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Association of CNVs with methylation variation
Xinghua Shi1,8, Saranya Radhakrishnan2, Jia Wen1, Jin Yun Chen2, Junjie Chen1,8, Brianna Ashlyn Lam1, Ryan E. Mills 3,
Barbara E. Stranger4, Charles Lee5,6,7✉ and Sunita R. Setlur 2✉

Germline copy number variants (CNVs) and single-nucleotide polymorphisms (SNPs) form the basis of inter-individual genetic
variation. Although the phenotypic effects of SNPs have been extensively investigated, the effects of CNVs is relatively less
understood. To better characterize mechanisms by which CNVs affect cellular phenotype, we tested their association with variable
CpG methylation in a genome-wide manner. Using paired CNV and methylation data from the 1000 genomes and HapMap
projects, we identified genome-wide associations by methylation quantitative trait locus (mQTL) analysis. We found individual CNVs
being associated with methylation of multiple CpGs and vice versa. CNV-associated methylation changes were correlated with gene
expression. CNV-mQTLs were enriched for regulatory regions, transcription factor-binding sites (TFBSs), and were involved in long-
range physical interactions with associated CpGs. Some CNV-mQTLs were associated with methylation of imprinted genes. Several
CNV-mQTLs and/or associated genes were among those previously reported by genome-wide association studies (GWASs). We
demonstrate that germline CNVs in the genome are associated with CpG methylation. Our findings suggest that structural variation
together with methylation may affect cellular phenotype.
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INTRODUCTION
The extent of genetic variation that exists in the human
population is continually being characterized in efforts to identify
genetic factors that contribute to disease and evolution. Inter-
individual genetic variation comprises primarily single-nucleotide
polymorphisms (SNPs) and copy number variants (CNVs), the latter
including gains and losses of DNA spanning >1 kb. The HapMap
Project1 and the 1000 Genomes Project2–4 generated detailed
maps of common genetic variants within and between human
populations. However, the extent of the influence of CNVs2,4–7, the
more recently appreciated class of large-scale germline variants,
on gene function and phenotype remains under-characterized.
CNVs can regulate transcript expression either directly by

overlapping gene-coding sequences or indirectly by altering
regulatory non-coding regions. The role of non-coding regions
in regulation of gene expression has been highlighted by the
series of investigations from the ENCODE Consortium8. These
studies have demonstrated that non-coding regions are replete
with regulatory sequences such as transcription factor-binding
sites (TFBSs) and enhancer sequences. Given these observations, it
can be hypothesized that genetic variants in non-coding regions
can potentially affect the functionality of these regions, thereby
affecting transcript expression of nearby genes. Indeed, quantita-
tive trait locus (QTL) analysis, a powerful approach for predicting
the functional correlates of non-coding variants, has shown SNPs
and CNVs to be associated with transcript expression9–12, and has
proven to be useful in the interpretation of genome-wide
association study (GWAS) results in complex traits.
Regulation of transcript expression is a complex process that is

influenced by both underlying genetic and epigenetic mechan-
isms. An epigenetic mechanism that is well documented to

influence transcript regulation is DNA methylation, which involves
addition of a methyl group to cytosine residues within a CpG
dinucleotide. Methylation of gene promoters is typically inversely
correlated with transcript expression, whereas gene-body CpG
hypermethylation has been reported to result in transcript
overexpression13. Previous studies have reported that, similar to
CNVs, DNA methylation patterns are variable both among
different individuals (i.e., they are variably methylated regions,
VMRs)14 and among different tissues within a given individual (i.e.,
they are tissue-specific differentially methylated regions, T-
DMRs)15. In addition, monozygotic twins show epigenetic16 and
genetic copy number17 variability. However, to date, virtually
nothing is known about the relationship between germline CNVs
and methylation patterns.
To address this question, in this study, we first tested whether

inter-individual differences in DNA copy number is associated with
inter-individual variation in DNA methylation levels by performing
QTL analysis, using CNV genotype profiles from the 1000
Genomes Project2 and Conrad et al.7 studies, and paired DNA
methylation data from Bell et al.18. We then evaluated whether the
CNV-associated methylation changes were correlated with gene
expression and whether CNVs, which were associated with
methylation (CNV-mQTLs), were enriched for regulatory regions
defined by the ENCODE Consortium and were involved in long-
range physical interactions with the associated CpGs. In summary,
we identified associations between specific genomic gains/losses
and methylation of specific CpG islands in the same individuals.
Our study establishes a relationship between CNVs and inter-
individual DNA methylation patterns, and their impact on gene
regulation.
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RESULTS
mQTL association analysis of CNVs with CpG methylation
We performed an association analysis between CNVs and CpG
methylation using a discovery cohort of cell lines from 77
individuals—77 HapMap Yoruba in Ibadan, Nigeria (YRI) lympho-
blastoid cell lines (LCLs)—with paired genome-wide CNV2,7 and
methylation data18. Methylation data were obtained for a total of
19,254 CpG sites of 10,375 genes in the 77 individuals using the
Illumina HumanMethylation27 DNA Analysis BeadChip assay18. For
these 77 individuals, CNV genotypes were obtained from array
CGH data7 (n= 4883) and also from next-generation sequencing
data for a subset of 53 individuals (1000 Genomes Consortium2,
n= 7240). Association between CNVs and CpG island methylation
was examined using the QTL analysis method developed by
Stranger et al.10. Briefly, Spearman’s rank correlation tests were
performed on the CNV genotypes and CpG methylations. We then
performed multi-test correction by randomly permuting the
methylation of each CpG site 10,000 times9,19 and performing
associations with the permutated dataset. A permutation thresh-
old of 0.01 was used to define significant CNV-methylation
associations or CNV-mQTLs.
We defined CNVs that lie within a 2 Mb window (1 Mb upstream

