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A B S T R A C T

Background: Completion axillary lymph node dissection is overtreatment for patients with sentinel lymph
node (SLN) metastasis in whom the metastatic risk of residual non-SLN (NSLN) is low. However, the National
Comprehensive Cancer Network panel posits that none of the previous studies has successfully identified
such subset patients. Here, we develop a multicentre deep learning radiomics of ultrasonography model
(DLRU) to predict the risk of SLN and NSLN metastasis.
Methods: In total, 937 eligible breast cancer patients with ultrasound images were enrolled from two hospi-
tals as the training set (n = 542) and independent test set (n = 395) respectively. Using the images, we devel-
oped and validated a prediction model combined with deep learning radiomics and axillary ultrasound to
sequentially identify the metastatic risk of SLN and NSLN, thereby, classifying patients to relevant axillary
management groups.
Findings: In the test set, the DLRU yields the best performance in identifying patients with metastatic disease
in SLNs (sensitivity=98.4%, 95% CI 96.6�100) and NSLNs (sensitivity=98.4%, 95% CI 95.6�99.9). The DLRU also
accurately stratifies patients without metastasis in SLN or NSLN into the corresponding low-risk (LR)-SLN
and high-risk (HR)-SLN&LR-NSLN category with the negative predictive value of 97% (95% CI 94.2�100) and
91.7% (95% CI 88.8�97.9), respectively. Moreover, compared with the current clinical management, DLRU
appropriately assigned 51% (39.6%/77.4%) of overtreated patients in the entire study cohort into the LR group,
perhaps avoiding overtreatment.
Interpretation: The performance of the DLRU indicates that it may offer a simple preoperative tool to promote
personalized axillary management of breast cancer.
Funding: The National Nature Science Foundation of China; The National Outstanding Youth Science Fund
Project of National Natural Science Foundation of China; The Scientific research project of Heilongjiang
Health Committee; The Postgraduate Research &Practice Innovation Program of Harbin Medical University.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Introduction

Since the sentinel lymph node (SLN) was first noted in published
studies in the 1920s [1], axillary treatment has evolved from the rou-
tine completion of axillary lymph node dissection (ALND) for most
breast cancer patients to a selective approach based on the assess-
ment of the SLN by sentinel lymph node dissection (SLND). The gen-
eral procedure is ALND for all cases with SLN metastasis or when the
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Research in context

Evidence before this study
Up to 73% of patients with sentinel lymph node (SLN) meta-

static disease in whom the risk of additional non-sentinel
lymph node (NSLN) disease is low have received unnecessary
further axillary lymph node dissection (ALND). However, the
National Comprehensive Cancer Network panel posits that
none of the previous clinical methods has successfully identi-
fied such subset patients. We searched PubMed andWeb of Sci-
ence, for research articles with the following terms: “(non-
sentinel lymph node OR non-SLN OR NSLN) AND (deep learning
OR radiomics OR deep learning radiomics) AND ( identify OR
identification OR predict OR prediction) AND (ultrasound OR
ultrasonography OR ultrasonic OR US) AND (metastasis OR
involvement OR invasion) AND breast cancer”with no language
restrictions. As yet, there was no known study established the
deep learning radiomics model for identifying the risk of SLN
and NSLN metastatic disease in breast cancer.

Added value of this study
Completion ALND is overtreatment for breast cancer

patients with histologically positive SLN but a low risk of NSLN
metastasis. By analysing 3049 ultrasound images, this study
developed a prediction model based on deep learning radio-
mics for risk-assessment of the metastatic disease in SLN and
NSLN. In different cohorts, the DLRU yields the favourable per-
formance in identifying the risk of SLN and NSLN metastasis. It
demonstrates the promising potential of the DLRU, which may
help some breast cancer patients with positive SLN but consis-
tently negative NSLN to avoid overtreatment and promote per-
sonalized axillary management. Furthermore, the service
conditions of the DLRU is simplified by using the ultrasonogra-
phy, which is the most convenient imaging. By this means, the
DLRU could probably be helpful even for hospitals in resource-
limited areas.

Implications of all the available evidence
By detecting the detailed metastatic risk of axillary, the

DLRU may offer a preoperative tool to stratify breast cancer
patients to appropriate axillary surgery, providing a reference
for improving axillary management. Therefore, further testing
on a larger data set is warranted to make our model applicable.
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identification of SLNs fails. It is worth mentioning that there are post-
operative complications and morbidities in varying degrees, whether
using SLND or ALND [2,3].

In previous studies, up to 73% of the patients undergoing subse-
quent ALND for a positive pathology result of SLND, resulting in over-
treatment, as SLN was found to be the sole site of the axillary lymph
node (ALN) metastasis [4�7]. The National Comprehensive Cancer
Network’s (NCCN) Panel has recommended that completion ALND
could be avoided for the patient with low-risk (LR) of residual non-
SLN (NSLN) metastatic disease even though SLN is positive [8]. To
identify such patients, ໿the American College of Surgeons Oncology
Group (ACOSOG) Z0011 trial and the International Breast Cancer
Study Group (IBCSG) 23�01 trial concluded that the risk of NSLN
involvement is very low in patients with limited SLN metastasis such
that SLND alone can achieve the same survival rate as ALND while
avoiding morbidities [2,6,9�11]. Nevertheless, a vivid discussion con-
tinues with arguments that the results of the ACOSOG Z0011 trial can
only be suitable for patients undergoing breast-conserving surgery
followed by whole-breast radiation, and the standard of pathological
examination for the limited SLN metastasis in the IBCSG 23�01 trial
is extremely exacting for hospitals in resource-limited areas [6,12],
hindering the generalization of the experimental conclusions. More-
over, with a rise in screening awareness as well as improvements in
the diagnostic method of breast cancer, SLN is free of tumour burden
in some patients with an early diagnosis [13], indicating that SLND is
unnecessary for them. However, the SLN status can only be obtained
by the invasive SLND or SLN biopsy.

