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Transfer learning enables the molecular
transformer to predict regio- and stereoselective
reactions on carbohydrates
Giorgio Pesciullesi 1,3, Philippe Schwaller1,2,3, Teodoro Laino2 & Jean-Louis Reymond 1✉

Organic synthesis methodology enables the synthesis of complex molecules and materials

used in all fields of science and technology and represents a vast body of accumulated

knowledge optimally suited for deep learning. While most organic reactions involve distinct

functional groups and can readily be learned by deep learning models and chemists alike,

regio- and stereoselective transformations are more challenging because their outcome also

depends on functional group surroundings. Here, we challenge the Molecular Transformer

model to predict reactions on carbohydrates where regio- and stereoselectivity are notor-

iously difficult to predict. We show that transfer learning of the general patent reaction model

with a small set of carbohydrate reactions produces a specialized model returning predictions

for carbohydrate reactions with remarkable accuracy. We validate these predictions

experimentally with the synthesis of a lipid-linked oligosaccharide involving regioselective

protections and stereoselective glycosylations. The transfer learning approach should be

applicable to any reaction class of interest.
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Organic synthesis is a complex problem-solving task in
which the vast knowledge accumulated in the field of
organic chemistry is used to create new molecules,

starting from simple commercially available building blocks1.
Because of its complexity, organic synthesis is believed to be one
of the main bottlenecks in pharmaceutical research and devel-
opment2, and having accurate models to predict reaction out-
come could boost chemists’ productivity by reducing the number
of experiments to perform.

Machine learning has long been present in the chemical
domain, tackling challenges than range, for example for quanti-
tative structure–activity relationship predictions3, virtual screen-
ing4 and quantum chemistry5,6. Enabled by algorithmic advances
in deep learning7–10 and the availability of large reaction data
sets11,12, reaction prediction methods have emerged in recent
years13–22. Those reaction prediction methods can be divided into
two categories23, bond change prediction methods using graph
neural networks14,16–18,22 and product SMILES generation using
sequence-2-sequence models15,19.

Reaction prediction tasks are typically evaluated on the USP-
TO_MIT benchmark14, which does not contain molecules with
defined stereocenters. Currently, the best prediction algorithm in
terms of performance is the Molecular Transformer10,19. The
architecture is based on the ground-breaking work by Vaswani
et al.10, which revolutionised the field of neural machine trans-
lation, where sentences in one language are translated into
another language. In contrast, for reaction prediction, the model
learns to translate the precursors’ Simplified molecular-input
line-entry system (SMILES)24 representation into the product
SMILES.

The Molecular Transformer can be accessed for free through
the IBM RXN for Chemistry platform25. Compared to other
methods, such as graph neural networks-based ones, the advan-
tages of the Molecular Transformer approaches are that they do
not require mapping between the product and reactant atoms in
the training26 and inputs can contain stereochemistry. In fact,
sequence-2-sequence approaches, like the Molecular Transfor-
mer10,19, are currently the only large-scale reaction prediction
approaches capable of handling stereochemistry. Stereochemistry
is systematically avoided in graph-based methods, as the con-
nection table and adjacency matrix of two stereoisomers is
identical. Although stereoselectivity can theoretically be predicted
by the Molecular Transformers19, it is one of their most sig-
nificant weaknesses because of the lack of clean training data.
To date, their performance on predicting specific stereochemical
reactions has not been investigated.

In this work, we investigate the adaptation of the Molecular
Transformer to correctly predict regio- and stereoselective reac-
tions. As study case we focus on carbohydrates, a class of mole-
cules for which the stereochemistry and the high degree of
functionalization are key reactivity factors. Carbohydrate chem-
istry is essential for accessing complex glycans that are used as
tool compounds to investigate fundamental biological processes
such as protein glycosylation27–29, as well as for the preparation
of synthetic vaccines30–32. Predicting the outcome of carbohy-
drate transformations, such as regioselective protection/depro-
tection of multiple hydroxyl groups or the stereospecificity of
glycosylation reactions, is a very difficult task even for experi-
enced carbohydrate chemists33,34, implying that this field of
research might particularly benefit from computer-assisted reac-
tion prediction tools.

