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TDP-43 mediated blood-brain barrier ")
permeability and leukocyte infiltration
promote neurodegeneration in a low-grade
systemic inflammation mouse model
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Abstract

Background: Neuronal cytoplasmic inclusions containing TAR DNA-binding protein 43 (TDP-43) are a
neuropathological feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS),
frontotemporal dementia (FTD), and Alzheimer’s Disease (AD). Emerging evidence also indicates that systemic
inflammation may be a contributor to the pathology progression of these neurodegenerative diseases.

Methods: To investigate the role of systemic inflammation in the progression of neuronal TDP-43 pathology, AAV9
particles driven by the UCHL1 promoter were delivered to the frontal cortex of wild-type aged mice via intracranial
injections to overexpress TDP-43 or green fluorescent protein (GFP) in corticospinal motor neurons. Animals were
then subjected to a low-dose (500 ug/kg) intraperitoneal E. coli lipopolysaccharide (LPS) administration challenge for
2 weeks to mimic a chronically altered low-grade systemic inflammatory state. Mice were then subjected to
neurobehavioral studies, followed by biochemical and immunohistochemical analyses of the brain tissue.

Results: In the present study, we report that elevated neuronal TDP-43 levels induced microglial and astrocytic
activation in the cortex of injected mice followed by increased RANTES signaling. Moreover, overexpression of TDP-
43 exerted abundant mouse immunoglobulin G (IgG), CD3, and CD4+ T cell infiltration as well as endothelial and
pericyte activation suggesting increased blood-brain barrier permeability. The BBB permeability in TDP-43
overexpressing brains yielded the frontal cortex vulnerable to the systemic inflammatory response following LPS
treatment, leading to marked neutrophil infiltration, neuronal loss, reduced synaptosome-associated protein 25
(SNAP-25) levels, and behavioral impairments in the radial arm water maze (RAWM) task.

Conclusions: These results reveal a novel role for TDP-43 in BBB permeability and leukocyte recruitment, indicating
complex intermolecular interactions between an altered systemic inflammatory state and pathologically prone TDP-
43 protein to promote disease progression.
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Background

TAR (transactive response) DNA-binding protein 43
kDa (TDP-43), encoded by the TARDBP gene, is a 43-
kDa nuclear protein that belongs to the heterogeneous
nuclear ribonucleoproteins (hnRNPs) family that binds
RNA [1]. Several studies have shown the diverse tran-
scription regulation functions of TDP-43, as it is abun-
dantly expressed in nearly all tissues [2]. For example,
TDP-43 can regulate gene expression of proteins
through mRNA stabilization such as histone deacetylase
6 (HDACS6), Tbcldl, acrosomal protein SP10, and vari-
ous synaptic proteins, thus indirectly targeting several
cellular pathways that affect cell survival, mitochondrial
function, metabolism, and synaptic function depending
on where TDP-43 is expressed [3—6]. In 2006, TDP-43
emerged as a prime component of ubiquitinated, insol-
uble inclusions found in the brains of patients diagnosed
with amyotrophic lateral sclerosis (ALS), a progressive
motor syndrome that causes muscle weakness and atro-
phy, and frontotemporal dementia (FTD), a disease in-
volving a variety of cases with behavioral and language
impairment that is often accompanied by atrophy of the
frontal and temporal lobes [7, 8]. In support, increased
brain atrophy has been found in patients that present
with both ALS and FTD [9]. Further, elevated TDP-43
levels have been reported in the CSF of FTD and ALS
patients [10]. And most recently, intracellular inclusions
consisting of TDP-43 have been found in 57% of Alzhei-
mer’s disease (AD) cases studied, further highlighting
the importance of pathological TDP-43 in the progres-
sion of a range of neurological diseases [11].