In clinics, various methods, such as mammography, ultrasonogra-
phy (US) and MRI, are used to diagnose axillary metastasis. Because
of being radiation-free, favourable repeatability and being easily
incorporated into the preoperative breast examinations [14�16],
axillary ultrasonography (AUS) has been routinely used to assess the
ALN metastatic disease. However, AUS relies on the perception of the
radiologist, like other methods, it is unable to distinguish between
SLN and NSLN. Since the 21st century, several clinical predictive
methods based on the pathological characters of the breast tumour
and SLN, such as Memorial Sloan-Kettering Cancer Centre (MSKCC)
nomogram, Mayo nomogram, the Tenon score system, and recursive
partitioning tools, have been devised to predict the risk of further
axillary NSLN involvement to omit over-treated ALND [4,17�21].
However, the latest NCCN guidelines posit that none of these studies
successfully identified the LR group of patients with positive SLNs but
consistently negative NSLNs [8]. These realities highlight the lack of
an available method for preoperative identification of the status of
SLN and NSLN in the axilla, which is vital to axillary management.

In recent years, a few studies have indicated the potential value of
quantitative radiomic features from medical images to predict the
ALN status [22,23]. Nevertheless, these radiomic methods rely on
precise tumour boundaries labelled by radiologists and remain inca-
pable of predicting the NSLN of the ALN. Superior to the conventional
radiomics, deep learning radiomics (DLR) is a prospective method
that automatically learns feature representations, quantifies informa-
tion from images and has been shown to match and even surpass
human performance in addressing the challenges across the spec-
trum of cancer detection, treatment, and monitoring [24�26]. Fur-
ther studies have caused a rapid rise in the potential for the
application of DLR in breast cancer imaging such as risk assessment,
prediction of prognosis, response to therapy, and even distinguishing
the number of metastatic ALNs [24,27�29]. Therefore, we hypothe-
size that DLR can show a great clinical utility in tackling the challenge
of predicting the detailed ALN status.

In this study, we construct a multicentre model by combining DLR
with the US, the most common and simplest examination for breast
cancer, named DLRU. To better meet the clinical requirements, the
fundamental purpose of the DLRU is to identify as many high-risk
(HR) patients as possible to ensure an appropriately reduced in over-
treatment without adverse impacts on survival. Ultimately, the per-
formance of the DLRU indicates that it may help the detection of SLN
and NSLN metastasis to customize personalized axillary surgical
strategies to avoid overtreatment for some of the patients without
SLN or NSLN metastasis.

Materials and methods

Patients and experimental design

The ethical board of Harbin Medical University (HMU) approved
this retrospective multicentre study. Written informed consents
from patients were waived owing to the retrospective study design,
non-invasive nature of the intervention. We obtained verbal consent
for the use of their data in this study, and the ethical board waived
the need to document the verbal consent (approval number:
KY2016�127).

From March 2017 to July 2019, 1576 consecutive women from
two affiliated hospitals of HMU (China) came to the hospital for sus-
picious breast lesions and initially agreed to participate in the study.
Amongst these patients, 1280 patients met the inclusion criteria and
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considered eligible for this study. After excluding 343 patients, 937
primary breast cancer patients with 3049 US images were enrolled
for analysis (details in Supplementary material and Fig. S1), including
542 women from the 2nd affiliated hospital of HMU as the training
set and 395 patients from the 3rd affiliated hospital of HMU as the
test set. Inclusion and exclusion criteria are indicated in the
Table 1
Clinical characteristics of patients in the training and test sets.

Training set (n = 542)

