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Abstract

OBJECTIVE—Data engineering is the foundation of effective machine learning model 

development and research. The accuracy and clinical utility of machine learning models 

fundamentally depend on the quality of the data used for model development. This article aims to 

provide radiologists and radiology researchers with an understanding of the core elements of data 

preparation for machine learning research. We cover key concepts from an engineering 

perspective, including databases, data integrity, and characteristics of data suitable for machine 

learning projects, and from a clinical perspective, including the HIPAA, patient consent, avoidance 

of bias, and ethical concerns related to the potential to magnify health disparities. The focus of this 

article is women’s imaging; nonetheless, the principles described apply to all domains of medical 

imaging.

CONCLUSION—Machine learning research is inherently interdisciplinary: effective 

collaboration is critical for success. In medical imaging, radiologists possess knowledge essential 

for data engineers to develop useful datasets for machine learning model development.
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Radiology and pathology have been at the forefront of machine learning (ML) medical 

research [1–4] primarily because vast stores of rich information are encoded in medical 

images and, in the case of radiology, routinely stored in health care system archives. 

Numerous ML models, especially those based on deep learning networks, have been 

developed to extract patterns in data from different women’s imaging modalities. For 

example, computer-aided mammographic breast cancer detection technologies use a wide 

range of ML methods, including support vector machines [5, 6], pixel-based ML [7], 
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artificial neural networks [8], and the latest deep learning methods [9, 10]. Several ML 

techniques have been used to identify ovarian masses on ultrasound images [11], and a 

preliminary model of automated ovarian cancer classification has been developed by 

applying a deep learning architecture to cytologic images [12].

A typical ML project can be conceptualized as a pipeline or flowchart (Fig. 1). The first 

phase is to define a goal: what we wish to predict. In biomedical research, goal definition 

requires close collaboration between clinicians and data scientists to establish two critical 

parameters: clinical relevance and technical feasibility. The second phase is to prepare 

relevant data for building ML models—that is, data engineering—which is the foundation of 

effective ML model development and research. Data engineering refers to a set of processes 

required to determine which data are relevant and how the data should be accessed, securely 

stored, and modified in a manner that meets often-complex scientific, engineering, 

institutional, and regulatory requirements. ML systems have numerous parameters that 

require optimization. These parameters vary across different datasets and different 

hypotheses, even when using the same data. ML model development is therefore an iterative 

process of model design, training, testing, and validation, until system performance is 

deemed satisfactory.

Data engineering is a central requirement in every ML project. It lays the foundation for the 

subsequent steps of model design, training, and testing. The accuracy and clinical utility of 

ML models fundamentally depend on the quality of the data used for model development. 

This article aims to provide radiologists and radiology researchers with an understanding of 

the core elements of data preparation for ML research. We will present key concepts and 

steps in data engineering (Fig. 2) with a focus on women’s imaging. Clinical, ethical, and 

legal considerations associated with data engineering will also be discussed.

Key Concepts in Data Engineering

In medical imaging, most data are acquired for clinical purposes and not for ML research or 

model development. For this reason, clinical data, including imaging data, are generally 

unstructured or only partially structured and are often stored in a variety of disparate formats 

and locations. The field of data engineering covers the entire process of data acquisition, 

curation, secure storage, and retrieval for ML model development. As shown in Figure 2, 

data engineering can be divided into four key components: data collection, data storage, data 

cleansing, and data curation. We will discuss each component in the context of developing 

clinically relevant ML models.

Clinical Considerations in Data Engineering

How to Identify Key Data and Data Sources

Data to be collected and curated in the data engineering process can vary on the basis of the 

clinical question and the chosen ML method [13, 14]. Supervised learning requires labeled 

data. Unsupervised learning uses unlabeled data to identify patterns and generate meaningful 

labels to improve the classification or organization of the data. These labels can then be used 

for supervised training approaches, a hybrid method known as semisupervised learning [13, 
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14]. Labeling medical data requires time and domain expertise. Although the vast majority 

of data in the world are unlabeled, relatively few medical ML studies use unlabeled data [15, 

16]. The main reason for this is the large amount of training data required to recognize 

meaningful patterns in unlabeled data. As such, most of the published ML studies in 

women’s imaging and breast imaging rely on labeled data with supervised learning 

approaches [9, 10, 17–28] (Table 1).