Notably, many patients suffering from neurological
disorders present a persistently heightened systemic in-
flammatory state referred to as low-grade systemic in-
flammation which is a risk factor for morbidity and
mortality in the elderly [12]. Older patients with demen-
tia, and even old individuals without dementia, experi-
ence low-grade systemic inflammation characterized by
increased high-sensitivity C-reactive protein (hs-CRP)
levels associated with increased cognitive decline [13]. A
study by Miller et al. showed an increased prevalence of
the non-thyroid autoimmune disease in patients diag-
nosed as frontotemporal dementia with motor neuron
disease and symptomatic C9ORF72 mutation carriers
[14]. High levels of wide-range CRP and fibrinogen, as
well as increased erythrocyte sedimentation rate and
neutrophil-to-lymphocyte values, were detected in ALS
and its presence correlates with a negative prognosis
[15]. ALS blood samples also consistently portray
changes in systemic inflammatory markers (i.e., IEN-A,
IL-2, IL-8) and peripheral cell populations (lymphocytes
and monocytes) [16—18]. Further linking an interaction
of systemic inflammation and neurodegenerative disease,
epidemiological studies support the idea of an
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intrinsically altered immune system in ALS and FTD pa-
tients, since diagnoses are often associated with a previ-
ous diagnosis of an autoimmune disorder [19].
Combined, these data warrant investigation on how al-
terations in the systemic inflammatory response, if un-
checked, can influence neuroinflammation and affect
disease symptoms, especially to disease-associated pro-
teins. For example, in several mouse models of Alzhei-
mer’s disease, E. coli lipopolysaccharides (LPS)-induced
inflammation can exacerbate pathological accumulation
of disease-associated proteins, including tau and p-
amyloid [20, 21]. Moreover, inflammatory agents such as
LPS and tumor necrosis factor (TNF-a) have been found
to induce the cytoplasmic accumulation and aggregation
of TDP-43, altering its localization and function, ultim-
ately causing cell death in cell culture and spinal cords
of transgenic TDP-43 A315T mice [22]. TDP-43 can
also become extracellular through DnaJ/Hsc70 com-
plexes and through exosomes which can either allow its
clearance or exacerbate spreading [23, 24].

Although TDP-43 is linked to several diseases that
present an altered systemic inflammatory response (i.e.,
ALS, FTD, AD), the relationship between the two has
not been fully explored. Here, we investigate the effect
of chronic low-grade systemic inflammation, using E.
coli LPS, in the progression of TDP-43 proteinopathies
in neurons of the frontal cortex, a brain region affected
by many of these diseases. Through neurobehavioral,
biochemical, and histochemical assessments, our find-
ings suggest that elevated TDP-43 levels render the brain
vulnerable to the systemic immune response during in-
flammation by promoting BBB permeability and impair-
ing components of the neurovascular unit.

Materials and methods

Virus preparation

TDP-43 (FLAG-tagged) or GFP were cloned into the
Hind III and Sac I sites of the rAAV vector pTR-MCS
under the control of the ubiquitin carboxy-terminal
hydrolase L1 (UCHL1) promoter. rAAV serotype 9 vi-
ruses were generated using pAAV9 and pXX6 in
Hek293 cells as described previously [25].

Animals and stereotaxic intracranial AAV injection
procedure

Wild-type mice (equally stratified for sex, male vs. fe-
male) were bred in the vivarium of the Byrd Alzheimer's
Institute, USF Health. The injection procedure was per-
formed using the convection-enhanced delivery method
as described previously [25]. Briefly, mice were anesthe-
tized with 1.5% isoflurane and ketamine (90-150 mg/
kg)/xylazine (5-10 mg/kg) in 100% oxygen, then secured
into a stereotaxic apparatus. The coordinates of injection
into the cortex were as follows: anteroposterior, + 2.2



Zamudio et al. Journal of Neuroinflammation (2020) 17:283

mm; lateral, + 1.7 mm, dorsoventral, - 3.0 mm, from
bregma. A microsyringe injector and controller (Stoelt-
ing, Wood Dale, IL) were used to inject 2 uL of virus (2
x 10'? viral particles/mL) at a constant rate of 2.5 L/
min through a CED needle in each placement. The nee-
dle was kept in place for 1 min following the injection
and then was raised slowly. Either rAAV9-GFP or
rAAV9-TDP-43 under the UCHL1 promoter was
injected bilaterally in the cortex of wild-type mice at
10.5months (1 = 6 mice/group). Virus transduction
through anterior cortical layer V and IV neurons was de-
termined based on cell type and boundaries of cortical
layers I-VI following Allen Mouse Brain Atlas (Institute
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2011) (Fig. 1b). This area was targeted during image ac-
quisition for histology analyses.