and 1Mb downstream of the midpoint) of any given CpG island as
proximal associations (Supplementary Fig. 1). This large window
size was chosen, because CNVs often span several kilobases and
also have been previously reported to be involved in long-range
gene regulation9,20. We defined CNVs that map beyond the 2 Mb
window around a CpG island as distal associations.
We identified 851 (407 proximal and 444 distal) significant CNV-

CpG associations (CNV-mQTLs) (Supplementary Fig. 2 and
Supplementary Data 1), involving 656 unique CNVs that were
correlated with the methylation of 738 CpG sites in 715 genes.
Among these 851 CNV-mQTLs, 39 were associated with CpG
methylation both proximally and distally. The overall permutation
false discovery rate (FDR) was estimated to be <14% (FDR= [the
number of genes tested × permutation P-value cutoff/the number
of associated CpGs= 10,375 × 0.01/748= 13.78%]). The distribu-
tion of CNV sizes for the significant CNV-mQTLs (size range=
[51–426,206 bp]) identified did not differ from that of all the CNVs
(size range= [50–1,102,849 bp]) (Kolmogorov–Smirnov test P=
0.2767) (Supplementary Table 1 and Supplementary Fig. 3). The
vast majority of CNV-mQTLs (n= 567) had a minor allele
frequency (MAF) > 5% (Supplementary Table 2). We did not
observe any specific patterns of CNV-mQTLs across chromosomes.
In addition, we did not find distal associations to be more
subtelomeric CNVs (Supplementary Fig. 4a). To examine whether
CNV-mQTLs were tagged by nearby SNPs, we performed linkage
disequilibrium (LD) analysis between CNV-mQTLs (n= 656) and all
bi-allelic SNPs18,21,22, which were located within 1 Mb of each
other. We found that the vast majority of CNV-mQTLs (n= 555)
were indeed in high LD with nearby SNPs (Pearson r2 > 0.5). Next,

we assessed whether the CNV-mQTLs are in LD with published
SNP-mQTLs (SNPs that are associated with CpG methylation)
within 1 MB of the CNV-mQTLs. Our analysis showed that most of
the CNV-mQTLs were in low LD with SNP-mQTLs, although these
CNV-mQTLs may be tagged by nearby SNPs which are not known
to be associated with CpG methylation (Supplementary Table 3).
To further examine whether the CNV-mQTLs have an independent
effect on CpG methylation compared with known SNP-mQTLs, we
performed a conditional analysis of CNV-mQTLs and nearby
known SNP-mQTLs. Results showed that 53.96% CNV-mQTLs (354
out of 656 CNV-mQTLs) have an independent genetic effect on
the CpG methylation compared with nearby SNP-mQTLs (p-value
< 0.05). Although 52.5% of the CNV-mQTLs were seen to be
located within 5 Mb of their associated CpGs, long-range
associations > 100 Mb were also observed (Fig. 1a and Supple-
mentary Table 4). We observed a decreasing trend in frequency of
associations with increasing distance. Forty-five percent of CNV-
mQTLs overlapped genic regions (38% with genes, 5% with
lncRNAs, and 2% with pseudogenes) and 55% with non-genic
regions (Fig. 1b). The majority of CNV-mQTLs that contained genes
were proximal CNV-mQTLs (Supplementary Fig. 4b). Gene-
spanning CNV-mQTLs predominantly overlapped introns (Supple-
mentary Fig. 4b).
We detected multiple instances where a single CNV was

associated with multiple CpGs both proximally and distally (Fig.
2a, b). Among proximal associations, we saw that some single
CNV-mQTLs were associated with methylation of neighboring
genes. For example, ZNF236 (Spearman’s r-value=−0.397) and
the MBP (Spearman’s r-value=−0.307) genes, which both lie in
the critical domain for 18q deletion syndrome23, are both
associated with a common CNV-mQTL (Fig. 2a). Another example
is the neighboring DLK1 (Spearman’s r-value=−0.423), MEG3
(Spearman’s r-value= 0.394) cluster, whose methylation patterns
are associated with a common CNV-mQTL (Fig. 2b). The converse
scenario, where multiple CNV-mQTLs were associated with the
methylation of a single CpG island, was also observed (Fig. 2c, d).
Examples include the GSTM1 and the WSB1 genes (Fig. 2d).
Interestingly, we also found instances where methylation of
groups of individual CpGs were all associated with multiple
CNV-mQTLs. For example, three CNV-mQTLs on chromosome 1,
which are in moderate and high LD (Pearson’s r2-values are
0.519, 0.416, and 0.828 for chr1:120557209–120738188 vs.
chr1:142612557–142700497, chr1:120557209–120738188 vs.
chr1:204239359–204366782, and chr1:142612557–142700497 vs.
chr1:204239359–204366782, respectively), were all distally asso-
ciated with the CpG methylation patterns of three different genes:
JARID1B, MAN1A2, and ANP32E. The presence of such associations
underscores a strong correlation between methylation of these
genes with genetic variation at the above-mentioned loci. Lastly,
CNV-mQTLs were also seen to be associated with CpG methylation
of several imprinted genes (Supplementary Table 5).
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Comparison with differentially methylated regions in the genome
We compared CNV-mQTL-associated CpGs with published VMRs14

