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ABSTRACT 
EAR motif-containing proteins are able to repress gene expression, therefore play important roles 
in regulating plants growth and development, plant response to environmental stimuli, as well as 
plant hormone signal transduction. ABA is a plant hormone that regulates abiotic stress tolerance 
in plants via signal transduction. ABA signaling via the PYR1/PYLs/RCARs receptors, the PP2Cs 
phosphatases, and SnRK2s protein kinases activates the ABF/AREB/ABI5-type bZIP transcription 
factors, resulting in the activation/repression of ABA response genes. However, functions of many 
ABA response genes remained largely unknown. We report here the identification of the ABA- 
responsive gene SlEAD1 (Solanum lycopersicum EAR motif-containing ABA down-regulated 1) as 
a novel EAR motif-containing transcription repressor gene in tomato. We found that the expres-
sion of SlEAD1 was down-regulated by ABA treatment, and SlEAD1 repressed reporter gene 
expression in transfected protoplasts. By using CRISPR gene editing, we generated transgene- 
free slead1 mutants and found that the mutants produced short roots. By using seed germination 
and root elongation assays, we examined ABA response of the slead1 mutants and found that ABA 
sensitivity in the mutants was increased. By using qRT-PCR, we further show that the expression of 
some of the ABA biosynthesis and signaling component genes were increased in the slead1 
mutants. Taken together, our results suggest that SlEAD1 is an ABA response gene, that SlEAD1 is 
a novel EAR motif-containing transcription repressor, and that SlEAD1 negatively regulates ABA 
responses in tomato possibly by repressing the expression of some ABA biosynthesis and signal-
ing genes.   
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Introduction 

The EAR (ERF-associated amphiphilic repression) 
motifs, which contain a conserved sequence pat-
tern of (L/F)DLN(L/F)xP, were initially identified 
in the class II ERFs (Ethylene-responsive factors) 
and some C2H2 family proteins, and have been 
shown to confer transcriptional repression 
activities.1 Based on sequence comparison of the 
EAR motifs in class II ERFs, C2H2 family proteins, 
and some other EAR motif-containing proteins, 
the consen sus sequence patterns of EAR motifs 
were further refined as LxLxL and DLNxxP.2 

EAR motif-proteins mediated transcriptional 
repression has been considered to be the main 
form of transcriptional repression in plants,3 and 
a genome wide searching of LxLxL or DLNxxP 
sequence-containing proteins have identified 

more than 20,000 EAR motif-containing proteins 
from 71 different plant species.4 

EAR motif-containing proteins are able to function 
as transcription repressors or recruit co-repressors to 
repress gene expression, therefore play important roles 
in regulating plants growth and development, as well as 
plant response to environmental stimuli.4 For example, 
KIX8 (KINASE-INDUCIBLE DOMAIN 
INTERACTING 8) and KIX9 repress leaf growth via 
function as adaptor proteins for the co-repressor 
TOPLESS,5 OFP1 (Ovate family protein 1) regulates 
cell elongation via repressing the expression of 
GA20ox1 (Gibberellin 20-oxidase 1),6 TOE1 (TARGET 
OF EARLY ACTIVATION TAGGED (EAT) 1) and 
TOE2 regulate flowering via repressing the expression 
of FT (FLOWERING LOCUS T),7 whereas several 
repressor ERFs such as ERF4 and ERF7 are involved  
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in the regulation of plant responses to stresses.1,8,9 

Several tomato ERFs have also been found to regulate 
plant growth and development including stomatal den-
sity, photosynthesis and fruit ripening, and plant resis-
tance pathogen infections.10–12 

EAR motif-containing proteins are also involved in 
the regulation of hormone signaling, for example, 
ERFs regulate ethylene signaling,1 JAZ (Jasmonate 
ZIM domain) proteins regulate jasmonic acid signal-
ing, Aux/IAA proteins regulate auxin signaling, and 
D53 (DWARF 53) and SMXL7 (SMAX1-LIKE 7) 
regulate strigolactone signaling.2,13-16 At least in 
some cases, changes in hormone singling caused by 
EAR motif-containing proteins lead to alternation in 
plants growth and development, as well as plant 
response to environmental stimuli. For example, 
D53 and SMXL7 are involved in the regulation of 
shoot development.15,16 Whereas AITRs (ABA- 
induced transcription repressors), a novel family of 
transcription repressors involved in the regulation of 
ABA (Abscisic acid) signaling, are able to regulate 
plant response to abiotic stresses.17 