Animal procedures were performed in accordance
with the recommendations of the National Research
Council’s “Guide for the Care and Use of Laboratory
Animals” and were previously approved by the Univer-
sity of South Florida Institute of Animal Care and Use
Committee (IACUC).

Mouse intraperitoneal (i.p.) injection treatment

To model low-grade systemic inflammation, we chal-
lenged the mice with a modified E. coli lipopolysacchar-
ide (LPS) treatment regime as previously published [26].
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Fig. 1 Schematic of experimental plan and analysis of viral expression in the frontal cortex of mice. a Schematic of experimental design involving
intraperitoneal (I.P.) saline or LPS treatment in this study. b Representative images of the virus spreading for the study. Hoechst staining
represents nuclear labeling. Scale bar = 1000 um. ¢ Percent area positively stained for GFP in the frontal cortex. d Percent area positively stained
for FLAG in the frontal cortex
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Briefly, 2 weeks prior to sacrifice, mice groups were
given intraperitoneal (i.p) injections of E. coli lipopoly-
saccharides (LPS; 500 pg/kg) every 3 days. This way, four
treatment groups were created: GFP AAV9 (i.p. saline),
GFP AAV9 (ip. LPS), TDP-43 AAV9 (i.p. saline), and
TDP-43 AAV9 (i.p. LPS) (n = 6 mice/group).

Mouse behavior

Mouse behavior was performed during the last week of
LPS treatment prior to sacrifice. All behavioral tests are
blinded to genotype and treatment to the investigator.

Rotarod

Motor coordination and learning performance were
assessed by placing mice onto an accelerating circular
rod (Maze Engineers, Boston, MA, USA). The time until
falling was recorded for each mouse. Mice were given
four trials each day for 2 consecutive days. Performance
in the first trial of day 1 serves as a measure of baseline
locomotor coordination, whereas improvement in the la-
tency to fall within each day (short-term learning) and
between days (long-term learning) serve as measures of
motor learning.

Grip strength

Grip strength was measured using a grip strength meter
(Harvard Apparatus, 76-1066, Holliston, MA, USA).
Mice were held by the base of the tail and allowed to
grasp the bar of the meter with their front or back paws.
The mouse was then pulled gently backward away from
the bar slowly to allow the mouse to develop a resistance
against the pulling force. The peak force given by the
meter was recorded from their front and back paw
measurements.

Radial arm water maze

The radial arm water maze consists of a 1-m pool with
six swim paths radiating out of an open central area,
with a hidden escape platform located at the end of one
of the arms. On each trial, the mouse was allowed to
swim in the pool for up to 60s to find the escape plat-
form. Incorrect arm entries or failure to select an arm
for 15s were counted as errors. For a given mouse, the
platform was located in the same arm on each trial, but
the start arms were varied for each trial so that mice rely
upon spatial cues to solve the task. On day 1, mice were
given 15 trials, each block consisting of three trials (five
blocks in total) alternating between a visible platform
and a hidden platform. The following day, mice were
given 15 additional trials (five blocks), all using a hidden
platform. The goal arm location for sequential mice was
different to avoid odor cues from revealing the goal arm.
On the last day of testing, all animals were tested in the
open pool task with a visible platform to ascertain their
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vision and ability to climb on the platform. To do so, the
platform was elevated above the water surface and had
an attached flag. Additionally, all visual cues were re-
moved so that mice relied only on their sight to find the
platform. Latency to find and ascend the platform was
recorded (60 s maximum).

Tissue collection

Two months post intracerebral injection, mice were
weighed, overdosed with a euthanizing solution contain-
ing pentobarbital, and perfused with 25 mL of 0.9% sa-
line solution. Brains were collected following saline
perfusion and were hemisected down the sagittal mid-
line. One hemisphere was dissected and frozen on dry
ice for biochemical studies. The second hemisphere was
immersion fixed in 4% paraformaldehyde for 24 h and
cryoprotected in successive incubations of 10%, 20%,
and 30% solutions of sucrose for 24'h in each solution.
Subsequently, the fixed hemispheres were frozen on a
cold stage and sectioned in the horizontal plane (25 pum
thickness) using a sliding microtome. Brain sections
were stored in Dulbecco’s phosphate-buffered saline
(DPBS) with 10 mM sodium azide solution at 4°C for
immunohistochemistry.