First, we investigate transfer learning with a specialized subset
of reactions as a means to adapt the Molecular Transformer to
achieve high performance on carbohydrate reactions. Transfer
learning, where a model is trained on a task with abundant data
and either simultaneously trained or subsequently fine-tuned on

another task with less data available35, has recently led to sig-
nificant advancements in Natural Language Processing36–39. For
instance, it has been used to improve translation performance in
low-resource languages36. More recently, unsupervised pretrain-
ing transfer learning strategies have successfully been applied to
sequence-2-sequence models37,40. In the chemical domain,
transfer learning has enabled the development of accurate neural
network potential for quantum mechanical calculations41 and
shows great potential to solve other challenges42. For transfer
learning we use a set of 20k carbohydrate reactions from the
literature, comprising protection/deprotection and glycosylation
sequences. We explore multitask learning, as well as sequential
transfer learning, and show that the adapted model, called the
Carbohydrate Transformer, performs significantly better than the
general model on carbohydrate transformations and a model
trained on carbohydrate reactions only.

Second, we perform a detailed experimental assessment of the
deep learning reaction prediction model and test the Carbohy-
drate Transformer on unpublished reactions. Our assessment
consists of a 14-step total synthesis of a modified substrate of a
eukaryotic oligosaccharil transferase (OST). We also challenge
our Carbohydrate Transformer to predict the reactions from the
recently published total syntheses of the trisaccharide of Pseu-
domonas aeruginosa and Staphylococcus aureus43 as a further
assessment on more complex carbohydrate reactions. Those
reactions would be considered challenging to predict, even for
carbohydrate experts.

Overall, we observe a consistent top-1 prediction accuracy
above 70%, which roughly means a 30% increase compared to the
original Molecular Transformer baseline. We find that the con-
fidence score is a good predictor of prediction reliability and that
many wrong predictions have chemical reasons such as the lack
of reagent stoichiometry in the training data. The approach we
used to learn carbohydrate reactions could be applied to any
reaction class. Hence, it is expected to have a significant impact
on the field of organic synthesis, as models like the Molecular
Transformer19 can easily be specialized for the reaction subspaces
that individual chemists are most interest in.

Results
Data availability scenarios. Besides the additional complexity,
the main challenges for learning to predict stereochemical reac-
tions is the data. In the largest open-source reaction data set by
Lowe11,12, which fueled the recent advancements in machine
learning for chemical reaction prediction, stereochemistry, and
specifically reactions involving carbohydrates are under-
represented and of poor quality. Hence, those reactions are
problematic to learn.

In this work, we explore two real world scenarios, where there
exist a large data set of generic chemical reactions and a small
data set of complex and specific reactions. In our case, we use a
data set derived from the US patent reactions by Lowe12 as the
large data set containing 1.1M reactions. We call this data set
USPTO. For the specific reaction, we chose carbohydrates
reactions, but the methods described could be applied to any
reaction class of interest. We manually extracted reactions from
the Reaxys44 database, selected from papers of 26 authors in the
field of carbohydrate chemistry. The small data set of 25k
reactions will be referred to as CARBO for the remainder of the
publication. We split the USPTO and the CARBO data set into
train, validation and test sets. The reaction data was canonicalised
using RDKit45. A more detailed description of the data is found in
Supplementary Note 1.

If the access to the large and small sets is given, the two data
sets can be used simultaneously for training. We call this first
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scenario multitask. However, depending on the situation, direct
access to the data of the generic data set may not be possible. For
example, a company A may have proprietary reaction data
precluded from external sharings. Company A could still train a
model using their own data and share their model without
revealing the exact data points. The trained model extracts some
general chemical reactivity knowledge and could be shared
without exposing company proprietary information. This pre-
trained model could then serve as a starting point to further train
the model on another source of reactions. We call this scenario
fine-tuning.

A visualisation of the model and the two scenarios can be
found in Fig. 1.