SLN+ (180,33.2%) SLN- (362,66.8%

Age, years
Mean 52.1 52.5
SD 10.9 10.5
Median 51 52
Range 24�79 28�86
Menopausal status
Premenopausal, no. (%) 73 (40.6) 146 (40.3)
postmenopausal, no. (%) 107 (59.4) 216 (59.7)
Clinical T stage
T1 (�20 mm), no. (%) 78 (43.3) 248 (68.5)
T2 (21 mm �50 mm), no. (%) 96 (53.3) 110 (30.4)
T3 (>50 mm), no. (%) 6 (3.3) 44 (6.7)
Histologic type
Ductal carcinoma, no. (%) 156 (86.7) 312 (86.2)
Lobular carcinoma, no. (%) 6 (3.3) 11 (3.0)
Mixed, no. (%) 10 (5.6) 17 (4.7)
Other, no. (%) 8 (4.4) 22 (6.1)
ER
positive, no. (%) 129 (71.7) 234 (64.6)
negative, no. (%) 46 (25.6) 111 (30.7)
Missing, no. (%) 5 (2.8) 17 (4.7)
PR
positive, no. (%) 117 (65.0) 198 (54.7)
negative, no. (%) 58 (32.2) 142 (39.2)
Missing, no. (%) 5 (2.8) 22 (6.1)
HER-2
positive, no. (%) 93 (51.7) 164 (45.3)
negative, no. (%) 82 (45.6) 176 (48.6)
Missing, no. (%) 5 (2.8) 22 (6.1)
Ki-67
<20%, no. (%) 64 (35.6) 153 (42.3)
>20%, no. (%) 111 (61.7) 185 (51.1)
missing, no. (%) 5 (2.8) 24 (6.6)
biological subtype
HER2 negative/HR positive, no. (%) 137 (76.1) 249 (68.8)
Triple negative, no. (%) 14 (7.8) 45 (12.4)
HER2 positive, no. (%) 25 (13.9) 59 (16.3)
Missing, no. (%) 4 (2.2) 9 (2.5)
NSLN status (SLN positive)
NSLN positive, no. (%) 83 (46.1) 0
NSLN negative, no. (%) 97 (53.8) 362 (100)
US BI-RADS grade
3, no. (%) 4 (2.2) 15 (4.2)
4a, no. (%) 5 (5.0) 76 (21.0)
4b, no. (%) 29 (16.1) 123 (34.0)
4c, no. (%) 41 (22.8) 127 (35.1)
5, no. (%) 97 (53.9) 21 (5.8)
Location
UOQ, no. (%) 112 (62.2) 215 (59.4)
LOQ, no. (%) 28 (15.6) 46 (12.7)
UIQ, no. (%) 30 (16.7) 78 (21.5)
LIQ, no. (%) 7 (3.9) 15 (4.1)
Centre, no. (%) 3 (1.7) 8 (2.2)
AUS report
suspicious, no. (%) 121 (67.2) 16 (4.4)
Unsuspicious, no. (%) 59 (32.8) 346 (95.6)

Note: P represents the difference between each clinicopathological variable betwe
between each clinicopathological variable between the training and the test sets.
The chi-square test was used to compare the difference in categorical variables (all va
in age.
Abbreviations: ER, oestrogen receptor; PR, progesterone receptor; HER2, human ep
node; SLN, sentinel lymph node; NSLN, non-sentinel lymph node; the US, ultrason
inner quadrant; LIQ, lower inner quadrant; AUS, axillary ultrasonography.
Supplementary material. The clinicopathological characteristics
needed for the study were collected retrospectively after surgery
(Table 1).

The detailed status of ALN was confirmed by combining the
results of SLND and ALND as the reference, which is the accepted
gold standard in clinical work: negative SLN (SLN-), positive SLN but
negative NSLN (SLN+&NSLN-), positive SLN, and NSLN (SLN+&NSLN+)
Test set (n = 395) P*

) P SLN+ (185,46.8%) SLN- (210,53.2%) P

0.683 0.077 0.524
51.0 52.7
9.7 10.1
51 52
26�83 23�78

0.960 0.073 0.596
87 (47.0) 80 (38.1)
98 (53.0) 130 (61.9)

<0.001 <0.001 <0.001
34 (18.4) 89 (42.4)
123 (66.5) 104 (49.5)
28 (15.1) 17 (8.1)

0.851 0.051 0.708
156 (84.3) 184 (87.6)
16 (8.6) 5 (2.4)
9 (4.9) 7 (3.3)
4 (2.2) 14 (6.7)

0.167 0.057 <0.001
76 (41.1) 99 (47.1)
80 (43.2) 68 (32.4)
29 (15.7) 43 (20.5)

0.057 0.057 <0.05
78 (42.2) 91 (43.3)
78 (42.2) 75 (35.7)
29 (15.7) 44 (21.0)

0.057 0.524 <0.05
65 (35.1) 63 (30.0)
91 (49.2) 102 (48.6)
29 (15.7) 45 (21.4)

0.063 0.445 <0.001
84 (45.4) 97 (46.2)
70 (37.8) 68 (32.4)
31 (16.8) 45 (21.4)

<0.001 <0.05 0.034
106 (57.3) 132 (62.9)
16 (8.6) 13 (6.2)
34 (18.4) 20 (9.5)
29 (15.7) 45 (21.4)

<0.001
128 (69.1) 0
57 (30.9) 210 (100)

<0.001 <0.001 <0.001
2 (1.1) 3 (1.4)
2 (1.1) 13 (6.2)
19 (10.3) 41 (19.5)
61 (33.0) 128 (61.0)
101 (54.6) 25 (11.9)

0.644 0.051 0.087
114 (61.6) 102 (48.6)
25 (13.5) 30 (14.3)
27 (14.6) 59 (28.1)
8 (4.3) 10 (4.8)
11 (5.9) 9 (4.3)

0.001
130 (70.3) 11 (5.2)
55 (29.7) 199 (94.8)

en the positive SLN and the negative SLN sets. P * represents the difference

riables except age), while a Student's t-test was used to compare the difference

idermal growth factor receptor 2; HR, hormone receptor; ALN, axillary lymph
ography; UOQ, upper outer quadrant; LOQ, lower outer quadrant; UIQ, upper
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(Table. S1, details in the Supplementary material). The ideal axillary
management for breast cancer is based on the status above: (i) SLN-,
any kind of surgery is redundant; (ii) SLN+&NSLN-, SLND is needed;
(iii) SLN+&NSLN+, required complete ALND. In this study, we devel-
oped the model using DLR to stratify patients into the ideal manage-
ment groups, including LR-SLN, HR-SLN&LR-NSLN, and HR-SLN&HR-
NSLN, corresponding to SLN-, SLN+&NSLN-, and SLN+&NSLN+,
respectively. These may help customize the axillary operation.