Immunohistochemistry
Six sections, representative of the brain, were chosen for
histochemical analyses. For bright-field microscopy,
floating sections from all animals were placed in multi-
sample staining trays, and endogenous peroxidase activ-
ity was blocked (10% methanol, 3% H,O, in PBS, 15
min). Tissue samples were permeabilized (with 0.2% ly-
sine, 1% Triton X-100 in PBS, 30 min) and incubated
overnight in primary antibody for HRP-conjugated
mouse IgG (Millipore, 1:1000), CD3 (AbD serotec; 1:10,
000), CD4 (AbD serotec; 1:30,000), Ly6B.2 (Bio-Rad; 1:
3000), or biotinylated NeuN (Millipore; 1:30,000). Sec-
tions were rinsed in PBS, then incubated in correspond-
ing biotinylated secondary antibodies for 2h. Sections
incubated with biotinylated NeuN proceeded directly to
the enzyme conjugation step. Following incubation, tis-
sue sections were rinsed in PBS and incubated with Vec-
tastain Elite ® ABC kit (Vector Laboratories Burlingame,
CA, USA) for enzyme conjugation. Finally, sections were
developed using 0.05% diaminobenzidine, 0.5% Ni*", and
0.03% H,0O,. Tissue sections were then mounted onto
slides, dehydrated, and cover-slipped. Each immunohis-
tochemical stain omitted some sections from primary
antibody incubation to evaluate the nonspecific reaction
of the secondary antibody. NeuN slides were counter-
stained with 0.05% cresyl violet.

For fluorescence microscopy, tissue sections were
permeabilized as previously described, then incubated
with the following primary antibodies overnight: FLAG
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(1:500, Sigma), TDP-43 (1:1000, ProteinTech), Ibal (1:
500, Wako), CD11b (1:500, Abcam), MHCII (BD Biosci-
ences, 1:500), GFAP (1:500, Dako), and CD45 (1:500,
Thermo Scientific). The next day, tissue sections were
washed and placed in respective Alexa Fluor secondary
antibodies (1:500, Invitrogen) for 2h. Then, tissue sec-
tions were washed, mounted, and cover-slipped using
ProLong Gold anti-fade reagent (Thermo Scientific) and
counterstained with Hoechst 33342 where indicated.

Prussian blue staining

Tissue sections were mounted on slides and dried over-
night. The next day, sections were rehydrated in distilled
water for 30s then incubated in a solution containing
2% concentrated HCl and 2% potassium ferrocyanide for
15 min. Thereafter, sections were rinsed two times in
distilled water for 30s followed by rinsing in tap water
for 5 min. Finally, slides were dehydrated by dipping 8
times in 95% ethanol and 8 times through two changes
in 100% ethanol and cleared in xylenes 3 times for 5 min
followed by cover-slipping using DPX.

Tissue imaging, quantification, and analysis

Tissue sections stained for CD4 and NeuN were imaged
using the Carl Zeiss Axiolmager.Z1 microscope (Ober-
kochen, Germany) using a x 20 objective. Tissue sec-
tions stained for TDP-43, GFAP, Ibal, CD1lb, and
CD45 were imaged using the Zeiss LSM 880 (Oberko-
chen, Germany) at x 3 objective. GFAP, Ibal, CD11b,
MHCII, and CD45 levels (integrated density) in tissue
sections were quantified using Image] analysis software
with six representative regions of interest per mouse
(National Institutes of Health). To determine the levels
of extranuclear TDP-43, x 63 images from brain sections
stained with TDP-43 and DAPI were converted to 8-bit
and processed by Gaussian blur to remove background
(radius = 50). Then a mask was created using the DAPI
channel and subtracted from the TDP-43 channel to re-
move the nuclear signal. Finally, integrated density
values were calculated from these images using a thresh-
old of positive staining that was kept constant through-
out the analysis. The number of neurons stained with
NeuN and cresyl violet in the frontal cortex of mice was
counted manually by a blind investigator in at least six
300-pm regions of interest per mouse around the site of
injection. Ly6B.2, CD3, and CD4+ cells were counted
manually in whole-brain sections from at least six sec-
tions per mouse used as representative.