In the multitask scenario, we investigated different reaction
weighting schemes between the two sets. A comparison of the
top-1 accuracies on the USPTO train, USPTO test, CARBO train
and CARBO test sets for models trained with different weights for
the USPTO train and CARBO train sets are shown in Fig. 2a. The
weights describe in what proportion reactions from the two sets
are shown per training batch. For example, weight 1 on USPTO
and weight 1 on CARBO means that for one USPTO reaction one
CARBO reaction is shown. As can be seen in the Figure, the
highest accuracy on the CARBO test set (71.2 %) is obtained with
weight 9 on the USPTO set and weight 1 on the CARBO set

(w9w1). As expected, training only with the CARBO train set
leads to a poor CARBO test set accuracy (30.4%). As 20k
reactions are not enough for the model to learn predict organic
chemistry. The accuracy reached by the model trained purely on
the USPTO data reaches 43.3%. It therefore performs better than
the model trained purely on the CARBO reactions. In Fig. 2b, we
assess the effect of the size of the CARBO train set. The accuracy
continuously increases from 43.3 to 71.2% with an increasing
number of reactions in the train set.

For the fine-tuning scenario, where access to the large generic
data set is not given but a model, pretrained on the large data set,
is available instead, the results on the CARBO and USPTO test
sets are shown in Fig. 3a. After training the model on the CARBO
train set, the top-1 accuracy reaches a 70.3%, similar to the model
that was trained on the two data sets simultaneously. The
observed behavior is the same when less CARBO reactions are
available. Also for 1k CARBO reactions, the fine-tuning model
matched the accuracy of the corresponding multitask model.

For this scenario, we analysed the effect of the train, validation,
and test split in more detail. We compared the random split
described above to a time split, where we included CARBO
reactions first published before 2016 into the train and validation
sets and the reactions published from 2016 into the test set (2831
reactions). We investigated different fine-tune set sizes (1k, 5k,

Encoder — self attention

Decoder — self and context attention

Contextual precursor tokens representation

Tokenized precursor SMILES

Model — molecular transformer

Sequentially predicted product SMILES

Beam search

BrCc1ccc2ccccc2c1.CCCC[N+](CCCC)
(CCCC)CCCC.CCCC[Sn](=O)CCCC.C[C@H]1O[C@@H]
(Sc2ccccc2)[C@@H](O)[C@@H](O)[C@@H]1O

C[C@H]1O[C@@H](Sc2ccccc2)[C@@H](O)[C@@H]
(OCc2ccc3ccccc3c2)[C@@H]1O 

Scenario 1: access to all data — multi-task

Simultaneous training on both data sets (weighted).

Large data set with 
generic reactions
(e.g. 1.1M USPTO 
reactions)

Small data set with
specific reactions
(e.g. 20k CARBO
reactions)

Small data set with
specific reactions
(e.g. 20k CARBO
reactions)

Pretrained reaction prediction model
(e.g. molecular transformer 
trained 1.1M USPTO reactions,
no access to large set)

Pretrained model is trained for a few epochs on specific reactions.

Scenario 2: sequential transfer learning — pretrained model + fine tuning

Fig. 1 Molecular Transformer model and data scenarios. Sequence-2-sequence prediction of carbohydrate reactions and the two transfer learning
scenarios, namely, multitask and sequential training.
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Fig. 2 Multitask scenario results. a Top-1 accuracy of models trained with different weights on the USPTO and CARBO data set (the first number
corresponds to the weight on the USPTO data set and the second to the weight on the CARBO data set). b Top-1 accuracy for a model trained in the weight
9 weight 1 setting, where the number of reactions in the CARBO data set was reduced. Source data are provided as a Source Data file.
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10k, 15k, and 20k). As seen in Fig. 3b, compared to the random
split the top-1 accuracy with the 20k fine-tuning dropped slightly
to 66% but it is still substantially larger than the accuracy that
could be obtained with the generic USPTO training set only.
Already with 5k CARBO reactions, an accuracy above 60% was
reached. The larger the CARBO fine-tuning set, the better the
performance of the fine-tuned model.

Besides the fact that the reactions in the large data set do not
need to be revealed, another advantage is the short fine-tuning
training time. The fine-tuning requires only 5k steps compared to
250k steps in the multitask scenario. However, if time and access
to both data sets are given, it is better to train simultaneously on
all data for a longer time as the performance on the large data set
does not decrease, as it does in the fine-tuning scenario. If the
interest is only in a specific reaction class, short adaptation times
or if generic data is not available, then fine-tuning a pretrained
model is better.