and T-DMRs (14), to determine how much of the methylation
variation is associated with genetic variation. We found that 3.1%
(7/227) of previously reported VMRs and 3.6% (592/16,379) of
previously reported T-DMRs overlap CNV-mQTL-associated CpG
islands and shores. Next, as differentially methylated regions have
been shown to be associated with SNPs24, we compiled CNV-
mQTL-associated CpGs from our study with CpGs associated with
published SNP-mQTLs18,21,25 and examined whether they have
been previously reported to be VMRs or T-DMRs (see “Methods”).
We found that 28.6% (65/227) VMRs and 27.7% (4,533/16,379) T-
DMRs overlap with CpG islands and shores associated with CNV-
and SNP-mQTLs. This shows that some amount of differential
methylation is associated with genetic variation.

Validation of CNV-associated methylation regions
We performed pyrosequencing to validate the methylation levels
as assessed by the arrays in the discovery set and then confirmed
the correlations with copy number. Towards this, 30 loci that
showed a significant association with CNV-mQTLs were selected
and 27 of these, for which primers (Supplementary Table 6) could
be designed, were queried. Pyrosequencing showed a concor-
dance of 77.8% considering all the copy number states
(Supplementary Fig. 5).

Further, we generated methylation data from 24 HapMap
individuals (Supplementary Table 7), including one HapMap trio
with European ancestry in Utah (CEU), and one HapMap YRI trio
that were both sequenced by the 1000 Genomes Consortium.
Prior to association analysis, principal component analysis was
performed on the genotype and methylation data (β-values) from
the 24 samples to confirm the absence of stratification
(Supplementary Fig. 6). Following this confirmation, we obtained
CNV genotypes for these individuals from the 1000 Genomes4 and
HapMap7 studies. This yielded 496 CNVs that were identified in
the discovery dataset and were copy number variable in the
validation dataset. Using the same pipeline for identifying CNV-
mQTLs in the discovery set, we found that 216 (43.5%, P < 0.01)
and 344 (69.4%, P < 0.05) of the CNV-mQTLs identified in our
discovery set were also associated with CpG methylation in the
validation set (Supplementary Data 2).

Association of CNVs with methylation and gene expression
Next, we examined the expression to methylation associations
(methylation-expression QTLs, eQTMs) by considering only those
CpGs whose methylation was significantly correlated with CNV-
mQTLs (eQTM, Fig. 3). RNA-sequencing derived estimates of gene
expression levels in LCLs were obtained for 69 HapMap YRI
individuals26. We defined the boundaries for proximal and distal
interactions using the midpoint of an mQTL-associated CpG site as
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earlier (Supplementary Fig. 1). Using Spearman’s rank correlation
and permutation tests, we identified 242 eQTM significant
associations (permutation test, P < 0.01) representing 225 RefSeq
genes (83 proximal and 142 distal RefSeq genes) (Supplementary
Data 3). Among these 242 eQTM associations, 116 were positive
correlations, whereas 126 were negative correlations. Although
methylation is typically negatively correlated with gene expres-
sion, similar patterns of positive and negative correlations, at the
population level, have been reported by several studies27,28. An
alternate modification of DNA methylation, involving 5-
Hydroxymethylcytosine (5hMc), has been hypothesized to under-
lie this observed positive correlation, as 5hMc levels are positively
correlated with gene expression25. Supplementary Fig. 7 depicts
representative eQTMs for proximal and distal associations.
Next, we sought to evaluate whether CNVs act as both

methylation QTLs (mQTLs) and expression QTLs (eQTLs). The
presence of such CNVs would suggest a possible mechanism by
which CNVs may influence transcript expression. Towards this, we
first identified CNV eQTLs in our dataset (Supplementary Data 4)
and then looked for common CNVs that were also present in the
CNV-mQTL dataset. This analysis yielded 79 common CNVs that
were both eQTLs and mQTLs, associated with the expression of 81
genes and methylation of 89 genes, respectively. Among these
common CNVs, ten were associated with methylation and
expression of the same genes showing that some of the effect
of CNVs on expression could be mediated through mQTL-
associated differential methylation of CpG sites in the promoters
of these genes. In addition, the expression of 21 genes was
associated with CNV eQTLs and mQTLs (Supplementary Data 5).
Hence, in our dataset, separate CNVs act as either eQTLs or as
mQTLs. Our observations agree with previous reports where
separate SNPs were associated with expression and methylation28.
Therefore, if a genetic variant plays a causal role in regulation of
expression and methylation, our data suggest that the underlying
mechanism is complex where independent CNVs modulate gene
expression and methylation, which in turn influence each other.