ABA is one of the five classic hormones in plants 
and plays a key role in regulating plant responses to 
abiotic stresses such as drought, heat, cold, and 
salinity.18–20 ABA regulates plant abiotic stress 
responses via signal transduction.18–22 ABA signaling 
is started by the recognition of ABA molecules by the 
PYR1 (Pyrabactin resistance 1)/PYLs (PYR1-likes) 
/RCARs (Regulatory component of ABA receptors) 
receptors.23–25 Binding of ABA by the PYR/PYLs/ 
RCARs receptors enables their interaction with the 
A-group PP2Cs (PROTEIN PHOSPHATASE 2Cs) 
phosphatases,26,27 who are interacted, at the absence 
of ABA, with the SnRK2s (NONFERMENTING 1 
(SNF1)-RELATED PROTEIN KINASES 2s) protein 
kinases and inhibiting their activities.28 Interaction of 
PYR/PYLs/RCARs with PP2Cs led to the release of 
SnRK2s, which in turn is able to activate the down-
stream ABF/AREB/ABI5-type bZIP (basic region leu-
cine zipper) transcription factors,29,30 resulting in the 
activation/repression of ABA response genes, and 
therefore the changes of plant responses to abiotic 
stresses.22,26-28,31 

Among the ABA response genes, some have 
been identified as transcription factor genes from 
several different families such as the R2R3 MYB 
family, the NAC (NAM, ATAF1/2, and CUC) 

family, the bHLH (basic Helix-Loop-Helix) family, 
the GARP (Golden2, ARR-B, Psr1) family, and the 
WDR (WD40-repeat) family.31–39 As mentioned 
above, we have previously identified a novel family 
of transcription factors AITRs, we found that 
AITRs are conserved in angiosperms, and function 
as negative regulators of ABA signaling.17 

However, even though some of the AITRs contain 
a full conserved LxLxL EAR motif,17 AITRs were 
not identified in the previously genomes wide 
searching for EAR motif-containing proteins,4 

possibly due to the amino acid sequence diversity 
of the EAR motif-containing proteins.4 This sug-
gests that there may still be more EAR motif- 
containing proteins remained unidentified. 

To identify novel EAR motif-containing regulators 
in ABA signaling in tomato, we performed data 
mining by using available transcriptome datasets to 
identify ABA-responsive genes with unknown func-
tions, and then searched for the presence of EAR motif 
in the candidates. We found that the expression of 
SlEAD1 (Solanum lycopersicum EAR motif-containing 
ABA down-regulated 1) was down-regulated by ABA 
treatment, and SlEAD1 is a novel EAR motif- 
containing transcription repressor in tomato. By gen-
erating and characterizing gene edited slead1 mutants, 
we found that SlEAD1 is involved in the regulation of 
root elongation, and functions as negative regulator in 
regulating ABA responses in tomato. 

Materials and Methods 

Plant Materials and Growth Conditions 

The Columbia-0 (Col) wild type Arabidopsis 
(Arabidopsis thaliana) was used for protoplast isola-
tion. The Micro-Tom wild type tomato (Solanum lyco-
persicum) was used for protoplast isolation and plant 
transformation, and as a control for seed germination 
and root elongation assays. The slead1 mutants were 
generated by using CRISPR/Cas9 (clustered regularly 
interspaced short palindromic repeats/CRISPR- 
associated protein 9) gene editing in the Micro-Tom 
wild type background. 

To generate seedlings for plant transformation 
and protoplast isolation, seeds of Micro-Tom wild 
type tomato were surface-sterilized and germi-
nated as described previously.40 For seed 
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germination and root elongation assays, surface- 
sterilized seeds of the Micro-Tom wild type and 
the slead1 mutants were plated on 1/2 MS plates 
with 0.8% agar and 1% sucrose. The plates were 
kept at 4°C in darkness for 2 days and then trans-
ferred into a plant growth chamber. 

For protoplast isolation from Arabidopsis, seeds 
of the Col wild type were sown directly into soil 
pots and grew in a growth chamber. The growth 
conditions in the growth chamber were set at 22°C 
for Arabidopsis and 24°C for tomato, with a light 
density of ~120 μmol m−2 s−1, and a 16 h/8 h light/ 
dark cycle. 

Bioinformatics Analysis of EADs 

Homologues of SlEAD1 in other plants were iden-
tified by using “Protein Homologs” on phytozome 
(https://phytozome.jgi.doe.gov/pz/portal.html#), 
and check on PlantEAR (http://structuralbiology. 
cau.edu.cn/plantEAR) to see if they have been 
identified as EAR motif-containing proteins. The 
full-length amino acid sequences of EADs 
(Supplemental file 1) were used for phylogenetic 
analysis by using “One Click” mode on phylogeny 
(http://www.phylogeny.fr/simple_phylogeny.cgi) 
with default settings, and for sequence alignment 
by using BioEdit. 