To further demonstrate the effectiveness of the fine-tuning
approach, we performed an experiment where we pretrained a
model on a data set without stereochemical information. To do
so, we used the USPTO_MIT data set by Jin et al.14. As seen in
Fig. 3a, although the pretrained model does not manage to predict
any CARBO test set reactions, after fine-tuning for 6k steps the
model reaches an accuracy of 63.3%. The accuracy was not as
high as with USPTO pretraining but a significant improvement
over the 0.0% correctly predicted reactions by the pretrained
model. The low accuracy after pretraining was expected as none
of the chiral center tokens (e.g. “[C@H]”, “[C@@H]”) were
present in the training set. The fine-tuning result shows that the
Molecular Transformer model is able to learn new concepts
within a few thousands training steps on 20k data points.

In the next sections, we will compare the model trained only on
the USPTO data, which was also used as pretrained model
(USPTO model) with the model that was then fine-tuned on the
20k CARBO reactions (CARBO model).

Experimental assessment. Although the accuracy of the trans-
former has been widely assessed19, an experimental validation is
still missing. Here, we decided to validate both the transformer
and the augmented precision of the CARBO model on a recently
realized synthetic sequence from our own laboratory, absent from
the training data. This sequence is a 14-step synthesis of lipid-
linked oligosaccharide (LLO) 15 to be used as a substrate to study
OST46,47 (Fig. 4). The sequence contains typical carbohydrate
chemistry: protecting group manipulations (steps: b, h, i, l n, p),
functional group manipulations (step c, d), regioselective
protections (step e), a β-selective glycosylation (step g) and an

α-selective phosphorylation (step m). The latter regio- and ste-
reoselective transformations are of particular interest because
their selectivity is generally difficult to control and to predict,
even for experienced synthetic chemists.

We used both the general USPTO model and the fine-tuned
CARBO model to predict 13 of the 14 steps in the sequence (step
b was removed since it appeared in the training set). The USPTO
only made four correct predictions (31%), which were either
standard protecting group manipulations (step a, g, n) or
functional group exchanges (step c). The CARBO model also
correctly predicted these four simple reactions, but additionally,
made another six correct predictions, including the regioselective
benzoylation (5–6, step e) and the β-selective phosphorylation
(11–12, step m), corresponding to a 77% success rate and a 46%
improvement over the USPTO model, in line with the overall
statistics presented above.

In detail, the CARBO model only made three mistakes. The
first one concerns the reduction of the primary iodide 4 to a
methyl group in 5 by hydrogenation, which is mistakenly
predicted to also reduce the benzyl glycoside. The USPTO model
makes the same mistake. Both models have not learned that
carrying out the reaction in the presence of ammonia reduces the
catalyst activity and avoids debenzylation, as no such reaction was
present in the training sets. The second mistake concerns a
similar reduction of the benzyl glycoside in 10 (step l), which is
predicted to yield the β-lactol while the product 11 is in fact
formed as an anomeric mixture. Again, the USPTO model
makes the same mistake. Both models ignore that the initially
formed β-lactol equilibrates spontaneously to the anomeric
mixture via ring opening. Finally, the CARBO model predicts a
shortened prenyl chain in the phosphate coupling reaction
forming the protected LLO 14 (step o), which does not make
chemical sense. In this case it should be noted that the CARBO
training set does not contain a single LLO molecule, and that the
USPTO model performs worse since it returns an invalid SMILES
for this reaction.

We obtained similar prediction performances from both models
when analyzing a recently published total syntheses of the
trisaccharide repeating unit of Pseudomonas aeruginosa and
Staphylococcus aureus43. Those synthetic sequences comprises
four difficult regio- and stereoselective glycosylation steps and five
regioselective protection steps that are of particular interest. Out of
the 38 reactions that are absent from the training set in this
sequence (Supplementary Figs. 2–7), the USPTO model predicts
only 15 reactions (39%) correctly, and none of the difficult steps
mentioned above. The CARBO model performs much better and
correctly predicts 26 of the 38 reactions, corresponding to a 68%