Overlap with ENCODE regulatory sequences
We further sought to determine whether CNV-mQTLs overlap
regulatory sequences, to understand the potential mechanisms by
which CNVs affect methylation. The data generated by the
ENCODE consortium8 on the GM12878 cell line were utilized for
this analysis. We first determined direct overlaps between mQTLs
and multiple ENCODE features including DNase hypersensitivity
sites, regulatory sites marked by histone modifications, namely
H3K4me3 (promoters), H3K4me1 (poised enhancers), H3K27Ac
(active enhancers), and H3K36Me3 (marks 3′-end of active genes),
as well as TFBS. We determined that 44% of our identified CNV-
mQTLs overlapped ENCODE regulatory marks (Supplementary Fig.
8). Of the “gene desert” CNV-mQTLs that did not overlap with

genes, 35% contained regulatory regions as defined by ENCODE
(Fig. 1b). Following a direct overlap, random permutation analysis
was performed to estimate the statistical significance of the
observed overlap. Here, a null distribution was estimated from
overlaps with 1000 randomized permutations of chromosomal
regions with the same number and size distribution as our CNV-
mQTLs. This analysis showed that H3K4Me3 promoter mark was
enriched among all CNV-mQTLs (permutation test, P= 0.005). In
addition, proximal mQTLs were significantly enriched for enhancer
H3K4Me1 marks (permutation test, P= 0.002) and the H3K27Ac
active enhancer sequences (permutation test, P= 0.02) (Fig. 4a).
We also observed an enrichment of H3K36Me3 mark in

proximal mQTLs (permutation test, P= 0.001), whereas distal
mQTLs were depleted for the same H3K36Me3 mark (permutation
test, P= 0.008). Similarly, proximal mQTLs were enriched for
specific TFBS, whereas distal mQTLs were depleted for TFBS
(permutation test, P= 0.017), (Fig. 4a, b and Supplementary Fig. 9).
The only site that was enriched among all CNV-mQTLs was the
Pol3-binding site (Fig. 4b). Our analysis therefore demonstrated
that CNV-mQTLs are indeed enriched for regulatory sequences.

Long-range interactions of CNVs and associated CpGs
We analyzed whether CNV-mQTLs are capable of physically
interacting with the associated CpG islands by using data from
the high-throughput chromosome conformation capture (Hi-C)
approach that maps long-range interactions in genome. Publicly
available Hi-C data from the HapMap cell line GM1287829 were
used to test for overlap between interacting regions mapped by
Hi-C and CNV-mQTL/CpG pairs from the discovery cohort (see
“Methods”). We found that a total of 606 CNV-mQTLs and
associated CpGs (with a 5 kb window around the CpG island to
include shore regions) overlapped with 10 kb resolution Hi-C
compartment dataset. We observed that proximal CNV-mQTL/CpG
pairs have higher Hi-C interactions compared with distal CNV-
mQTL/CpG pairs (Fig. 5a and Supplementary Fig. 10). The number
of overlaps at different Hi-C resolutions and window sizes around
the CpG island are summarized in Supplementary Data 6–9. This
analysis suggests that CNV-mQTLs physically interact with the
islands and shores of the associated CpGs. Next, we conducted
permutation test to assess whether CNV-mQTL/CpG pairs were
statistically enriched for Hi-C interactions. We generated 1000
random datasets for the two interacting regions that followed the
same size and distance distributions as the CNV-mQTL regions and
the associated CpG shore regions on each chromosome (see
Supplementary Methods). This analysis showed that CNV-mQTLs
and associated CpGs were enriched for Hi-C interactions
(permutation test, P < 0.001; Fig. 5a and Supplementary
Fig. 10).

Disease-associated variants
GWAS have revealed the potential role of genetic variants in
conferring risk to various diseases. Recent reports have shown that
loss-of-function genetic variants in healthy genomes overlap open
reading frames of genes30. In a similar context, we examined
whether CNV-mQTLs or associated genes were previously
reported by GWAS. Indeed, we found that some of the CNVs
previously shown to be associated with disease risk were mQTLs
in our dataset (Supplementary Data 10). In addition, genes
previously shown to confer disease risk were associated with
CNV-mQTLs. This includes the SNCA gene whose increased copy
number has been established to be associated with Parkinson’s
disease. Interestingly, studies have shown that hypomethylation of
a CpG site in the promoter of SNCA gene is associated with
increased risk to Parkinson’s disease31.
Next, as a larger number of GWAS have been carried out using

SNPs, we asked whether the genes identified by SNP GWAS
studies are associated with CNV-mQTLs. The SNPs for this analysis