Western blotting

The frontal cortex and hippocampus of mice were ho-
mogenized in ice-cold RIPA buffer and sonicated for 30
s. Thereafter, the tissue homogenate was centrifuged at
38,000xg for 30min. The supernatant was used for
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biochemical analyses. The protein concentration of each
sample was measured using BCA assay. To obtain insol-
uble TDP-43 fraction, pellets were washed in RIPA buf-
fer to eliminate remaining soluble proteins and
centrifuged at 100,000¢ for 30 min at 4 °C. Thereafter,
the supernatant was discarded and urea buffer (7M
urea, 2 M thiourea, 4% CHAPS, 30 mM Tris, pH 8.5)
was added to the pellet, sonicated, and centrifuged at
100,000¢ for 30 min at room temperature. Protein con-
centration was determined by Bradford assay. Lysates
were separated by SDS-PAGE and transferred to a PVDF
membrane. Human TDP-43 (Sigma), total TDP-43 (Pro-
teinTech), GFAP (1:1000, Dako), PSD95 (1:1000, Milli-
pore), SNAP-25 (1:1000, Abcam), SNAP-23 (1:1000,
Synaptic Systems), Syntaxin-1A (1:1000, Cell Signaling),
laminin (ab11575), ICAM1 (1:1000, R & D Systems),
occludin (1:1000, Invitrogen), ZO-1 (1:1000, Invitrogen),
claudin 5 (1:1000), VCAM (1:1000), caveolin (1:1000,
Santa Cruz), CD13 (1:1000, Abcam), PDGFRp (Abcam),
GAPDH (1:5000, Abcam), and actin (1:5000, Abcam)
levels were assessed by addition of primary antibodies,
species-appropriate secondary antibodies (Southern Bio-
tech, 1:1000 or LICOR IR Dye 680/800, 1:10,000), and
exposed to ECL for chemiluminescent detection or im-
aged using a LICOR machine.

Multiplex chemokine/cytokine assay

The concentrations of eotaxin, IL-la, II-1f, IL-10,
VEGEF, MIP-1a, RANTES, and KC-GRO were measured
using the mouse cytokine/chemokine panel in mouse
frontal cortex tissue lysate (MILLIPLEX MAP kit; Milli-
pore, Billerica, MA, USA). Briefly, the Bio-Plex Suspen-
sion Array System (Bio-Rad Laboratories) was calibrated
using CAL2 with the high PMT setting of the Bio-Plex
calibration kit, and standard sample preparation was
performed according to the manufacturer’s directions.
The filter plate was prewetted with wash buffer and
vacuum-filtered before adding standard, control, or
study samples to the appropriate wells. Mixed capture
beads were then added to each well, and the plates were
incubated overnight at 4 °C with shaking. After two
washes, 25 uL of detection antibody was added to each
well, incubated for 1h at room temperature, and then
treated with 25 pL of streptavidin-phycoerythrin for 30
min at room temperature. The plate was washed twice,
and 150 pL of the Bio-Plex sheath fluid assay buffer was
added to each well and read using the Bio-Plex Suspen-
sion Array System software (Bio-Rad Laboratories) per
the kit instructions. The concentration of each analyte
was calculated according to the standard curve.

Statistical analyses
Two-tailed Student’s ¢ test, one-way ANOVA or two-
way repeated-measures ANOVA with Fisher’s Least
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Significant Difference (LSD), and Tukey or Bonferroni’s
post hoc tests were used as detailed in the figure leg-
ends. Values were considered significant if p < 0.05.
Graphs were generated using GraphPad Prism 8.0 ana-
lysis software. N-value in this study is depicted as the
number of animals and indicated in the figure legends.