ABA Treatment, RNA Isolation and Quantitative 
RT-PCR (QRT-PCR) 

To examine the expression of SlEAD1 in response 
to ABA, 14-day-old Micro-Tom wild type seed-
lings were cut into pieces and treated with 50 μM 
ABA or solvent methanol as a control for 4 h in 
darkness on a shaker at 40 rpm. Samples were 
frozen in liquid N2 and used for RNA isolation. 
To examine the expression of ABA signaling and 
biosynthesis genes in the Micro-Tom wild type 
and the slead1 mutants, 14-day-old Micro-Tom 
wild type and slead1 mutant seedlings were frozen 
in liquid N2 and used for RNA isolation. 

Total RNA from tomato seedlings were isolated 
by using the Plant RNA Kit (OMEGA), cDNA was 
synthesized as described previously,37 and used as 
templates for qRT-PCR to examine the expression 
of SlEAD1, and ABA signaling and biosynthesis 

genes. The primers used for qRT-PCR analysis of 
SlEAD1 are 5ʹ-CATCGTGCTAGTGGTTCCCC-3ʹ 
and 5ʹ-ATCATCACCACCAAAGAGCGA-3ʹ. The 
primers used for qRT-PCR analysis of SlACT2 
(Solyc11g005330) are 5ʹ-TGGATCTTGCTGGTC 
GTGATTTA-3ʹ and 5ʹ-AATTTCCCGTTCAG 
CAGTGGT-3ʹ. The primers used for qRT-PCR 
analysis of SlSnRK2.1 (Solyc5g056550), SlSnRK2.4 
(Solyc02g090390), and SlNCED2 (Solyc08g016720) 
have been described previously.41,42 

The EazyScript First-Strand DNA Synthesis 
Super Mix (TransGen Biotech) used for cDNA 
synthesis are able to remove DNA in the RNA 
sample, and synthesized cDNA were further exam-
ined by PCR amplification of SlACT2 by using 
intron-spanning primers as described previously,43 

to further ensure there is no DNA contamination. 
TB Green® Premix EX TaqTM (Takara) were used 
for qRT-PCR analysis on StepOnePlus (Thermo 
Fisher Scientific) following a procedure described 
previously .44 

Constructs 

The construct NLS-RFP was used as a nuclear 
indicator.45 The reporter construct LexA-Gal4: 
GUS, the activator construct LD-VP and the con-
trol effector construct GD were used for protoplast 
transfection to examine transcription repressor 
activities.6,46 

To generate GD-SlEAD1 and GFP-SlEAD1 con-
structs for protoplast transient transfection, the 
full length open reading frame (ORF) sequence 
of SlEAD1 was amplified by RT-PCR using RNA 
isolated from 14-day-old Micro-Tom wild type 
seedlings, double digested with NdeI and SacI 
enzymes, and then cloned into digested pUC19 
vector with an N-terminal GD and GFP tag, 
respectively, under the control of the CaMV 35S 
promoter.6,46 

To generate gene editing CRISPR/Cas9 con-
structs of SlEAD1, genomic sequence of SlEAD1 
(contains a single exon) was subjected to 
CRISPRscan (http://www.crisprscan.org) for 
potential target sequences identification, and 
selected target sequences were evaluated on Cas- 
OFFinder (http://www.rgenome.net/cas-offinder/) 
for potential off-targets. The specific target 
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sequences selected were 5ʹ-CGCGGCCTTAT 
TAGCGGTGG(TGG)-3ʹ and 5ʹ-GCCACACGCG 
GCCTTATTAG(CGG)-3ʹ. The first sequence was 
used to generate CRISPR/Cas9 construct by using 
the pHDE vector and following the procedure 
described by Gao et al.,47 and both sequences 
were used to generate CRISPR/Cas9 construct by 
using the pHEE401E vector and following the pro-
cedure described by Wang et al.48 The primers 
used to generate pHDE-SlEAD1 construct were 5ʹ- 
CGCGGCCTTATTAGCGGTGGGTTTTAGAGC 
TAGAAATAGCAAGTTA-3ʹ and 5ʹ-CCACC 
GCTAATAAGGCCGCGAATCACTACTTCGAC-
TCTAGC-3ʹ. The primers used to generate pHEE- 
SlEAD1 construct were SlEAD1-DT1-BsF, 5ʹ- 
ATATATGGTCTCGATTGGCGGCCTTATTAG-
CGGTGGGTT-3ʹ, SlEAD1-DT1-F0, 5ʹ- 
TGGCGGCCTTATTAGCGGTGGGTTTTAGAG-
CTAGAAATAGC-3ʹ, SlEAD1-DT2-R0, 5ʹ- 
AACCTAATAAGGCCGCGTGTGGCAATCTCT-
TAGTCGACTCTAC-3ʹ and SlEAD1-DT2-BsR, 5ʹ- 
ATTATTGGTCTCGAAACCTAATAAG 
GCCGCGTGTGGC-3ʹ. The primers pER8-U95-F 
and E9-U29-R, and U626-IDF and U629-IDR 
described previously 47-49) were used for colony 
PCR and sequencing of pHDE-SlEAD1 and 
pHEE401E-SlEAD1 constructs, respectively. 