CNV CpG Gene

Transcript

eQTL

mQTL meQTL

Fig. 3 Summary of association with gene expression. Schematic
representation of eQTL (CNV associated with expression), mQTL
(CNV associated with methylation of CpG), and eQTM (association of
an mQTL-associated-CpG with expression).
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were derived from the GWAS catalog (www.ebi.ac.uk/gwas,
version v1.0, accessed 30 March 2015). We observed that 230
genes that were identified by SNP association studies were also
associated with CNV-mQTLs in our study (Supplementary Data 11).
One interesting observation was that, genes that are associated
with a common SNP risk variant are also associated with a
common CNV-mQTL. An example includes the genes MPHOSPH1
and CH25H, both associated with a common CNV-mQTL (proximal
and distal, respectively) and reported to be associated with a
common SNP conferring risk to Alzheimer’s disease32. Interest-
ingly, the CNV-mQTL is in low LD with the reported SNPs. In
addition, we found an instance where a common CNV-mQTL is
associated with the methylation of CUTL2 (CUX2) and FAM109A
genes that lie in the 12q24 LD, and reported to confer risk to type I
diabetes33. Finally, CNV-mQTLs were found to be associated with
CpG island methylation of genes frequently altered in cancer, e.g.,
PTEN, RB1, ERBB2,WNT1,WNT4,WNT11, MAPK15, and MAPK6. These
data show that identifying the genes associated with CNV-mQTLs
may lead to a better understanding and interpretation of GWAS
data. Indeed, association studies are now being focused on
identifying epigenetic variants linked with diseases34.

DISCUSSION
We demonstrate, in this study, that germline inter-individual CNVs
are correlated with epigenetic variability in the human genome.
Further, we show that the associated mQTL-CpG patterns are
correlated with transcript expression, are enriched for regulatory
features, are involved in long-range interactions, and are among
previously reported disease risk loci. The dataset in this study
mainly allowed for discovery of associations with common CNVs
(MAF > 5%), although some associations with low-frequency CNVs
(MAF < 1%) were also represented. The FDR is consistent with
previous studies9,10. Genetic influence on methylation has now
been described by several studies that have demonstrated SNPs
to be associated with DNA methylation, both at an inter-individual
and a population-scale level18,21,25,35–37. A recent study by Sun
et al.38 demonstrated that somatic copy number alterations in
cancer are associated with DNA methylation. Multiple studies
suggest that genetic variation may have a causal role in regulating
CpG methylation25,28. Conversely, it is also possible that methyla-
tion could lead to CNV formation as demonstrated by studies
showing that methylation leads to increase in DNA breakage39.
Our data show that CNV-mQTLs are in low LD with known SNP-
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permutation test are shown. b Table summarizes the permutation test P-values of overlap between proximal/distal/all CNV-mQTLs and
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mQTLs located within 1 MB of CNV, whereas CNV-mQTLs are in
high LD with nearby SNPs (within 1 MB of CNV) that are not
known to be associated with CpG methylation. We further
performed conditional analysis between CNV-mQTLs and nearby
known SNP-mQTLs, and showed that over half of identified CNV-
mQTLs have an independent genetic effect on methylation when
considering nearby SNP-mQTLs. We expect that future studies
with larger sample sizes and better characterization of CNVs will
allow for joint association studies that provide further insights into
potential causal effects of SNPs and CNVs on CpG methylation. We
believe that the limited overlap observed with differentially
methylated regions in the genome would be an underestimate,
as VMRs, including CpG island shores14, are not interrogated by
the methylation platform used in this study.
The fact that multiple CNVs are associated with the methylation

of a single CpG and a set of CNV-mQTLs are associated with a
group of CpGs indicate a potentially strong genetic control and
plasticity of methylation states. One intriguing observation made
in our study was that CNV-mQTLs were associated with
methylation patterns of 12 imprinted genes. Imprinted genes
have been previously seen to have an allele-specific methylation

pattern17,35. As imprinting patterns are established during
development, we hypothesize that CNVs and SNPs may act to
“fine-tune” methylation of imprinted genes. Our observation that
separate CNVs are associated with expression and methylation is
similar to the observations made with SNPs in LCLs where
methylation and expression are independently affected by SNPs28.
Our data further showed that CNV-mQTLs are associated with CpG
methylation of genes identified by GWAS studies and in cancer.
CNVs being associated with neighboring genes may have
implications on cancer studies, where alteration of methylation
patterns of adjacent genes is often reported.
Studies have demonstrated that CpG island methylation is

regulated by sequences in cis, showing that the sequence content
around CpGs plays a key role in determining the pattern of CpG
methylation40,41. The enrichment of enhancer sites among CNV-
mQTLs suggests a regulatory role. Our results agree with recent
studies that have shown concordant changes of methylation
associated with other chromatin features such as histone
modifications25,42,43. In addition, investigations have shown that
binding of transcription factors influences DNA methylation40,41,44.
Specifically, transcription factors have been shown to interact with

ba

mQTL
Associations
     Proximal
     Distal

chr17 13.3 p13.1 17p12 17p11.2 q11.2 17q12 17q22 24.3 25.1 q25.3

PRKARIAWSB1 NKIRAS2

- Unmethylated CpG,  - Methylated CpG,      - Transcription    
      - pathway inhibition,  X - attenuation

CNV

C
p

G

HiC Score
500

The number of CNV-mQTLs

overlapping Hi-C compartments

470         510          550         590  

F
re

q
u

e
n

c
y

0  
    

 50
    

10
0  

  1
50

    
20

0

X
WSB1WSB1
PRKARIAPRKARIA

CN = 2 (No deletion) CN <1 (Deletion)