Expert data annotation and curation and the creation of massive datasets are resource 

intensive. Careful project selection and definition of the clinical question are essential for 

generating outcomes that justify the substantial investment required to successfully execute 

and deploy ML models in clinical care. It is critical that project selection be informed by 

both radiologists and ML scientists. Radiologists play a lead role in defining high-yield use 

cases (i.e., clinical questions and goals), constructing datasets, and establishing ground truth, 

whereas data scientists assess technical feasibility and approach.

Once the use case for an ML research project is defined, the clinical question dictates the 

labels, or ground truth, required for supervised training and downstream algorithm testing 

and validation. For instance, if the outcome of interest is the detection of malignancies, 

radiologists could provide screening mammograms annotated with findings (Fig. 3) that are 

correlated with the final pathologic results and imaging and clinical follow-up as labels. 

Another example is risk prediction based on breast density: radiologists could provide 

screening mammograms without image annotation but with a breast density assessment, 

whether based on consensus or individual expert readers versus volumetric quantification by 

software, and use subsequent breast cancer diagnosis within a predefined time frame as 

labels. Again, radiologists play a crucial role in defining ground truth to ensure that model 

outputs augment the radiologists’ perception and interpretation without sacrificing the 

specificity of the imaging tests [29].

The clinical question also dictates whether a text-based, image-based, or combined text-and 

image-based approach would be most informative, which then guides the process of 

identifying data sources and collecting key data. Table 1 summarizes practical examples of 

key data in text- or image-based ML studies in breast imaging [9, 10, 17–28]. Bahl et al. 

[21] applied text-based ML models to predict the upgrade rate of high-risk breast lesions 

using clinical information from the electronic health records (EHRs), mammography 

reports, and core needle biopsy reports as input, with surgical pathologic reports and follow-

up outcomes as labels. To accurately detect and localize cancers on mammograms, Ribli et 

al. [27] applied an image-based convolutional neural network trained with screening 

mammograms, with pixel-level ground truth annotation of recalled lesions and histologic 

proof of cancer or benignity. Key data commonly include known or suspected factors 

associated with the clinical question or any additional information that might have potential 

clinical, social, biologic, or scientific relevance to the clinical question.

In its guidance document regarding premarket notification (510(k)) submissions for 

computer-assisted detection devices applied to radiologic images and radiologic data, the 

U.S. Food and Drug Administration provides nonbinding recommendations for the types of 

key data and reference standards to be included in databases for training, testing, and 
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validation [30]. Public databases serve as useful prototype references for the design and 

construction of useful databases [31–33]. However, although these databases provide a 

useful template, they may not contain all the elements required for specific ML research 

projects.

Once radiologists, data scientists, and data engineers have identified the key data needed for 

specific ML applications, the team will usually collaboratively determine the data sources. 

The data source is of paramount importance, because incorporating the correct data stream 

can facilitate model development and improve model predictive accuracy [34]. Common 

data sources are public databases, private databases from single centers or partnering 

institutions, and a combination of both private and public databases [9, 10, 17–28] (Table 1). 

Public databases range from single-center datasets (e.g., INbreast) to collaborative datasets 

from multiple centers and industries (e.g., Digital Database for Screening Mammography 

and Lung Image Database Consortium image collection) [31, 32, 35, 36]. As an example, 

Ribli et al. [27] trained their models on the public Digital Database for Screening 

Mammography and a private institutional dataset and tested their models on the INbreast 

database, before becoming the second place winner of the Digital Mammography DREAM 

challenge, which consisted of 86,000 examinations without annotation, except for a binary 

label of positive or negative breast cancer diagnosis within 12 months [37]. Developed as 

solutions to image sharing for improved clinical processes, the Integrating the Healthcare 

Enterprise and the Radiological Society of North America’s Image Share Network provide 

image exchange platforms across centers that could serve as models to facilitate multisite 

sharing and database construction of deidentified images specific for research [38, 39].