Plant Transformation, Transgenic Plant Selection 
and Cas9-free Mutant Isolation 

Cotyledons and hypocotyls were collected from 
~10-day-old Micro-Tom wild type seedlings and 
transformed with the CRISPR/Cas9 constructs 
via agrobacterium-mediated transformation, by 
using the plant tissue culture method as 
described previously.40 Transgenic T1 plants 
were identified by examining the present of 
Cas9 in the regenerated plants. Gene editing 
status in confirmed T1 transgenic plants was 
examined by amplifying and sequencing the 
genomic sequence of SlEAD1. T2 seeds were 
collected from gene edited T1 plants, germinated 
and grew in soil pots, and used to identify 
homozygous Cas9-free mutant by PCR amplifi-
cation and sequencing. 

DNA Isolation and PCR 

Genomic DNA was isolated as described 
previously.50 To identify T1 transgenic plants, 
DNA was isolated from leaves of regenerated 
plants and used for PCR amplification of Cas9 
fragment. To identify gene edited mutants for 
SlEAD1, DNA was isolated from leaves of the 
confirmed T1 transgenic plants and used for PCR 
amplification and sequencing of SlEAD1. To iso-
late homozygous Cas9-free mutants, DNA was 
isolated from leaves of T2 plants germinated 
from the confirmed mutants in T1 generation, 
and used for PCR amplification of Cas9 fragment, 
as well as amplification and sequencing of SlEAD1. 
The primers for amplifying Cas9 in pHDE-SlEAD1 
transformed plants are 5ʹ-GACAAGAAGTAC 
TCCATTGGG-3ʹ and 5ʹ-CAAACAGGCCGTTC 
TTCTTC-3ʹ, and in pHEE-SlEAD1 transformed 
plants are as described previously.49 

Plasmid DNA Isolation, Protoplast Isolation and 
Transfection 

Plasmid DNA of the reporter and effector were 
isolated by using Endo-Free Plasmid Maxi Kit 
(OMEGA). Arabidopsis protoplasts were iso-
lated from rosette leaves of 3- to 4-week-old 
Col wild type plants as described 
previously.6,17,51 Tomato protoplasts were iso-
lated by using the procedure for Arabidopsis 
protoplast isolation as described previously,51 

except that cotyledons of 8- to 10-day-old 
Micro-Tom wild type plants were used for pro-
toplast isolation, and the time for enzyme 
digestion increased from ~3 h to 6–8 h. 

For subcellular location assay in Arabidopsis 
and tomato protoplasts, plasmids of GFP- 
SlEAD1 and NLS-RFP were co-transfected into 
protoplasts. After 20–22 h incubation in dark-
ness, GFP and RFP florescence in the transfected 
protoplasts were observed under a fluorescence 
microscope. 

For transcriptional activity assay in Arabidopsis 
and tomato protoplasts, plasmids of the reporter 
gene LexA-Gal4:GUS, the activator gene LD-VP 
and the effector gene GD-SlEAD1 were co- 
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transfected into protoplasts, the effector gene GD 
was co-transfected as a control. After 20–22 h 
incubation in darkness, GUS activities in the trans-
fected protoplasts were measured by using a 
microplate reader. 

ABA Sensitivity Assays 

ABA inhibited seed germination and root elonga-
tion assays were performed as described previously 
with some modifications.52–54 

For ABA inhibited seed germination, seeds of 
the Micro-Tom wild type and the slead1 mutants 
were surface-sterilized and plated on 1/2 MS plates 
containing 2.5 μM ABA or without ABA as a 
control. Pictures were taken 4 d after the plated 
were transferred into the growth chamber, the 
number of germination seeds was counted, and 
the germination rate was calculated. Thirty seeds 
for each genotype were used for the experiment, 
and the experiment was repeated three times. 