NKIRAS2

RELADNMT1

NKIRAS2

RELADNMT1

X

XX

X
X

210

0.0
3  

  0
.06

  

210

 WSB1
cg19383689

NKIRAS2
cg24505527

PRKARIA
cg00214346

CNV Genotype 
(1000GP)

CNV Genotype 
(1000GP)

Me
thy

lat
ion

CNV
(chr17:36675248−36685688)

CNV CNV

1000
1500 210

CNV Genotype 
(1000GP)

Me
thy

lat
ion

0.0
3  

   0
.06

    
 

Me
thy

lat
ion

0.0
3  

  0
.06

  

Fig. 5 Long-range interactions. a Top: whole-genome summary of CNV-mQTL/CpG pairs that overlap with interacting Hi-C regions. The size
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distally associated genes, WSB1 and PRKAR1A, mediated by activated NFκB.
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DNA methyl transferases (DNMTs) and recruit them for targeted
methylation40,45,46. Studies have also indicated that SNPs, by
overlapping TFBS, can potentially affect DNA methylation25,28. In
our study, many of the TFs that were enriched in proximal
mQTLs have been shown by earlier studies to bind to DNMTs
(Fig. 4b and Supplementary Fig. 9). For example, SP1and ELF1
have previously been shown to either regulate or are predictive
of methylation, respectively22,47. Therefore, binding of TFs to
CNV-mQTLs in promoters or enhancer sequences may poten-
tially influence DNA methylation of the associated CpGs by
long-range interactions. Our analysis of Hi-C data showed that a
subset of CNV-mQTL/CpG pairs are indeed in regions that show
long-range interactions. While our observations indicate a
potential mechanism by which proximal CNVs may regulate
methylation, the effects of distal mQTLs may be mediated
through the proximal associations by influencing the expression
of piRNAs or genes that can regulate methylation of distal
genes. This concept has been also suggested by SNP-mQTL
studies48,49. An example of one such indirect interaction in our
dataset involves three CNV-mQTLs that were each associated
with the same set of three genes, NKIRAS2, WSB1, and PRKR1A.
This showed a strong genetic association with CpG methylation
of these genes. While NIKIRAS2 was associated proximally, the
other two genes were distally associated. NKIRAS2 is known to
inhibit the activation of the transcription factor RELA50. ENCODE
data showed RELA-binding sites in the promoter of both the
distally associated genes. RELA has been shown to interact and
recruit DNMT1 to CpG islands51. Therefore, our findings suggest
the manner by which the CNV-mQTL may influence the
methylation and subsequent expression of NKIRAS2 proximally,
thereby modulating RELA mediated distal methylation (Fig. 5b).
Although this suggests a potential mechanism of how CNVs may
influence DNA methylation, more studies are required to
establish a causal role and rule out a simple correlation. Finally,
we see depletion in CTCF sites possibly owing to the recent
observation that the binding sites are “buffered by genetic and
epigenetic perturbance”52.
Despite the presence of widespread germline copy number

variants in the genome, their effects on cellular phenotype, when
compared to SNPs, is less understood. The significance of this
study lies in demonstrating that inter-individual germline CNVs are
associated with variation in CpG island methylation in the
genome, are enriched for regulatory sequences, including
transcription factor-binding sites, and are able to engage in
physical interactions with the associated CpG. The observations
being presented here, substantially enhance our growing under-
standing of the relationship between genetic and epigenetic
variation in the genome. Our findings have broad implications on
understanding the effects of structural variation on cellular
phenotype, specifically on the fundamental mechanisms of gene
regulation, as well as in complex traits underlying evolution and
disease.

METHODS
CNV data
We utilized two published high-resolution datasets by Conrad et al.7 and
the population-scale whole-genome sequencing data released by the 1000
Genomes Project2 for this study. For the methylation association analysis,
we included 7240 autosomal CNVs whose genotypes vary in 53 YRI
individuals sequenced at low-depth as a part of the 1000 Genomes Project
and 4883 autosomal CNVs that have variable genotypes in the 77 YRI
individuals by Conrad et al.7.

Methylation data
We downloaded methylation profiles of 77 YRI individuals generated using
the Illumina HumanMethylation27 Beadchip assay, as published in the Bell
et al.18 study. This array includes 27,578 probes that target the CpG sites

located near the transcription start sites of genes. We extracted
methylation profiles for the 53 individuals who have genotyped CNV data
in the 1000 Genomes dataset2 and the 77 individuals who have been
genotyped by Conrad et al.7 analysis.

Genome-wide CNV-methylation association analyses
We performed two sets of CNV-methylation association analyses, which
focused on (i) the 1000 Genomes Project CNV genotypes from 53 YRI
individuals2 and (ii) the Conrad et al.7 CNV genotypes from 77 YRI
individuals. Methylation profiles of 19,254 CpG sites of genes (with
genomic coordinate information) from the same individuals were used for
the analysis. Association analysis was performed independently in each of
these two datasets. We first conducted Spearman’s rank correlation for
CNVs within 1 Mb upstream and downstream of the midpoint of a CpG site
for any given gene (proximal associations). We also computed correlation
of gene methylation with probe ratios of all CNVs on the same
chromosome as the gene but beyond the 2Mb window around the CpG
site (distal associations). r-values shown represent the correlation between
CNVs and CpGs. Negative r-values represent anti-correlation, whereas
positive values indicate direct correlation. Permutation-based multiple-test
correction, which involves random permutation of the methylation
phenotypes 10,000 times, was then applied to both proximal and distal
association analysis. To call association for CNV-methylation pairs
significant, we considered a permutation P-value cutoff of 0.01.