Multisite data sources provide more-comprehensive and diverse data across health care 

settings, practice types, geography, and patient demographics for ML algorithm training, 

which is likely to improve the generalizability of developed models. Because data labeling is 

costly and time-consuming, preexisting databases commonly do not contain labels 

appropriate for the specific research question. Crowdsourcing presents a solution to collate 

ground-truth annotations via an online open call to a large group of individual participants of 

varying experiences and knowledge to voluntarily undertake the task [40]. Unfortunately, 

efforts to create large labeled databases using multisite data or labeling sources introduce 

data standardization challenges [31, 40].

In May 2017, the American College of Radiology (ACR) launched the Data Science 

Institute with the goals of guiding and facilitating appropriate development and 

implementation of artificial intelligence tools to help improve medical imaging care [41, 42]. 

To lead the definition of use cases and data elements, the ACR Data Science Institute 

recently released a group of use cases for industry feedback [43]. In addition, it is working 

to provide tools for institutions interested in developing annotated image datasets around the 

specific use cases defined by the ACR Data Science Institute. Ultimately, the success of the 

ACR Data Science Institute and partnering institutions would lead to availability of 

standardized multisite datasets applicable to specific high-yield use cases, creating a 

framework for the development and deployment of clinically relevant ML models. Before 

such multisite datasets with standardized data elements become readily available and 

accessible, radiology researchers aiming to use their own institutional data and construct 
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their own databases should set up processes of obtaining, curating, annotating, and storing 

their own datasets.

How to Obtain and Store Data

Commonly within a single institution, clinical data are fragmented across imaging systems, 

departmental servers, EHR systems, and other health care information systems. The 

increasing trend toward health care organization consolidation with the absorption of 

multiple hospitals and practices into conglomerate enterprises has contributed to the growing 

complexity of clinical data consolidation. The Health Information Technology for Economic 

and Clinical Health Act of 2009 has led to significant increases in hospitals’ adoption of 

EHR systems and contributed to the advent of big clinical data [44]. Transition to a unified 

EHR system, combined with other data management and health information technology 

infrastructure efforts, required an investment of more than $1 billion at our institution [45]. 

Although initially targeted at improved clinical care, such efforts have created the context 

for eventual large-scale ML technology development and adoption success. Provided that the 

research activity is approved by an appropriate institutional review board, research 

investigators at our institution can request relevant clinical data and download imaging 

studies via a platform supported by the Research Patient Data Registry, a centralized data 

repository that consolidates and houses around 7 million patients and 3 billion rows of 

clinical data within the health care enterprise.

Many academic institutions have similar infrastructures with different levels of clinical data 

granularity or patient pool size for research purposes. If institution-wide resources do not 

exist, many radiology departments have internal radiology information systems, which can 

be queried to generate relevant radiology reports, examination requisition information, and 

patient demographic information. Availability of these technologic tools and personnel 

support is vital to the collection of necessary clinical data for ML algorithm development.

Text-based data

Most EHR data can be formatted into text-based data, which can be stored, organized, 

managed, and retrieved by widely used desktop programs, such as Microsoft Excel and 

Microsoft Access. These tools allow clinical experts, data engineers, and computer scientists 

share the same data relatively easily. Meticulous attention to the integrity and security of 

these data is essential in the prevention of unauthorized and undesirable data disclosure at a 

massive scale. Depending on the research aims, the research team may decide to deidentify 

the data. Password encoding is recommended as a layer of protection and security against 

unauthorized use. The prevention of unintended or unauthorized disclosure of protected 

health information (PHI) requires advanced measures that are governed by the HIPAA. Data 

security requirements vary by institution and governing authority. However, several 

principles are likely to apply generally: Transmission and storage of datasets should stay 

within the confines of secured servers and network, data transfer should take place using 

encrypted and secured file transfer protocols, and data management policies should be 

defined by appropriate experts within the medical or academic institution. These processes 

are particularly important if data are not deidentified, but remain important and relevant, 

even when data are robustly deidentified.
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Imaging data