For primary root length and ABA inhibited root 
elongation assays, seeds of the Micro-Tom and the 
slead1 mutants were surface-sterilized and plated 
on 1/2 MS plates. After 3 d, germinated seeds were 
chosen and transferred to 1/2 MS plates with 0, 5, 
and 10 μM ABA and grown vertically. Then, pic-
tures were taken 6 d after the transfer, root length 
was measured, and percentage of inhibition was 
calculated. At least 10 seedlings for each genotype 

were used for the experiment, and the experiment 
was repeated three times. 

Results 

Expression of SlEAD1 Is Down-regulated by ABA 
Treatment 

In an attempt to identify novel players in ABA signal-
ing in tomato, we performed data mining by using 
available transcriptome datasets, we found that an 
unknown function gene SlEAD1 (Solyc12g099500) 
was identified as a differential expressed gene in 
response to ABA during tomato fruit ripening,55 but 
it is expression level remained largely unchanged in 
tomato leaves 24 h after the spray of ABA.56 

Considering that ABA response genes response 
to ABA in hours or even minutes, we examined 
the expression of SlEAD1 in tomato seedlings trea-
ted with ABA for 4 h. Quantitative RT-PCR ana-
lysis shows that the expression level of SlEAD1 
reduced ~2 folds in the ABA treated seedlings 
(Fig. 1) suggest that SlEAD1 is ABA response gene. 

Amino acid sequence BLASTing on NCBI 
(https://blast.ncbi.nlm.nih.gov) indicates that 
EADs are plant specific proteins, and are likely 
presented only in the flowering plants. However, 
considering that some genome databases are very 
preliminary, we could not rule out the possibility 
that EADs may also present in other plants. 
Phylogenetic analysis of SlEAD1 and some 

Figure 1. Expression of SlEAD1 in response to ABA treatment. The expression of SlEAD1 was down-regulated by ABA treatment. 
Fourteen-day-old Micro-Tom wild type seedlings were cut into pieces and treated in darkness for 4 h with 50 µM ABA or solvent 
methanol as a control. Samples were frozen in liquid N2, and total RNA was isolated and used for cDNA synthesis. The synthesized 
cDNA was used as template for qRT-PCR to examine the expression of SlEAD1, and the expression of SlACT2 was examined and used 
as an inner control. The expression level of SlEAD1 in mock-treated samples was set as 1, and its relative expression level in ABA 
treated samples was calculated. Data represent the mean ± SD of three replicates. *Significantly different from that in the mock- 
treated samples (p < .001). 
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representative EADs from several selected plants 
including the model plant Arabidopsis, the tree 
poplar, the crops soybean, rice, sorghum and 
corn, and the grass Panicum hallii indicates that 
EADs from dicots formed a clade, whereas that 
from monocots formed another clade (Fig. 2a). Yet 
amino acids in the representative EADs are highly 
conserved (Fig. 2b). In addition, an LxLxL type 
EAR repressor motif initial found in repressor 
ERFs was presented in SlEAD1 (Fig. 2b); therefore, 
it was named Solanum lycopersicum EAR motif- 
containing ABA down-regulated 1. We also found 
that there are actually two overlapped LxLxL type 
EAR motifs in all the EADs examined (Fig. 2b), 
similar to that in the chimeric repressor SRDX.57 

SlEAD1 Is a Transcription Repressor 

Considering that the EAR motif is found in, and is 
required, at least partially for the repression func-
tion of transcription repressors including the 
repressor ERFs, the Aux/IAA proteins, the OFPs, 
and the AITRs,1,6,14,17 we assume that SlEAD1 
may also functions as a transcription repressor. 

To examine if that is the case, we first 
observed the subcellular localization of SlEAD1 
by using protoplast transit transfection assays. 

Plasmid DNA of GFP-SlEAD1 was transfected 
into protoplasts isolated from Arabidopsis 
leaves, and GFP fluorescence was observed by 
using a fluorescence microscope. We found that 
GFP fluorescence was predominantly observed 
in the nucleus (Fig. 3a). We also transfected 
plasmid DNA of GFP-SlEAD1 into protoplasts 
isolated from tomato cotyledons and found that 
SlEAD1 was predominantly localized in the 
nucleus (Fig. 3a). 