Ultrasonography of breast lesion and ALN

Before participating in the study, every breast radiologist had to
fulfil the US imaging quality control criteria to perform standard
breast ultrasound and AUS examinations for patients [30]. To keep
the consistency of the imaging, six radiologists with over five years of
experience were selected for the preoperative breast and AUS image
acquisition (details in Supplementary material), using HITACHI Vision
500 system (Hitachi Medical System, Tokyo, Japan) and Aixplorer US
imaging system (SuperSonic Imagine, SSI, France) equipped with a
linear probe of 5�13 MHz.

For the breast lesion, 1 or 2 two-dimensional grey-scale static US
images at the radial and anti-radial planes from each patient were
selected by two radiologists with over ten years of experience. All
patients underwent an AUS to assess and record the morphologic
appearance of the ALNs in real-time, and the AUS images were subse-
quently reviewed by the two experienced radiologists. According to
the BI-RADS criteria (Supplementary material) [31], the ALN was cat-
egorized into “suspicious” or “unsuspicious” as the result of the AUS
report (Fig. 1).

Deep learning radiomics model

DLR is a multi-layer computational model designed to extract use-
ful information from image data. The key computational operations
are convolution, activation, and pooling. For reducing the risk of over-
fitting, we introduce a batch of normalization and data augmentation
modules. The detailed mathematical description of these operations
is illustrated in Supplementary methods.

Two DLR models were designed to predict the metastasis of the
SLN and the NSLN, respectively. The DLR models used the same net-
work architecture and training strategy. The structure of the DLR net-
work is shown in Fig. S2. When applying the DLR model, a square
region of interest (ROI) containing the entire the full tumour region
was manually selected on the US image. Detailly, it contains the
entire hypoechoic tumour area, echogenic halo (if present) and some
Fig. 1. Illustration of axillary lymph nodes on ultrasound
a) Illustration of unsuspicious ALN on ultrasound. Ultrasound image of a morphologic

cortex (<3 mm thick), smooth margin and hyperechoic fatty hilum (white arrows).
b) Illustration of suspicious ALN on ultrasound. Ultrasound image of a metastatic A

absence of hyperechoic fatty hilum by compression (white hollow arrows).
surrounding tissues (which are hyper-echogenic compared with the
tumour, such as glands or fatty). If there are posterior and lateral
acoustic shadows of the tumour on the US image, the ROI also needs
to include part of it. The tumour was not required to be precisely in
the centre of ROI. Then, the ROI was resized to 224 £ 224 pixels and
input to each DLR model. After sequential activation of the convolu-
tion and pooling layers, the DLR model predicted the lymph node
metastatic probability of the image. For further analysing the infor-
mation of different orientations of US images, two kinds of images
were fed into the two sub DLR models (radial and anti-radial), and
the results of the two were fused to give the final metastatic probabil-
ity of the DLR model (details in Supplementary methods).

Before training this model, we pre-trained the network using
1.28 million natural images in the ImageNet dataset [32], which has
shown good performance in disease diagnosis [33,34]. Finally, the
weights of the DLR model were fine-tuned by the US images from the
breast tumour in the training set.
Integration of the DLRU for identifying the metastatic risk in SLN and
NSLN

Based on the DLR models, we developed two sub-models, DLR-1
and DLR-2, which were combined into the DLRU and can sequentially
predict the metastatic risk of SLN and NSLN (Fig. 2).

The DLR-1 was constructed using a decision tree (Fig. S3), combin-
ing the DLR model and the AUS report (DLR+AUS) to acquire the risk of
SLN involvement. Firstly, the US images in two orientations (880
radial and 908 anti-radial) from all breast cancer patients in the train-
ing set were used for training the DLR model respectively. Secondly,
since the AUS is incapable of distinguishing the SLN from the NSLN,
and the lymphatic spread within the axilla is orderly, we assume that
the AUS report reflects the metastatic risk of SLN that receives initial
drainage from cancer [7,35,36]. Then we extracted the AUS report as
a categorical variable with a specific value of 1 (suspicious) or 0
(unsuspicious) and incorporated it into DLR-1. Therefore, in DLR-1,
when the DLR model considered the risk of SLN involvement as LR,
the AUS report would be subsequently employed to assess the meta-
static risk of SLN. If the AUS report considered the SLN as “suspi-
cious”, the metastatic risk would be output as HR. And LR would be
output when SLN was considered as “unsuspicious” by AUS report.
When the DLR model considered the metastatic risk of SLN is high,
that will be directly output. Finally, patients identified as LR-SLN are
directly exported by DLRU, and HR-SLN patients will be subsequently
input to DLR-2 to continue to identify the risk of NSLN metastasis.
ally unsuspicious ALN is oval or round in shape, with a uniform concentric hypoechoic