In most large health care organizations, imaging data are stored on a PACS and are typically 

also archived on hospital clinical servers for clinical use. Medical imaging data are typically 

stored in DICOM format to facilitate system interoperability. Besides image data, the 

DICOM standards contain related metadata for each imaging examination as a wrapper 

within each data file. Several programming languages (e.g., Python and Matlab) provide a 

DICOM library that allows us to access both the metadata and the image data. For example, 

a 2D ultrasound breast image in a DICOM file can be read into a 2D matrix in either Python 

or Matlab. Each element of the 2D matrix represents the intensity value of the corresponding 

pixel in the image. We can then apply different image-processing techniques to the 2D 

matrix. For medical imaging data to be organized, managed, retrieved, and manipulated for 

ML purposes, while minimizing the risk of disruption to clinical services, imaging or 

annotation data should be securely stored in alternate storage, such as secured research 

servers or offline research environments separate from the PACS and clinical servers. The 

research team, particularly the radiologists, must decide whether image annotation should 

take place in the PACS to create a markup database before image export or later in the 

research environment during data curation and image preprocessing. Creating markups in 

the PACS may save time and allow image review on U.S. Food and Drug Administration–

approved display devices, which is particularly important to high-resolution images such as 

mammography. However, archiving of annotations within the PACS as part of the clinical 

record may have medicolegal implications and may affect subsequent interpretations when 

present on comparison studies. Creation of a separate annotation-only database is one 

strategy to leverage the availability of images from the clinical PACS for ML model 

development. However, this approach introduces additional network data transfer demands 

onto the clinical PACS, potentially disrupting clinical care operations. This risk can be 

mitigated by secure storage of select deidentified images from the PACS along with their 

annotations in a system separate from the PACS, but able to query the PACS and retrieve 

related data as required.

In general, deidentification of medical images is desirable for risk mitigation and will 

optimally occur at the time of image export from the PACS before storage in a secure data 

environment for research purposes. Medical imaging data poses unique challenges to the 

deidentification process; data engineers should familiarize themselves with the specific 

intricacies of the DICOM format, particularly PHI contained in the data [46]. Resources and 

tools to deidentify DICOM exist to help researchers [46–48]. Data engineers must take care 

when using existing deidentification toolkits to prevent the risk of disclosing PHI [47]. 

Patient identification mapping can be performed for linkage with text-based EHR data 

during the deidentification process.

As shown in Figure 4, data transfer and storage vary depending on the sources of data and 

the levels of data usage. A secure local drive may be preferred if data usage is within a 

specific research group. Institutional network storage (and computation) has been growing 

rapidly over the past decade. The Big Data to Knowledge initiative, launched by the 

National Institutes of Health in 2012, aims to build six to eight investigator-initiated big data 

centers to improve data sharing and accessibility and knowledge discovery [49]. Institutional 
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centers, such as The Center for Clinical Data Science, a joint effort of Massachusetts 

General Hospital and Brigham & Women’s Hospital in Boston, provide a platform for 

sharing data and ML expertise [50]. Cloud-based data storage is also growing rapidly with 

products such as MongoDB Atlas, Microsoft Azure for health, Amazon Web Service in 

Healthcare, and Google Cloud for Healthcare, all of which offer massive data storage 

systems and ML tools to health care organizations.

Each of these data storage solutions has advantages and disadvantages. Local storage has the 

merits of easy setup, convenient data access, and direct control by the research group. 

However, storage capacity may be limited when compared with nonlocal storage providers. 