We then examined transcriptional activities 
of SlEAD1 in transfected protoplasts. Plasmids 
of the reporter gene LexA-Gal4:GUS, the acti-
vator gene LD-VP and the effect gene GD- 
SlEAD1 or the control gene GD were co- 
transfected into protoplasts isolated from 
Arabidopsis leaves, and GUS activities in the 
protoplasts were measured by using a micro-
plate reader. As shown in Fig. 3b, GUS activity 
activated by the activator LD-VP was repressed 
by the co-transfection of the effector gene GD- 
SlEAD1. Similarly, Co-transfection of the effec-
tor gene GD-SlEAD1 in protoplasts isolated 
from tomato cotyledons also resulted in repres-
sion of the reporter gene (Fig. 3b). These 
results indicate that SlEAD1 functions as a 
transcription repressor. 

Figure 2. Phylogenetic analysis and amino acid alignment of EADs in different plants. (a) Phylogenetic analysis of SlEAD1 and EADs 
in several other plant species. EADs in other plants were identified on phytozome (https://phytozome.jgi.doe.gov/pz/portal.html#), 
and their full-length amino acid sequence were used for phylogenetic analysis by using “One Click” mode on phylogeny (http://www. 
phylogeny.fr/simple_phylogeny.cgi) with default settings. (b) Amino acid sequence alignment of EADs. Full-length amino acid 
sequences of EADs were used for sequence alignment by using BioEdit. The identical amino acids were shaded in black, and the 
similar ones in gray. Underlines indicate the overlapped LxLxL EAR motifs, and stars indicate the conserved L residues. 
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The Gene Editing Slead1 Mutants are 
Hypersensitive to ABA 

Having shown that the expression of SlEAD1 was 
suppressed by ABA and SlEAD1 is as a transcrip-
tion repressor, we wanted to further examine the 
function of SlEAD1 in regulating ABA response in 
tomato. 

To do that, we decided to generate mutants by 
using CRISPR/Cas9 gene editing, since it has been 
able to generate transgene-free mutants in the 
model plant Arabidopsis as well as crops.47,58-60 

Two CRISPR/Cas9 constructs, pHDE-SlEAD1 and 
pHEE-SlEAD1 targeting one and two sites, respec-
tively (Fig. 4a,b), were generated and used for 
tomato plant transformation. Gene editing was 
observed in T1 plants generated with both con-
structs, and transgene-free mutants were obtained 
in T2 generations. The slead1-c1 mutant was gen-
erated with pHDE-SlEAD1 construct, and has a 
single nucleotide insertion in the target site of 
SlEAD1, whereas the slead1-c2 mutant was gener-
ated with pHEE-SlEAD1 construct, and has a 

single nucleotide insertion in one target site, and 
5 bp deletion in another target site of SlEAD1 (Fig. 
4c). In both mutants, the nucleotide indels led to a 
few amino acids substitution and a premature stop 
in SlEAD1 (Fig. 4d). 

By using the mutants obtained, we examined if 
SlEAD1 may regulate ABA response in tomato 
plants. In seed germination assays, we found that 
ABA inhibited seed germination in both the 
Micro-Tom wild type and the slead1 mutants 
(Fig. 5a). However, no different was observed for 
both the Micro-Tom wild type and the slead1 
mutants in the control plates, they all reached an 
~60% generation rate (~20 out of 30) 4 d after the 
transfer, but that in ABA-contained plates were 
~50% (~15 out of 30) and 30% (~9 out of 30), 
respectively, for the Micro-Tom wild type and the 
slead1 mutants (Fig. 5b), indicating that the slead1 
mutants are more sensitivity to ABA treatment. 

Similarly, the slead1 mutants also showed an 
increased sensitivity to ABA treatments in root 
elongation assays (Fig. 6). We also noted that 

Figure 3. SlEAD1 is a transcription repressor. (a) Subcellular localization of SlEAD1. Plasmids of the effector gene GFP-SlEAD1 and 
NLS-RFP were co-transfected into protoplasts isolated from Arabidopsis leaves and tomato cotyledons, respectively. After transfec-
tion, the protoplasts were incubated at room temperature in darkness for 20~22 h, then the GFP and RFP fluorescence was observed 
under a confocal microscope. (b) Transcriptional activities of SlEAD1. Plasmids of the reporter gene LexA-Gal4:GUS, the transcription 
activator gene LD-VP and the effector gene GD-SlEAD1 were co-transfected into protoplasts isolated from Arabidopsis leaves and 
tomato cotyledons, respectively. Co-transfection of the effector gene GD was used as a control. After transfection, the protoplasts 
were incubated at room temperature in darkness for 20~22 h, then GUS activities were measured by using amicroplate reader. Data 
represent the mean ± SD of three replicates. *Significantly different from that of the GD control (p < .001). 
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the primary root length in the slead1 mutant 
seedlings was shorter when compared with the 
Micro-Tom wild type seedlings (Fig. 6a). 
Quantitative results show that the root length 
for 9-day-old Micro-Tom wild type seedlings 
was ~9 cm, but that for the slead1 mutants was 

about ~8 cm (Fig. 6b). Root elongation in the 
Micro-Tom wild type seedlings was inhibited 
about ~50% and ~60%, respectively, by 5 μM 
and 10 μM ABA, where as that for the slead1 
mutant seedlings was ~60% and ~70%, respec-
tively (Fig. 6c). 

