.
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