Moreover, data security, backup, and access permissions require active management, which 

requires expertise and personnel. The initial capital costs of personnel and equipment may 

be prohibitive for many research groups. Nonlocal storage and computational infrastructure 

can be shared among multiple research groups. Shared capital costs, particularly when 

underwritten by institutional or departmental support, mitigate these challenges and provide 

a pathway to self-sufficiency for research groups starting out in medical imaging ML. 

Institutional data centers and commercial cloud offerings are also able to support ML 

analysis tools and provide new research groups with standardized frameworks and tools to 

integrate ML model generation into their research. Data backup and restoration of cloud 

storage may be slower compared with local storage because of limited Internet bandwidth. 

Although cloud storage offers greater accessibility, data access is completely blocked during 

Internet or service outage. Concerns with data security of cloud storage cause the most 

unease at many institutions.

Data Cleansing

Data cleansing is the process of identifying incomplete, incorrect, inaccurate, and irrelevant 

data and modifying, deleting, improving, or replacing those data. Data cleansing is a routine 

part of almost every ML project. Some of the key characteristics of well-conditioned data 

include a wide variety of the conditions being considered, a balanced representation of 

classes, high-quality labels (i.e., high interrater agreement), missing data filled in with 

meaningful values, and consistent data format that can be represented mathematically.

For text-based medical data, common problems are spelling, grammar, and punctuation 

errors; missing entries in patient records; contradictory data; nonunique identifiers, such as 

one patient with two forms of the same name; and data integration problems for more than 

one EHR system. Data cleansing typically involves single-file cleansing processes, such as 

parsing text, correcting mistakes, and adding missing data; and multiple-file cleansing 

processes, such as format standardization, entry matching, and consolidation of multiple 

files. Figure 4 is an example of text-based data cleansing.

Medical images have specific characteristics that may require preprocessing before the ML 

model development. For example, ultrasound images encounter greater challenges in 

deidentification when PHI is embedded in the images. Preprocessing using special software 

is required to remove PHI from the images; even then, removing the metadata with potential 

PHI from certain images remains difficult and may be incomplete. Ultrasound images also 

tend to be highly variable owing to operator-dependent acquisition. Objects such as cysts on 

Cui et al. Page 7

AJR Am J Roentgenol. Author manuscript; available in PMC 2020 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



breast sonography may exhibit variation in echogenicity and artifactual internal echoes 

owing to different device settings or transducer positions. Ultrasound machines from 

different system integrators typically use different gray scales and may also have different 

default FOVs. To mitigate this variability, conventional image-processing techniques, such 

as denoising, contrast enhancement, normalization, and morphologic transformation (down- 

or up-sampling), are typically performed. Figure 5 is an example of image-processing 

techniques typically applied to breast ultrasound data. This preprocessing is analogous to 

data cleansing and is, in our experience, a routine part of ML model development with 

sonographic image data. More complicated preprocessing schemas, typically comprising a 

sequence of techniques, have been applied to several domains in women’s imaging. For 

example, Khazendar et al. [51] preprocessed ultrasound images of ovarian tumors in three 

steps, including a nonlocal mean filter for denoising, a negative transformation of the 

denoised image, and the absolute difference between the results from the first two steps, to 

generate data suitable for the ML method used (a support vector machine). In summary, 

whether text or image based, data generally have to be processed or cleansed in a robust and 

standardized manner before the ML model development.

How to Curate and Annotate Data

Data curation comprises organizing, integrating, and processing data collected from various 

sources into usable data. It should allow continued active management, maintenance, and 

reuse of data over time. Example curation processes of multiple public imaging databases, 

such as the Curated Breast Imaging Subset of Digital Database for Screening 

Mammography and collections in The Cancer Imaging Archive, are available as references 

[32, 33, 46, 52]. Data curation may be manual, automated, or semiautomated. For example, 

semantic parsing of DICOM metadata, EHR data, and radiology and pathology reports can 

extract useful features and compile these into usable sortable forms or spreadsheets [52]. ML 

models may be used to curate data, followed by human review and additional annotation, 

depending on the specific requirements of the project.