Linkage disequilibrium analysis
We tested for LD between CNV-mQTLs and all nearby SNPs, as well as
published SNP-mQTLs18,21,25, using bi-allelic SNP genotypes and CNV
genotypes in matched samples from the YRI population. The bi-allelic SNP
genotypes were extracted from the 1000 Genomes Project, phase 3
release3. Prior to LD analysis we first performed liftover, to convert the
genomic coordinates of SNPs to hg18 from hg19, using the CrossMap53.
We then used bedtools -window54 to select SNP-mQTLs that were located
within 1 Mb window of CNV-mQTLs to calculate LD. Pearson’s correlation
computed using Python 1.17.2 (numpy), was used to calculate the LD
between a CNV-mQTL and SNP under investigation. The r2 values denote
the correlation between CNV-mQTLs and SNPs. In instances where multiple
SNPs were located near a CNV-mQTL, we only considered the SNP with the
largest r2-value for reporting.

Conditional analysis between CNV-mQTLs and known SNP-mQTLs
To evaluate whether CNV-mQTLs have an independent effect on CpG
methylation compared with known SNP-mQTLs, we conducted a condi-
tional analysis55,56 of our CNV-mQTLs with known SNP-mQTLs18,21,25. This
conditional analysis will estimate if CNV-mQTLs are still main genetic
factors affecting CpG methylation when nearby SNP-mQTLs are taken into
account. For each CNV-mQTL, we evaluated all the known SNP-
mQTLs18,21,25 within 1 Mb window upstream and downstream of the
CNV-mQTL. For all nearby known SNP-mQTLs, we extracted genotypes
from the 1000 Genomes Project phase 3 release3. We then re-evaluated
the association between each CNV-mQTL and CpG, with this association
being conditional on nearby known SNP-mQTLs using cpgen implemented
in an R package (https://github.com/cheuerde/cpgen)57–59. The threshold
value used for conditional analysis was p < 0.05 and CNV-mQTLs that
passed this threshold were considered to have an independent effect on
CpG methylation when compared with nearby known SNP-mQTLs.

Comparison with VMRs and T-DMRs
The comparison with known VMRs14 and T-DMRs15 was determined by
doing 1 bp intersection of VMRs/T-DMRs with the CpG islands tagged by
the CNV-/SNP-associated CpGs. We also included the region around the
CpG islands, the CpG island shores, to perform the overlap, as they have
been reported to be differentially methylated. CpG island shores were
defined as 2 kb upstream and downstream of the CpG islands as proposed
by Irizarry et al.15.

Methylation-expression QTL analysis
Expression data. Estimates of gene expression levels were obtained from
Pickrell et al.26, which includes the RNA-sequencing data for 12,028 genes
from 69 YRI individuals. Seven hundred and forty-eight CpG sites, which
were found to be associated with CNV-mQTLs, were included in the
analysis.
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Association analysis. We examined the correlation between methylation
profiles of CpG sites within the 2Mb neighborhood of the target gene and
the expression of that target gene (proximal associations). Distal
association analysis was carried out by examining correlation of methyla-
tion of CpG sites outside the 2Mb window but on the same chromosome.
A 10,000 permutations test was performed as earlier and a permutation P-
value cutoff of 0.01 was used to select eQTM associations.

CNV-expression QTL analysis
CNV genotypes from YRI individuals from the 1000 Genomes2 (n= 53) and
Conrad et al.7 (n= 77) datasets were each used to perform CNV-expression
association analysis with the expression profiles of 69 YRI individuals26. By
extracting data for individuals with both varied genotypes and expression
profiles, we obtained 7172 CNVs for 49 individuals in the 1000 Genomes
dataset2 and 3929 CNVs for 67 individuals in the Conrad et al.7 dataset. For
each of the two datasets, we performed association analyses with the
expression profiles of 12,028 genes in the corresponding individuals.
Proximal association was examined by checking the correlation between
the CNV genotypes within the 2 Mb neighborhood of the target gene and
the expression profiles of the target gene. Distal association analysis was
performed in a similar manner but considering CNVs outside the 2Mb
window but on the same chromosome of targeted genes. A 10,000
permutations test was performed and a permutation P-value cutoff of 0.01
was used to identify CNV-eQTL associations. The list of CNV eQTLs was
then compared to CNV-mQTLs, to identify common CNVs.

CNV-mQTL validation
Cell lines and DNA extraction. The HapMap cell lines were purchased from
Coriell Institute and were maintained in RMPI 1640 (Life Technologies)
supplemented with 10% fetal bovine serum (Atlanta Biologicals). DNA was
extracted from cell lines using the DNeasy Blood and Tissue kit (Qiagen)
and was used for the PCR analysis.