CARBO only

USPTO only

USPTO_MIT only

USPTO w9 CARBO w1

USPTO only + 20k fine-tuning

USPTO_MIT + 20k fine-tuning

USPTO w9 CARBO 1k w1

USPTO only + 1k fine-tuning

CARBO test

0 10 20 30 40 50 60 70 80 90 100

Top-1 accuracy [%]

CARBO test (time-split)a b

0 10 20 30 40 50 60 70 80 90 100

Top-1 accuracy [%]

USPTO only

USPTO only + 1k fine-tuning

USPTO only + 5k fine-tuning

USPTO only + 10k fine-tuning

USPTO only + 15k fine-tuning

USPTO only + 20k fine-tuning

Fig. 3 Fine-tuning scenario results. a CARBO random split test set performance for different training strategies. In green are the top-1 accuracies of the
models that were fine-tuned on either 1k or 20k CARBO reactions shown. For comparison, we included in purple the top-1 accuracies of the models trained
on the single data sets (CARBO, USPTO, and USPTO_MIT). Blue are the performances of models trained in the multitask scenario. b CARBO time split test
set performance for different fine-tuning set sizes. Source data are provided as a Source Data file.
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overall accuracy and a 29% gain over the USPTO model. In
particular, the CARBO model correctly predicts the regioselec-
tivity of the dimethyltin chloride mediated benzoylation of L-
Rhamnopyranoside 16 (step no. 10), the difficult regio- and
stereoselective glycosylation at position 3 of the terminal fucosyl in
disaccharide 18 (step no. 24) as well as the regioselective
protection of the same disaccharide at position 3 (step no. 29),
all of which are nonobvious even for synthetic chemists (Fig. 5).
Interestingly, the CARBO model predicts a double substitution of
bis-triflate 19 instead of the correct single substitution at position
2, which the USPTO model correctly predicts. In this case it

should be noted that the outcome of the reaction is dictated by
stoichiometry (only one equivalent of the azide nucleophile), an
information which is absent from the training data. In contrast to
the USPTO training set, that contains only single azide
substitutions, the CARBO training set contains single, as well as
double substitutions. An analysis of the stereo centres in both data
sets can be sound in Supplementary Table 1 and Supplementary
Fig. 1.

Every predicted reaction is associated with a confidence
score19, which is calculated from the product of the probabilities
of the predicted product tokens. Interestingly, the confidence
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score correlates with the correctness of the prediction (Fig. 6). For
both models most of the correct predictions have a score higher
than 0.8.

To have a closer look at the capabilities of the model to self-
estimate its own uncertainty, we analyzed every reaction in detail.
In some cases, we observe epimerization or rearrangements that
have little chemical significance and are associated with low score
values. This even occurs in more trivial transformations, such as
amine acetylation of the trisaccharide in reaction 27 (scheme S3).
Although the model is not able to predict the correct product, its
low score seems to indicate that the model senses its own mistake.
The second class are arguably wrong predictions that have high

confidence for chemical reasons. Such an example is the
previously discussed reaction 12 (Scheme 2, entry c) whose
outcome is influenced by stoichiometry that together with other
reaction conditions, is excluded from the training data, making
these reactions extremely difficult to predict.

Similar to previous work19, one of the limitations of current
SMILES-2-SMILES models is that environmental reaction con-
ditions like temperature and pressure are not taken into account.
Those conditions are often missing in the data sets, and even if
present, it would not be straightforward to codify temperature
profiles applied during chemical reactions. Another limitation is
the data coverage and quality. As pointed out above, most of the
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wrong predictions can be explained with the data that the models
have seen during training.

The availability of large high-quality open-source reaction data
set containing information detailed on amounts, stoichiometry,
and reaction conditions could substantially improve reaction
prediction models.

Discussion
In this work, we demonstrated that transfer learning can be suc-
cessfully applied to a generally trained transformer model using as
few as 20k data points to derive a specific model that predicts
reactions from a specific class with significantly improved perfor-
mance. Transfer learning of the general molecular transformer
model, trained on the USPTO data set to a specific set of reactions,
to obtain a high-performance specialized model as demonstrated
here should be generally applicable towards any subclass of specific
reactions of interest.