LN is irregular in shape, with a focally thickened hypoechoic cortex and deformity or



Fig. 2. Workflow of the DLRU
DLRU consists of DLR-1 and DLR-2. The US images at the radial and anti-radial planes were input into the DLR network respectively, which outputs the probability of the SLN

metastasis. DLR-1 in the form of the decision tree combined with the DLR model and the AUS report outputs the final predictive risk of the involved SLN. The patient with a high-
risk (HR) metastatic SLN will receive an SLND. Finally, the risk of NSLN involvement of the HR SLN patients with positive SLN confirmed by the SLND will be obtained, using DLR-2.
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The DLR-2 was also developed using the DLR model to predict the
risk of NSLN metastasis. Firstly, two orientations’ (620 radial and 641
anti-radial) US images from all SLN+ patients in the training set were
used to train the DLR model (details in Table S2, Supplementary
material). Secondly, since HR-SLN patients from DLR-1 must undergo
subsequent SLND as a treatment in clinical practice. We incorporated
the SLND result of these HR-SLN patients into DLR-2 to exclude SLN-
patients amongst HR-SLN patients. Therefore, the DLR-2 would out-
put the NSLN metastatic risk of HR-SLN patients with positive SLN
(Fig. 2, Fig. S4). Finally, we combined the DLR-1 and DLR-2 as the
DLRU, through which some of the SLN+&NSLN- patients could be
identified to avoid overtreatment.

The performance of the entire DLRU was validated in an indepen-
dent test set. All US images from the patients in the test set were
employed in this assessment.

Comparison between deep learning radiomics and clinical methods

We investigated the value of clinical features which were previ-
ously used as the predictors of the ALN metastasis in improving the
performance of DLRU [4]. We selected several tumour-based clinical
predictors associated with the SLN metastasis by forward stepwise
regression [37]. The regression was applied by using the likelihood
ratio test with Akaike’s information criterion as the stopping rule.
Thereafter, the selected clinical predictors were used for constructing
the Clinical model as well as the combination model (DLR+clinical) of
DLR and clinical features using multivariable logistic regression. We
validated the Clinical model and the DLR+clinical model in the test set.
Then a comparison of the Clinical model, the DLR model, and the
DLR+clinical in detecting the SLN metastasis was made.

Additionally, previously, a few methods were proposed to predict
the NSLN metastasis [4,17�20]. Of these methods, the MSKCC nomo-
gram and the Tenon score outperformed others [17,38�40]. There-
fore, we summarized the best performance of the MSKCC nomogram
and Tenon score in previous studies. To ensure equity, we also ran-
domly selected a subset of the patients with complete clinicopatho-
logical data for subgroup analysis of the DLRU and the MSKCC
nomogram in predicting the risk of NSLN metastasis (http://www.
mskcc.org/nomograms).

Statistical analysis

Descriptive statistics were summarized as mean § SD or frequen-
cies and percentages. For the quantitative variables, comparisons
between groups were made using the Student’s t-test. Differences of
categorical variables were compared using the chi-squared test. The
sensitivity, specificity, positive and negative predictive values (PPV,
NPV) were calculated to evaluate the performance. The receiver

http://www.mskcc.org/nomograms
http://www.mskcc.org/nomograms
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operating characteristic (ROC) curve was used to show the perfor-
mance of the model. Statistical significance of differences in sensitivi-
ties was assessed by using McNemar’s test statistics [41]. A p value <

0.05 was considered statistically significant. All statistical analyses
were implemented using SPSS 21, Keras toolkit, R software (version
3.4.1) and Python 3.5.

Results

Prevalence and clinical-pathological characters

Overall, 937 eligible breast cancer patients participated in this
study. The prevalence and clinical-pathological characteristics of the
patients are described in Table 1. The clinical tumour stage (cT) and
biological subtype showed significant differences between the SLN+
and the SLN- patients (P< 0.05 for both; chi-squared test).

The distribution of the detailed ALN status (SLN-, SLN+&NSLN-,
and SLN+&NSLN+) is shown in Table S1. Of the SLN+ patients
(n = 365), 58% (211/365) were NSLN+ and 42% (154/365) were NSLN-
patients (Table S1). The proportion of SLN and NSLN status is consis-
tent with that described in previous studies [4�7,19,42].

Performance of dlru in identifying the metastatic risk of the SLN

As shown in Fig. 2, firstly, the DLRU predicts the risk of SLN
involvement. The goal of our study is to ensure reducing overtreat-
ment without adverse impacts on survival. Therefore, high sensitivity
is indispensable to ensure essential surgery for positive patients. To
better appreciate the sensitivity, we investigated the performance of
the clinical characteristics, AUS and the DLR features in diagnosing
the risk for SLN invasion. Tumour-based clinical predictors, the cT
and biological subtype showed significant correlation to SLN status (P
< 0.05, in both sets) and were selected to construct the Clinical model
and the combination model (DLR+clinical). These two models were
compared to the DLR model in detecting the SLN metastasis. Fortu-
nately, the DLR model achieved a significantly higher sensitivity of
87.8% (training set), 89.7% (test set) (P < 0.05, in both sets; McNe-
mar’s test) (Table 2). Meanwhile, the AUS report also achieved a rea-
sonable performance (AUC = 0.814, sensitivity = 67.2% in the training
set; AUC = 0.825, sensitivity = 70.3% in the test set), which is consis-
tent with previous studies [14,15]. The ROC curve was plotted to
demonstrate the comparative results of AUC in Fig. 3a.