Figure 4. Generation of transgene-free slead1 mutants. (a) Diagram of the sgRNA expression cassettes cloned into the pHDE-SlEAD1 
(up panel) and the pHEE-SlEAD1 (low panel) vectors, respectively. (b) Target sequences of SlEAD1. The numbers indicate the positions 
of the first nucleotide in the target sequences relative to the first nucleotide in the coding sequence of SlEAD1. The NGG PAM sites 
immediately after the target sequences are in brackets. (c) Editing status of SlEAD1 in the slead1 mutants. The slead1-c1 and slead1-c2 
mutants were obtained by transforming Micro-Tom wild type plants with the pHDE-SlEAD1 and pHEE-SlEAD1 constructs, respectively. 
Editing status of SlEAD1 in T1 plants was examined, and transgene-free homozygous mutant plants were isolated from T2 
generations. Stars indicate the single T nucleotide insertion in the slead1-c1 and slead1-c2 mutants, and arrow head indicates the 
5 bp deletion in the slead1-c2 mutant. Solid underlines indicate the PAM sites, and dash underlines indicated the target sequences. 
(d) Amino acid alignment of SlEAD1 in the Micro-Tom wild type and the slead1 mutants. ORFs of SlEAD1 in the slead1 mutants were 
identified by using ORFfinder (https://www.ncbi.nlm.nih.gov/orffinder/), and predicted amino acid sequences were used for align-
ment with the amino acid sequence of SlEAD1. Number at the N-terminal indicates the amino acid position relative to the first 
M amino acid, and the numbers at the C-terminal indicate total amino acid numbers of SlDAE1 in the Micro-Tom wild type and the 
slead1 mutants. 
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Expression of ABA Signaling and Biosynthesis 
Genes Was Affected in the Slead1 Mutants 

Changes in ABA sensitivity may caused by alter-
nation in ABA signaling and/or ABA biosynth-
esis, to examine why ABA sensitivity was 
increased in the slead1 mutants, we examined 
the expression levels of the core ABA signaling 
regulator genes and ABA biosynthesis genes in 
the slead1 mutants. We found that the expression 
levels of the core ABA signaling regulator genes 
SlSnRK2.1 and SlSnRK2.4, and the ABA biosynth-
esis gene SlNCED2 were increased in the slead1 
mutants (Fig. 7a). These results suggest that 
SlEAD1 may regulate ABA response in tomato 
by negatively regulating the expression of ABA 
signaling genes and ABA biosynthesis genes 
(Fig. 7b). 

Discussion 

EAR motif-containing proteins are involved in 
the regulation of hormone signaling, including 
auxin signaling, ethylene signaling, jasmonic 
acid signaling, strigolactone signaling.1,2,13-16 We 
previously identified AITRs as a novel family of 
transcription repressors that are involved in the 
regulation of ABA signaling, and at least some of 
the AITRs contain a full conserved LxLxL EAR 
motif.17 We identified here SlEAD1 as a novel 
EAR motif-containing protein that plays a role 
in regulating ABA response in tomato, and 
EADs may represent a novel family of transcrip-
tion repressors in plants. 

First, SlEAD1 contains two overlapped LxLxL 
EAR motifs(Fig. 2b), similar to that in SRDX, a 
chimeric activate repressor that can convert a 

Figure 5. Effects of ABA on seed germination of the Micro-Tom wild type and the slead1 mutants. (a) Seed germination of the Micro- 
Tom wild type and the slead1 mutants in response to ABA treatment. Seeds were sterilized and plated on 1/2 MS plates or plates 
with 2.5 µM ABA. The plates were kept at 4°C in darkness for 2 d, and then transferred to a growth room. Pictures were taken 4 d 
after the transfer. (b) Number of seed germinated of the Micro-Tom wild type and the slead1 mutants in response to ABA treatment. 
Seeds germinated were counted 4 d after the transfer, and average number of seed germinated was calculated. Data represent the 
mean ± SD of three replicates. *Significantly different from that of the wild type (p < .01). 
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transcription activator to a repressor,57 and have 
been used to study the functions of transcription 
factors from different families, such as the ERF 
family 4 Huang et al. 61], the R2R3 MYB 
family,62–64 the WRKY family,65–67 and the 
NAC family.68,69 Most importantly, the over-
lapped LxLxL EAR motifs are conserved on 
EADs from other plant species such as 
Arabidopsis, rice, and poplar (Fig. 2). Second, 
SlEAD1 functions as a transcription repressor, 
SlEAD1 was found to be predominately localized 
in nucleus in transfected protoplasts, and con-
sistent with the presence of EAR motifs, SlEAD1 
repressed reported gene expression in both 
Arabidopsis and tomato protoplasts (Fig. 3). 
Third, ABA sensitivities in slead1 mutants were 
increased (Fig. 5, Fig. 6), suggesting that SlEAD1 
may play a negative role in regulating plant 
response to ABA. 