Here we used transfer learning to improve predictions of regio-
and stereoselectivity, a central aspect of synthetic chemistry that
has not been systematically evaluated previously by reaction pre-
diction models, in part due to the fact that the Molecular Trans-
former is currently the only model able to handle stereochemistry.
As a test case we examined carbohydrates, a well-defined class of
molecules for which reactions are difficult to predict even for
experienced chemists, and subjected our model to experimental
validation. We anticipate that the Carbohydrate Transformer will
serve the practical purpose of improving the efficiency of complex
carbohydrate syntheses. The model can guide chemists by pre-
dicting and scoring potential carbohydrates reactions before per-
forming them experimentally. The fact that the confidence score
correlates with prediction accuracy offers a simple metric to judge
the quality of predictions. The shortcomings noted should be
addressable by extending the training set with reactions that are
not predicted well.

Methods
Reaction prediction model. All the experiments in this work were run with the
Molecular Transformer model19, which is illustrated in Fig. 1. For details on the
architecture we refer the reader to10,19. We used Pytorch48 and the OpenNMT49

framework to build, train and test our models. Hyperparameters and a detailed
description of the data sets can be found in the supplementary information. The
investigated task is reaction prediction, where the aim is to predict the exact
structural formula, including stereochemistry, of the products that are formed from
a given a set of precursors as input. In the inputs, no difference is made between
reactant and reagent molecules19. Following previous work13,15,19, we use accuracy
as the evaluation metric. The reported accuracies describe the percentage of correct
reactions. A reaction is counted as correct only if the predicted products exactly
matches the products reported in the literature after canonicalisation using
RDKit45. The canonicalisation is required as multiple SMILES can represent the
same molecule.

Chemical synthesis. All reagents were purchased from commercial sources and
used without further purifications unless otherwise stated. All reactions were car-
ried out in flame-dried round-bottomed-flask under an argon atmosphere, except if
specified. Room temperature (rt) refers to ambient temperature. Temperatures of
0 °C were maintained using an ice-water, −78 °C with acetone/dry ice bath and the
other temperatures using a cryostat. Dry solvents were obtained by passing com-
mercially available pre-dried, oxygen-free formulations through activated alumina
columns. Hydrogenation was performed at room pressure using H2 filled balloon.
Chromatographic purifications were performed with silica gel pore size 60,
230–400 mesh particle size (Sigma-Aldrich). Thin layer chromatography was
performed using ALUGRAM Xtra Sil G/UV on pre-coated aluminium sheets,
using UV light as a visualizing, and a basic aqueous potassium permanganate
solution and ceric ammonium molybdate as developing agents. NMR spectra for
1H, 13C, DEPT, 31P, COSY, HSQC, HMBC, and NOE were recorded at rt with a
Bruker AV (400MHz 1H). Spectra were and processed using TopSpin 3.6.1 soft-
ware. Chemical shifts are reported in δ (ppm) relative units to residual solvent
peaks CDCl3 (7.26 ppm for 1H and 77.2 ppm for 13C) and MeOD (3.31 ppm for 1H
and 49.00 ppm for 13C). Splitting patterns are assigned as s (singlet), d (doublet),
t (triplet), q (quartet), quint (quintet), multiplet (m), dd (doublet of doublets), and
td (triplet of doublets). High-resolution mass spectra was provided by the “Service

of Mass Spectrometry” at the Department of Chemistry and Biochemistry in Bern
and were obtained by electron spray ionization in positive or negative mode
recorded on a Thermo Scientific LTQ Orbitrap XL. For the experimental proce-
dures, NMR spectra and physical data of compounds 2–15, see Supplementary
Note 3.

Data availability
The USPTO data set derived from Lowe12 that we used for training and evaluation, our
carbohydrate reactions, as well as the ones from the work of Behera et al.43 are available
from (https://github.com/rxn4chemistry/OpenNMT-py/tree/carbohydrate_transformer).
Source data are provided with this paper.

Code availability
The code and trained models are available from (https://github.com/rxn4chemistry/
OpenNMT-py/tree/carbohydrate_transformer). The models are compatible with
OpenNMT-py49,50, which was used for training and evaluation. The SMILES
tokenization function for preprocessing the inputs is found on the Molecular
Transformer repository19,51. The setup and hyperparameters can also be found in
Supplementary Note 2.
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