Results

In vivo TDP-43 overexpression promotes the formation of
insoluble inclusions

To investigate the interaction between TDP-43 path-
ology and low-grade systemic inflammation, we used
AAV-serotype 9 (AAV9) viruses to drive the overexpres-
sion of FLAG-tagged wild-type TDP-43 (TDP-43 AAV9)
or GFP under the UCHLI1 promoter in the frontal cortex
10.5-month-old wild-type mice for 2 months. UCHL1 is
abundantly expressed in corticospinal motor neurons
(CSMN) that become affected in TDP-43 proteinopa-
thies which made its promoter ideal for our study [27-
29]. Next, to model low-grade systemic inflammation,
we further challenged the mice with a modified E. coli
lipopolysaccharide (LPS) treatment regimen as described
in the “Methods” section and Fig. 1a. LPS is an endo-
toxin frequently used to induce an immune response
through toll-like receptor 4 (TLR4) binding and we sur-
mised that a low LPS dose and spread out treatment
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plan would most resemble a chronic physiological in-
flammatory response [30]. After brain tissue collection,
we confirmed the expression of our constructs by fluor-
escent GFP or FLAG signal combined with nuclear
Hoechst staining. Further, utilization of Allen’s Brain
Atlas (atlas.brain-map.org) allowed us to determine viral
transduction throughout layers of the cortex (Fig. 1b).
The quantification of the percent area positive for GFP
or TDP-43 (FLAG) revealed that 15-20% of the frontal
cortex was successfully transduced by the AAVs, mostly,
throughout neuronal layers 5 and 6 (Fig. 1c, d).

To characterize the TDP-43 pathology achieved by
AAV overexpression, we analyzed RIPA-soluble and
urea-soluble fractions from homogenized frontal corti-
ces. Western blotting revealed soluble and insoluble
FLAG-TDP-43 levels were significantly increased, con-
firming the expression and formation of pathology upon
TDP-43 overexpression (Fig. 2a, b). Moreover, the ratio
of urea-soluble to RIPA-soluble FLAG-TDP-43 in-
creased in the frontal cortex of LPS-treated TDP-43
AAV9 mice (Fig. 2¢). Interestingly, levels of both RIPA-
and urea-soluble total TDP-43 remained unaltered be-
tween groups, as also demonstrated in the ratio analysis.
Although TDP-43 can control its mRNA levels through
a negative feedback loop when exogenously overex-
pressed [31], we found that total TDP43 levels were
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Fig. 2 TDP-43 overexpression leads to the formation of extranuclear inclusions. a Western blot of total soluble and insoluble TDP-43 levels in the
mouse frontal cortex. b Quantification of total soluble and insoluble TDP-43 levels. Statistical analysis was carried out using a one-way ANOVA
with Bonferroni post hoc test. ¢ Quantification of the insoluble/soluble total TDP-43 and TDP-43 ratio. d Representative images depicting TDP-43
localization (red channel), as observed by fluorescent immunostaining and multi-photon microscopy, in the frontal cortex of mouse brain tissue.
Hoechst 33342 is used as a nuclear counterstain (blue channel). Scale bar = 20 um. e Quantification of total TDP-43 and extranuclear TDP-43
normalized to GFP control. Statistical analysis was carried out using a one-way ANOVA with Bonferroni post hoc test (n = 4 mice/group; *p
< 0.05)
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unchanged following TDP-43 AAV9 overexpression. To
further investigate this finding, we performed immuno-
histochemistry against total TDP-43 (red channel) and
measured the signal intensity in TDP-43 AAV9 mice
compared to GFP AAV mice. By doing so, we found that
TDP-43 overexpression, independent of the peripheral
treatment, contributed to a significant increase in total
TDP-43 levels (Fig. 2d, e). Immunohistochemical ana-
lyses also revealed that overexpression of TDP-43 led to
a significant increase in inclusion formation outside of
the nucleus, most likely cytoplasmic (white arrows).
However, low-grade systemic inflammation did not alter
the inclusion burden in the frontal cortex. Further, bio-
chemical analyses revealed no changes in TDP-43 high-
molecular-weight species or C-terminal fragments fol-
lowing low-grade systemic inflammation (Supplementary
Fig. 1a, b). Additionally, we did not detect any appre-
ciable levels of phosphorylated TDP-43 (pS403/404 and
pS409/410) in our sample (data not shown), albeit phos-
phorylation may not necessarily be a sole factor of TDP-
43 aggregation in inclusions [32].