Accurate data annotation and labeling are vital to the success of algorithm development. As 

clinical experts, appropriately qualified radiologists should generally oversee or conduct the 

labeling process in a manner that preserves accuracy while minimizing variability. Prior 

radiology and pathology studies have relied on independent experts to label the findings on 

images; agreements between both were adopted as ground truths [31, 53]. Discordant labels 

are presented to both experts for discussion or to additional expert adjudicators, with the 

final decisions based on consensus [31, 53].

Data Augmentation and Synthetic Data

The scarcity of accurately annotated medical data has been a critical challenge for studies 

intended to apply ML methods to clinical questions. Data augmentation has proven to be an 

effective way to enlarge training dataset size. The early idea of augmenting data generated a 

large public-domain image database of numeric and alphabetic characters by learning the 

parameters of image defects [54]. This is the essence of conventional data augmentation, 

also called data warping. For example, new images with geometric (or color) 

transformations are created by performing image-processing techniques on original images. 
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Figure 6A shows a few examples of commonly used data augmentation techniques: rotation 

and flipping. Vasconcelos et al. [55] describe a number of data-warping techniques before 

applying a convolutional neural network to classify skin lesions in their study. These 

techniques include geometric augmentation (rotation and flipping), color augmentation, and 

distortion by the lesion’s main axis size. The benefits of using data augmentation in different 

ML models have also been discussed previously [56].

Although standard data augmentation directly manipulates existing data, generative 

adversarial networks [57], a recent technical advance in deep learning, can create synthetic 

data through learning from data. A simplified example of a generative adversarial network is 

shown in Figure 6B. There are two neural network–based models, a generative model and a 

discriminative model, to be trained. The purpose of the generative model is to generate better 

fake images from random noise to fool the discriminative model, whereas the discriminative 

model is trained to better distinguish real images from fake ones. The discriminative model 

and generative model are analogous to two players playing a game in which the desired 

outcome—correct image classification—is known. Generative adversarial networks have 

been effective in many applications, especially those with small datasets [58]. More details 

of generative adversarial networks can be found elsewhere [57–60].

Ethical Considerations in Data Engineering

The Belmont report, published in 1979 [61], establishes the basic ethical principles for 

research involving human subjects, including respect for persons, beneficence, and justice. 

Medical ML model development routinely uses large amounts of human subject data and, 

therefore, must even more dutifully and cautiously comply with these basic ethical 

principles. The black-box tendency of certain ML methods, compounded by the power 

imbalance and knowledge gap between individual subjects included in these datasets and the 

data controllers, implies that governance by these ethical principles should occur 

deliberately at the outset of the data engineering process [62, 63] and that ethical 

considerations should be carefully considered when providing or restricting access to data.

Ethical considerations of data engineering begin at goal setting. Developing clear objectives 

in medical ML research can be challenging when exploratory studies rely on algorithms to 

identify correlations without underlying hypotheses [63]. Clinical experts and data engineers 

should have the common goal of protecting stakeholder interests, especially those of subjects 

whose data have been incorporated into the data-engineering process, individuals who may 

be subjected to subsequent model application (e.g., risk prediction or profiling) by the 

models generated, and society at large [63]. Explicit, conscientious, and thorough vetting of 

collected data helps identify deficiencies in the dataset during the data engineering process. 

This awareness may also prevent the use of classification models in inappropriate 

populations during downstream applications.