Given that the DLR features are derived from the breast tumour
and the AUS reflects the information of lymph node, we combined
the two into DLRU. Compared with all the above models, the DLRU
yields optimal performance with the highest sensitivity (P < 0.05, all
models, in both sets; McNemar’s test), thereby identifying the most
SLN+ patients as HR-SLN (sensitivity = 97.2%, NPV = 97.7%, AUC = 0.88
in training set, sensitivity = 98.4%, NPV = 97% AUC = 0.84 in test set)
(Table 2). The sensitivity and specificity of the DLRU are demon-
strated in Fig. 4. Ultimately, in the test set (n = 395), of the SLN+
patients (47%, 185/395), 98% (182/185, three patients missed)
patients were classified correctly as HR by the DLRU to be assured of
a necessary SLND. amongst SLN- patients (n = 210) in the test set, 46%
(96/210) patients were correctly classified as LR to avoid an over-
treated SLND (Fig. 4).

Performance of the dlru in identifying the metastatic risk of the NSLN

When the DLRU judges the metastatic risk of SLN is HR, it will con-
tinue to identify the risk of NSLN metastasis (Fig. 2). In this step, the
DLRU yielded remarkable performance with sensitivity = 100%,
NPV = 100%, and AUC = 0.91 in the training set. In the test set, the per-
formance dropped slightly with sensitivity = 98.4%, NPV = 91.7% and
AUC = 0.81(Table 2). In Fig. 4, the sensitivity and specificity are illus-
trated. In test set (n = 185), the DLRU stratified 98% (124/126) of the



Fig. 3. ROC curves of the models for identifying the metastatic risk of SLN or NSLN in the training and test sets
a) ROC curves of different models for predicting the SLN status.
b) ROC curves of the Submodel-2 of DLRU for predicting the risk of NSLN metastasis.
c) ROC curves of subgroup analysis between the DLRU and the MSKCC nomogram for evaluating the risk of NSLN metastasis.

Fig. 4. Performance of the DLRU in the stepwise evaluation of the risk of SLN and NSLN involvement in training and test sets
The upper panel shows the actual status distribution percentage of SLN and NSLN, and the lower panel shows the prediction results outputted by the DLRU in the training and

the test sets. For example, in the training set, 67% of the patients were SLN- and 33% were SLN+. The DLRU classifies 58% of SLN- patients as low-risk (LR) and 97% of SLN+ patients
as high-risk (HR).
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SLN+&NSLN+patients(n=128, twopatientsmissedbyDLR-1) intoaHR-
SLN&HR-NSLNcategory.AnecessaryALNDcouldbeensuredforthiscate-
gory. Moreover, in the test set, of the SLN+ patients (n = 185) without
tumour-bearingintheNSLN(31%,57/185),39%(22/56,onepatientmissed
byDLR-1)caseswerecategorizedasHR-SLN&LR-NSLNbyDLRUforwhom
themorbidities of over-treatedALNDcouldbeavoided (Fig. 4). TheROC
curveofDLR-2isshowninFig.3b.

We also compared DLRU with the MSKCC nomogram and Tenon
score in Table 3 [17,38�40]. In terms of sensitivity, PPV, NPV and
AUC, the DLRU outperforms the best performance of these two mod-
els in previous studies. Moreover, in the subgroup analysis, the sensi-
tivity of the DLRU (1.00, 0.914 in the training set; 0.958, 0.846 in the
test set) was consistently higher than that of the MSKCC nomogram
(0.25, 0.82 in the training set; 0.42, 0.74 in the test set) (P < 0.05, in
both sets; McNemar’s test) (Table 3, Fig. 3c). Note that the sensitivity
of DLRU for identifying HR-NSLN was higher than the MSKCC nomo-
gram, though the specificity of DLRU is lower. The reason is that we
deliberately designed the DLRU to minimize the chance of missing
the high-risk axillary invasion to ensure the treatment, that is, to
achieve high sensitivity rather than specificity.

To better comprehend the DLRU, we visualize the response areas
to DLR model in predicting the status of NSLN by applying the Gradi-
ent-weighted Class Activation Mapping (Fig. 5a, Fig. S5). We found
that in US images of different NSLN statuses, the location of the
strong response area obtained from the DLR model may change. In
most US images of the NSLN- patients, the strong response areas
often tend to cluster on the edge of the tumour. And in most US
images of the NSLN+ patients, the strong response areas usually clus-
ter in the tumour. To some tend, this may explain the discrimination
ability of the DLR, which is consistent with the previous study [29].