EAR motif-containing proteins mediated tran-
scription repression can be achieved by at least 
two different ways. One is epigenetic 
modification3 by recruit a histone deacetylase 
(HDAC) to form a HDAC complex via interactions 
with co-suppressors. For example, ERF7 can inter-
act with SIN3, whereas ERF3 and ERF4 can interact 
with SAP18 (SIN3 ASSOCIATED POLYPEPTIDE 
P18), to recruit HDA19 to form an HDAC 
complex.8,9,70,71 Another is to interfere with the 
activities of other transcription factors via directly 
or indirectly binding to them. For example, the 
Aux/IAA proteins interact with activator ARFs to 
repress their activities, the JAZ (JASMONATE 
ZIM) domain proteins interact with MYC activa-
tors to repress their activities, whereas OFP1 and 
OFP4 interact with KNAT7 to enhance its repres-
sion activities.2,13,14,72-75 We found that SlEAD1 is 
an EAR motif-containing protein (Fig. 2), and 

Figure 6. Effects of ABA on root elongation of the Micro-Tom wild type and the slead1 mutants. (a) Root elongation of the Micro- 
Tom wild type and the slead1 mutants in response to ABA treatment. Seeds were sterilized and plated on 1/2 MS plates. The plates 
were kept at 4°C in darkness for 2 d, and then transferred to a growth room. After 3 d, germinated seeds were transferred to control 
plates, or plates containing 5 and 10 μM ABA, respectively, and grown vertically for 6 d before the pictures were taken. (b) Root 
length of Micro-Tom wild type and the slead1 mutants. Root length of the seedling was measured 6 d after the transfer. Data 
represent means ± SD of at least 10 seedlings. *Significantly different from that of the wild type (p < .05) (c) Percentage of inhibition 
on root elongation by ABA. Root length of the seedling was measured 6 d after the transfer, and the percentage of inhibition on root 
elongation was calculated. Data represent means ± SD of at least 10 seedlings. *Significantly different from that of the wild type 
(p < .01). 
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functions as transcription repressors (Fig. 3), how-
ever, it is unclear how SlEAD1 may mediate tran-
scription repression, identification of proteins that 
can interact with SlEAD1 may enable to figure 
this out. 

ABA signaling via the PYR/PYLs/RCARs recep-
tors, the PP2Cs phosphatases and SnRK2s protein 
kinases activates the downstream ABF/AREB/ 
ABI5-type bZIP transcription factors, leading to 
the activation/repression of ABA response genes 
and plant responses to abiotic stresses.22,26-28,31 

We show that the expression of SlEAD1 was 
down-regulated by ABA; therefore, it will be of 
interest to examine if ABF/AREB/ABI5-type bZIP 
transcription factors may directly regulate the 
expression of SlEAD1. 

The function mechanisms of SlEAD1 are also 
needed to be further studied. Our data show that 
ABA sensitivities were increased in the slead1 
mutants (Fig. 5, Fig. 6), and consistent with 
SlEAD1’s transcription repression activities, the 
expression levels of ABA biosynthesis gene 
SlNCED2 and ABA signaling key component 
genes SlSnRK2.1 and SlSnRK2.4 were increased in 
the slead1 mutants, indicating that SlEAD1 may 
play a feedback regulating role in ABA signaling 
(Fig. 7), it is worthwhile to examine if SlEAD1 is 
involved in the regulation of plant abiotic stress 
responses, to examine if these genes are directly 

targets of SlEAD1, and to examine how SlEAD1 
may regulate the expression of these genes, there-
fore to uncover the functional mechanism of 
SlEAD1 in regulating ABA signaling and plant 
response to abiotic stresses. 

In summary, we found that SlEAD1 is a novel EAR 
motif-containing transcription repressor, the expres-
sion of SlEAD1 was down-regulated by ABA, and 
SlEAD1 negatively regulates ABA responses in 
tomato. 
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