How to Avoid Bias

In traditional clinical studies, researchers strive to carefully construct their cohorts or control 

groups in well-designed retrospective or prospective studies to avoid biases and 
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confounding. ML research commonly uses real-world data from the EHR, insurance claims, 

and personal devices acquired for nonresearch purposes. Patient self-selection, which is 

confounding by indication, and inconsistent outcome availability are likely inadvertent 

consequences given these uncontrolled data sources [34]. Social constructs and economic 

and political systems shaping the social determinants of health extend to the types of data 

available; at the simplest level, it is intuitive that underserviced populations will have fewer 

data, and, therefore, data-derived models may not generalize well to underserviced 

populations. However, bias, both recognized and unrecognized, distorts the delivery of 

medical care in more complex ways. Data derived from the clinical work stream reflects 

these biases. Moreover, the high cost of health care information technology and the shortage 

of ML expertise create distortions. For example, hospitals with the infrastructure to manage 

and analyze large data may also service the wealthy, resulting in a widening gap between 

those who have or lack resources [62, 64]. Health care delivery is known to vary by race. 

Few, if any, outcome or genetic studies are available in nonwhite populations, with barriers 

related to distrust from historical and potential discrimination and challenges in establishing 

contact [65–67]. Medical treatments and guidelines are commonly extrapolated from 

research data derived from largely white populations. Research has shown that breast cancer 

age distribution and prognosis differ by race, with peak diagnoses at younger age in 

nonwhite women and poorer survival in black women compared with white women [68–70]. 

Stapleton et al. [70] state that the U.S. Preventive Services Task Force’s “age-based 

screening guidelines that do not account for race may adversely affect nonwhite 

populations.” Similarly, ML research using clinical data based on unconsciously biased 

medical decisions may mirror these biases in its models.

Recognition of and vigilance for potential biases in the data sources are the first steps to 

mitigating bias in data engineering. Purpose limitation to collecting data for specific and 

well-thought-out research aims, prohibiting arbitrary data reuse, and minimizing collection 

to high-quality relevant data are ideal [63], but may not be practical at the time of database 

construction.

At the project level, radiologists and data engineers should deliberately construct a balanced 

and diverse dataset, to ensure sound clinical evaluation of ML model performance and to 

avoid engineering and human bias. Overfitting, which refers to a learning model overly 

customized to its training data [71], should also be avoided.

At the policy level, researchers can use ML models to help resolve disparities and identify 

areas of needed research [72]. Fairness, accountability, governance, and respect for 

stakeholder and public interests should guide ethical considerations in data engineering.

Legal Considerations in Data Engineering

Currently and in the foreseeable near future, radiologists are likely to approve final reports 

and retain primary responsibility for the acquisition and interpretation of imaging studies, 

with or without the support of ML applications [13]. Therefore, it is vital for radiologists to 

recognize potential legal implications throughout the development of an ML algorithm, 
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along each step of data collection and engineering, algorithm training, testing, and 

validation, and ultimately algorithm implementation in clinical care.

HIPAA and Informed Consent

Privacy is both an ethical and legal real-world concern in ML and big data research. Data 

protection is of paramount importance in the era of advanced data-mining and cloud-

computing technologies. The HIPAA Privacy Rule governs strict PHI policy in the United 

States. The U.S. Department of Health and Human Services provides guidance on two 

deidentification methods—Expert Determination and Safe Harbor—to satisfy HIPAA’s 

standard [73]. Health care systems have been vulnerable to security breaches, similar to 

other industries and organizations. Imaging data remain insecure, even within the confines of 

hospital radiology servers [74]. Researchers must safeguard identifiable data in the research 

environment and remain compliant with both institutional policies and governmental 

regulations.

HIPAA requires written authorization from patients for the disclosure and use of PHI for 

purposes other than treatment, payment, and operations. This authorization is in the form of 

an informed consent for researchers to obtain PHI. The institutional review boards have 

typically deemed radiology ML studies as posing minimal risk to patients and have waived 

the requirement for informed consent. Neither institutional review board approval nor 

informed consent is required for researchers using public databases (Table 1).