Comparing the benefit of DLRU with the current clinical practice

Current clinical practice is based on SLN assessment for all
patients by SLN biopsy or SLND. When metastatic SLN is detected, a
subsequent ALND will be performed. These would lead to SLN- or
SLN+&NSLN- patients undergone overtreated SLND or ALND. How-
ever, by two-step outputs of DLRU, the patient could be assigned to
one of the three groups corresponding to three ideal axillary manage-
ment groups: LR-SLN, HR-SLN&LR-NSLN, and HR-SLN&HR-NSLN (see
Materials and Methods) (Fig. S4). In this way, using DLRU, some of
SLN- or SLN+&NSLN- patients may avoid overtreatment.

As shown in the left panel of Fig. 5b, in the whole study cohort,
when we made an operative proposal according to the current clini-
cal management, it resulted in 77.4% (61% SLN- and 16.4% SLN
+&NSLN-) of the patients being over-treated with unnecessary SLND
or ALND and only 22.6% NSLN+ of the patients received a suitable
ALND. In contrast, when we analysed these same patients using the
DLRU, it stratified 32.7% of the patients correctly into the LR-SLN
group, thus avoiding overtreatment of SLND (Fig. 5b, right panel).
The DLRU also stratified 42% (6.9%/16.4%) of the SLN+&NSLN- patients
into HR-SLN&LR-NSLN to receive suitable surgery (SLND) and omit
overtreatment (ALND). Furthermore, almost all (98.2%, 22.2%/22.6%)
of the SLN+&NSLN+ patients were classified as HR-SLN&HR-NSLN to
ensure necessary ALND. Eventually, only 37.1% of all the breast cancer
patients were mistakenly stratified into HR, leading to overtreatment.
The application of DLRU, therefore, may have the potential to further
reduce morbidity and economic costs associated with current axillary
management (37.1% vs. 77.4%; Fig. 5b),

Discussion

The NCCN Guidelines recommend that breast cancer patient with
positive SLN can undergo SLND instead of ALND if the metastatic risk
of NSLN is low [8]. However, whether SLN or NSLN, the status can
only be obtained by the invasive SLND or ALND, They both have



Fig. 5. DLRU analysis
a) Visualization of the DLRU
The strong response area (red area) obtained from the DLR model in US images of different NSLN statuses.
b) Overall benefit by DLRU
These two ring diagrams respectively show the proportion of patients in the study who will receive different treatments according to DLRU or current clinical management. The

inner ring represents the actual distribution percentage of ALN status of all patients in this study. The outer ring of the left ring diagram shows the treatment based on the current
clinical management, leading to the overtreatment of 77�4% patients, and suitable treatment of 22�6% patients. The outer ring of the right ring diagram shows axillary surgery deci-
sions made by the DLRU, 37�1% of the patients will undergo overtreatment, and 62�6% of all patients (SLN- or SLN+&NSLN-) will benefit and receive suitable surgery.
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complications and morbidities in varying degrees [2,3,11,43]. In this
study, a novel multicentre model based on DLR and conventional
two-dimensional US imaging, called DLRU, was developed for a per-
sonalized evaluation of the risk of SLN and NSLN invasions. The most
general US imaging was utilized in our study to simplify the service
conditions of the DLRU. By this means, the DLRU could probably be
helpful even in the basic hospitals or the medically underdeveloped
areas.

In the clinic, an essential criterion can be helpful to measure the
utility of a method: false-negative rate (FNR, 1- sensitivity). An FNR
with 5% is widely used as a target value when previous studies
assessing a model, due to the FNR of ALND is close to 5% [17,44].
Besides, the FNR of the SLND in the National Surgical Adjuvant Breast
and Bowel Project (NSABP) B-32 and other randomized trials were
less than 9.8% [7,45]. So when applying the model, the target FNR
adjusted to less than 10% has been considered clinically acceptable
[7,17,44,45]. In both sets, the DLRU yields sufficient low FNR in
assessing the risk of the SLN and NSLN involvement, which is less
than 5%. This indicates a very low likelihood of missed breast cancer
with ALN metastasis by the model, thus ensuring the essential sur-
gery for these patients. And previous studies demonstrated that
SLND for patients with limited SLN metastasis can achieve compara-
ble survival outcome with the ALND and less morbidities, such as
wound infection, seroma, paraesthesia and lymphedema, which
translates into a better quality of life (QoL) [2,3,6,7,9�11,43]. There-
fore, with a sufficiently low FNR, HR-SLN&LR-NSLN patients identi-
fied by DLRU may be able to safely convert ALND to SLND, thereby
obtaining comparable survival outcomes and better QoL.
We have to mention that though FNR was consistent with the
SLND, a small portion of breast cancer patients with ALN metastasis
that were misclassified into LR group were non-negligible. Similarly,
in the current clinical treatment, there are also concerns about the
missed diagnosis of SLND. To ensure the treatment for some patients
suspected of missed diagnosis, the NCCN panel notes that postopera-
tive axillary radiotherapy (ART) can be performed on these patients
for regional control of the disease [8]. This recommendation can also
be applied to patients using DLRU. Moreover, ART has been proven to
provide axillary control comparable to ALND for some patients and
result in better QoL [42]. By performing ART, a small but non-negligi-
ble portion of breast cancer patients who were misjudged by the
model may ensure the equivalent locoregional control.