Pyrosequencing. Two micrograms of DNA from the entire Yoruba
population panel was obtained from Coriell Cell Repository at a
concentration of 100 ng/µl. One microgram of DNA from each selected
individual was then subjected to bisulfite conversion using the Epitect
Bisulfite Kit (Qiagen) as per the manufacturer’s protocol. PCR and
sequencing primers were designed for the selected regions using the
PyroMark Assay Design SW 2.0 (Qiagen) and custom Pyromark® CpG assays
(Qiagen) were ordered (Supplementary Table 6). One of the two PCR
primers is biotinylated. PCR was then performed on the bisulfite converted
samples using the PCR primers from the custom assay kit to differentiate
methylated cytosine (mC) from unmethyated cytosine (C). The PCR product
was subsequently purified using the MinElute PCR purification kit (Qiagen).
The purified PCR product was checked for quality on a 1.5% gel and then
analyzed by Pyrosequencing. PyroMark Q24 software was used to analyze
the results. Results were presented as methylation percentage values for
each CpG in target region of the analyzed samples. The methylation
percentage was calculated as an average of the methylation values of each
CpG in the target region.

Illumina methylation 27 array analysis. We performed Illumina methyla-
tion 27 array (Illumina) analysis on 24 HapMap individuals including 1 CEU
trio (family 1463 including NA12878, NA12891, NA12892) and 1 YRI trio
(family Y117 including NA19240, NA19238, NA19239) (Supplementary
Table 7). Of these 24 individuals, 15 were genotyped individuals in the
1000 Genomes Project2 and all the 24 individuals were genotyped in
Conrad et al.7. Following preprocessing, similar to the strategy used in Bell
et al.18, the β-values that capture methylation levels of probes on the array
were quantile-normalized and applied for association studies. As in the
discovery analysis, we performed CNV-methylation association analyses for
the two CNV datasets: CNV genotypes reported in the 1000 Genomes
Project2 and CNV genotypes from Conrad et al.7. Of these associations,
only CNV-mQTLs from the discovery dataset that were copy number
variable in the validation dataset were considered using a P-value cutoff
of < 0.05.

Imprinted gene analysis
The list of imprinted genes were compiled from Morison et al.60 and the
Geneimprint website (http://www.geneimprint.com/).

ENCODE analysis
The data from the ENCODE consortium8 for DNase I hypersensitivity sites,
transcription factor-binding sites and the ChipSeq data for the histone
marks (H3K4Me1, H3K4Me3, H3K27Ac, and H3K36Me3) from the HapMap
cell line GM12878, were downloaded from UCSC genome browser. The
narrow peaks from the University of Washington DNase I dataset, was used
for the analysis. The broad peaks from the Broad Institute dataset were
downloaded for the histone modifications queried. The details are
presented in Supplementary Methods.

Assessing long-range interactions between CNVs and associated
CpGs using Hi-C
More than 4.9 billion pairwise Hi-C contacts, at different resolutions (10 kb
and 5 kb resolutions) across entire 22 autosomal, were obtained from
in situ Hi-C analysis of the GM12878 cell line29. The coordinates of Hi-C
compartments were first lifted back from b37 to b36, to match the CNV-
mQTL coordinates. Then, the CNV-mQTL regions and their associated CpG
regions (with an extended window size of 2 and 5 kb away from the CpG
Island to include shores) were intersected with Hi-C compartments at 1 bp
level using Bedtools intersect54. Finally, the interaction signal of each
overlapped Hi-C compartment was calculated for CNV-mQTL based on the
corresponding KRnorm values29.

Permutation test for Hi-C enrichment analysis
We performed random permutation tests to see whether CNV-mQTL/CpG
pairs were enriched for Hi-C interaction signals. Towards this, 1000
permutation datasets were randomly generated using Bedtools shuffle54, that
followed the same distributions of CNV-mQTL regions and their associated
CpG regions (with extended window size of 5 kb to include shores around
from the CpG Island). All permutation datasets were generated as in the
following three steps—first, random CNV regions that had the same size
distribution as the CNV-mQTLs were randomly picked from each chromo-
some; second, random CpG regions that had the same size distribution as the
associated CpG shore regions were randomly picked on the same
chromosome; third, the random CNV regions and random CpG regions were
randomly paired together with distances matching the distances between
CNV-mQTLs and the associated CpGs. Next, we intersected the random CNV
regions and randomly paired CpG regions with Hi-C compartments generated
at 10 kb resolution. The number of random CNV-CpG pairs that overlapped
with Hi-C compartments with non-zero signals across entire 22 autosomal
chromosomes were counted for each of the 1000 permutated datasets. Finally,
the log ratios were calculated using the number of real CNV-mQTL/CpG pairs
overlapping with Hi-C 10 kb compartments against the permutated sets of
CNV-CpG pairs overlapping with Hi-C compartments.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The DNA methylation dataset, generated for validation studies, supporting the
conclusions of this article is available in the Gene Expression Omnibus (GEO)
repository (https://www.ncbi.nlm.nih.gov/geo), accession number: GSE114131. Addi-
tional data are presented in the Supplementary Information section.

CODE AVAILABILITY
The code used in the paper can be accessed at https://github.com/ssetlur/setlur-lab/
tree/master/CNVmQTL and https://github.com/shilab/CNVmQTL/.
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