Compared with HIPAA, however, privacy regulations are more stringent with broader 

coverage under the European Union’s General Data Protection Regulation (GDPR). Put into 

effect in May 2018 and introduced by the U.K. Information Commissioner’s Office, the 

GDPR applies to all research involving personal data of any resident located in the European 

Union [75]. Coded data are treated as identifiable data under the GDPR. Processing of 

personal health, genetic, and biometric data is prohibited; exceptions include explicit 

consent provided by the data subject and processing for reasons of substantial public interest 

[75]. Consent poses a great challenge in ML and big data research, given that the purposes 

of data collection may be unclear, reuse of the collected data may not have been anticipated, 

and the opaque nature of ML algorithms [63]. To address this difficulty, the Information 

Commissioner’s Office suggests a graduated consent model with just-in-time notifications to 

foster trust as part of an ongoing relationship with the individual [75]. Radiologists must 

familiarize themselves with the basic GDPR requirements before receiving personal data 

from the European Union.

Data Ownership, Intellectual Property, and Data Sharing

As part of the consent disclosures under GDPR, data subjects have the rights to request 

access, rectification, erasure, or restriction of processing, or to object to processing of their 

personal data [75]. Enabling patient access to and control of personal health care data 

appears to encourage active patient engagement in improving their health [76]. Besides 

patients, health care providers and hospital systems are also stakeholders with vested 

responsibilities and interests in the health care data [62]. Ownership of subsequently 

developed intellectual property from the use of health care data are equally unclear. A data 

Cui et al. Page 11

AJR Am J Roentgenol. Author manuscript; available in PMC 2020 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



use agreement signed by the patient could specify data quality, security, and use with more 

comprehensive rules for data reuse and intellectual property [64, 76].

The contribution of health care data to larger shared databases is useful, particularly in the 

context of larger organizational efforts where a data-sharing framework has been 

established. In such cases, it is important to ensure that patient privacy is protected and 

government regulations are followed. Trends and requirements in data sharing have 

increased in recent years, particularly regarding clinical trial research data. The National 

Institutes of Health and the International Committee of Medical Journal Editors issued 

requirements for researchers to address data sharing in a data-sharing statement [77, 78]. 

Nonetheless, research data generated or collected as part of a research study or clinical trial 

are different from clinical data, which are the primary data source of ML research. Some 

large health care institutions have established committee oversight of data-sharing requests 

with third parties. Compliance with HIPAA and GDPR, where applicable, should be 

enforced in data sharing; violation of privacy laws can incur enormous penalties [62, 75].

Conclusion

Data engineering represents one of the most important and challenging tasks in ML 

research. It greatly influences downstream training, testing, validation, and application of 

ML models with significant implications for patient care and ethical practice, including the 

perpetuation of bias and systematic unfair discrimination. Radiologists are well suited to the 

role of clinical information manager, gatekeeper of data, and collaborative definer of use 

cases [79]. Because radiologists are intimately familiar with imaging and other sources of 

clinical information required for the development of ML models, their role should expand to 

the interpretation of the output of ML models, by interpreting and contextualizing imaging 

with the patient’s overall clinical picture, with the aid of augmented intelligence. 

Interdisciplinary collaboration is paramount to the success of ML research. Radiologists 

possess the critical knowledge to help data engineers curate the most useful and unbiased 

data for ML.
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Fig. 1—. 
Flowchart illustrating pipeline of machine learning (ML) project.
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Fig. 2—. 
Flowchart illustrating key components of data engineering.
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Fig. 3—. 
47-year-old woman. Screening mediolateral-oblique mammographic image shows 

annotation of recalled finding (oval).
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Fig. 4—. 
Example of data cleansing (applied to information of fictitious persons). Specifically, 

cleansing process includes correcting misspelling, filling missing entry, standardizing date-

of-birth (DOB) format, correcting contradicting age information, and merging two data 

sources. ACC = Accession.
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Fig. 5—. 
50-year-old woman. Example of breast ultrasound image preprocessing for machine learning 

is shown.
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Fig. 6—. 
50-year-old woman (same patient as Fig. 5). Examples of data augmentation and simplified 

framework for generative adversarial network are shown.

A, Data augmentation of ultrasound images is shown.

B, Flowchart shows simplified framework for generative adversarial network.
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