We investigated several prediction models to examine the possi-
bility of improving sensitivity (Table 2). The Clinical model, even the
DLR+clinical model is inferior to the DLR model in identifying patients
with positive SLN. Meanwhile, either the DLR model or the AUS
report achieved a significantly lower sensitivity than DLR-1 com-
posed by the two. We assume that such results are probably caused
by the following reasons: a) Tumour-based clinical features are the
external manifestations of the intra-tumour heterogeneity (ITH),
which is a common feature in solid tumour cancers [46]. Multiple
studies have demonstrated that DLR features acquired from macro-
scopic medical images can comprehensively reflect the innate ITH
information of the tumour [25,47]. Therefore, the tumour-based clini-
cal features may be redundant in improving the sensitivity of the DLR
model. b). The AUS report contains general morphology information
of the ALN, which is independent of the primary tumour and
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complements the axillary features. Therefore, the performance for
predicting the metastatic SLN is well improved by incorporating the
AUS report as a factor into DLR-1.

Considering the information in previous studies, our study may be
the first attempt to identify NSLN metastasis, using the DLR features
derived from US imaging. Many studies constructed models to assess
the NSLN status using SLN pathological indicators such as the number
of positive and negative SLNs, the detective method of the SLN, the
size of the largest SLN metastasis, and the presence of extra-capsular
extension of the SLN metastasis [4,18�20]. We compared the perfor-
mance of DLRU to the MSKCC nomogram and the Tenon score which
were demonstrated superior to other methods [17,38,39]. It was
found that the DLRU performed invariably better in identifying posi-
tive patients (Table 3). The DLR shows remarkable performance in
this task of extracting information connected to NSLN metastasis
from the breast cancer US imaging, as in other studies [25,34].

With a rigid pathological examination of the SLN, the ACOSOG
Z0011and IBCSG 23�01 trials suggest that if patients meet a series of
criteria simultaneously, omitting further ALND after tumour-positive
SLND does not decrease the survival rate [6,9,10,12]. Nevertheless,
the accuracy of the pathological assessment varied between hospi-
tals. In less developing countries, a large population base or resource
limitations in terms of technological capacity and personnel, leading
to the pathological examination cannot reach such strict standards.
Moreover, all the patients enrolled in these trials underwent breast-
conserving surgery followed by whole-breast radiation. According to
the preliminary data released at the 15th Chinese breast cancer con-
ference, only 22% of the breast cancer patients in China have under-
gone breast-conserving surgery; this statistic is similar to that
obtained in other countries [48,49]. These limit the generalization of
the conclusion obtained from the trials.

To make our model generalizable, we have tried to intentionally
minimize our exclusion criteria. All patients in our study suffered
from primary breast cancer, and there was no restriction on tumour
staging, pathological type and molecular subtype, so as to include
more diverse breast cancers. This may make the heterogeneous pop-
ulation of patients with primary breast cancer close to the actual clin-
ical reality. And we used the most accessible and universal medical
imaging method, US, making the model helpful even in medical
resource-limited areas. To ensure that the overtreatment of negative
patients is appropriately reduced without adversely affecting the
necessary surgery for positive patients, the DLRU gets a reasonably
stable low FNR in two completely different hospitals. This may dem-
onstrate the generalization capability of the DLRU. Additionally, now-
adays, since the individualized treatment options of the axilla are
under research, patient-specific prediction of axillary disease is get-
ting more attention. The ACOSOG Z0011 trial, the IBCSG 23�01 trial
and the AMAROS trial implicate that the role of intraoperative SLN
pathology analysis in the clinical context is diminishing [4,6,9,10]. In
this perspective, the DLR might be able to promote the trend of sim-
plifying axillary surgery uniquely.

Despite the outstanding performance of the DLRU, this study still
has a few limitations in terms of the retrospective study, the limited
number of hospitals, the further optimizable DLRU model and the
inherent defects of the US. Firstly, since this is a retrospective study,
excluding patients with incomplete data required for the study is
inevitable and may lead to bias. Therefore, prospective studies are
needed in future studies to confirm the realistic performance of the
model and overcome the potential bias derived from retrospective
data. Also, subsequent studies can involve more hospitals and more
diversified breast cancers to create a real-world distribution of
patients to better train the DLRU for better stability. Secondly, multi-
modal US such as Colour Doppler US, ultrasonic elastography and the
contrast-enhanced US reflect varied intrinsic information of the
tumour. In further research, we will focus on improving the perfor-
mance of DLRU by involving more patients and multi-modal US
images to maintain high sensitivity and increase specificity. Thirdly,
although we adopted the relatively simple method that analysed a
single image at a time to make our model better adapt to the data col-
lection preferences of different hospitals and doctors, this prevents us
from capturing the correlation between images. Therefore, in subse-
quent research, we will further explore better methods to analyse
multiple consecutive images at the same time. Finally, due to the
inherent limitations of ultrasound, our research inevitably lacks a
small number of breast tumours that are invisible in the ultrasound.
Therefore, further studies involving more medical imaging methods
remains to be researched.

In conclusion, we present a novel DLRU model for the identifica-
tion of the metastatic risk in SLN and NSLN in primary breast cancer.
The DLRU demonstrates good performance, thus, implying the prom-
ising potential of the DLR in risk-assessment of the ALN. If possible,
pre-surgical use of the DLRU may lead to a reduction in morbidities
of ALND or SLND without adverse impact on survival. However, fur-
ther studies on a larger data set with more centres are desirable.
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