Low-grade systemic inflammation impairs spatial memory
in mice affected by TDP-43 overexpression

Various TDP-43 mouse models have reported muscle
weakness, impaired motor learning, and deficits in learn-
ing and memory [33, 34]. We assessed our viral AAV9
mouse model with several behavioral tasks to ascertain
their phenotype. Rotarod analysis revealed that TDP-43
overexpressing mice (regardless of LPS administration)
performed similarly to GFP overexpressing littermates
during the first day until the last trial, suggesting normal
locomotor coordination and strength in all groups. How-
ever, mice overexpressing TDP-4 did not improve in
their latency to fall from the rod on the second day,
compared to control mice, indicating impaired motor
learning following overexpression of TDP-43 (Fig. 3a).
In support of a deficit in learning rather than coordin-
ation or strength, we also found no differences between
GFP and TDP-43 AAV9 mice in grip strength (front and
back legs) (Fig. 3b, c). Spatial learning and memory were
assessed using the radial arm water maze, which re-
vealed a learning impairment in TDP-43 AAV9 mice
subjected to low-grade systemic inflammation (Fig. 3d,
e). The LPS-treated TDP-43 AAV9 mice performed
more errors in both days when compared to the LPS-
(trials 3 and 4) and the saline-treated GFP AAV9 mice
(trials 4, 8, and 9) (Fig. 3d). The saline-treated TDP-43
AAV9 mice also displayed a trend to more errors on day
1 of training (trials 2 and 4) but not in day 2, as com-
pared to the saline-treated GFP AAV9 mice. No differ-
ences were observed between the saline and LPS-treated
GFP AAV9 mice. Overall, LPS-treated TDP-43 AAV9
mice made significantly more errors in finding the
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platform in both days compared to the saline- and LPS-
treated GFP AAV9 mice (Fig. 3e), indicating impaired
spatial learning. However, long-term memory—assessed
as the difference in the number of errors made on the
last trial of day 1 and the first trial of day 2—did not sta-
tistically vary between groups, and all groups eventually
achieved similar levels of learning, suggesting that the
robust impairment is more likely in short-term memory
processes such as those served by the prefrontal cortex.
In contrast, saline-treated TDP-43 AAV9 did not make
significantly more errors than the control mice. All
groups showed no difference in latency of finding the
visible platform in an open pool test, which indicated
that the learning deficits were not attributed to visual or
motor impairments (data not shown). Interestingly, LPS
administration to GFP AAV9 mice did not influence
spatial memory, suggesting a synergistic effect between
TDP-43 pathology in the brain and low-grade systemic
inflammation to affect spatial memory.

TDP-43-induced neuronal loss is exacerbated by low-
grade systemic inflammation

Cognitive dysfunction is associated with neuronal loss
and synaptic dysfunction [35, 36]. At sacrifice, the brains
of LPS-treated TDP-43 AAV9 mice had significantly
lower brain weights compared to controls, suggesting in-
creased neurodegeneration (Fig. 4a). To determine the
impact of TDP-43 overexpression and/or low-grade sys-
temic inflammation on neuronal loss, we stained brain
tissue sections with the neuronal marker NeuN, counter-
stained with cresyl violet, and performed stereological
analyses. TDP-43 overexpression alone reduced the
number of neurons in the frontal cortex of the mice and
this effect was exacerbated by low-grade systemic in-
flammation (Fig. 4b, c). However, low-grade systemic in-
flammation in GFP AAV9 brains did not influence brain
weight or neuronal count, suggesting that TDP-43 al-
tered the susceptibility of the brain to the systemic in-
flammatory response. Next, since both TDP-43 [37-39]
and LPS-mediated [40-42] neuroinflammation can alter
the expression of synaptic markers that can lead to cog-
nitive decline, we performed western blotting of several
synaptic markers as a measure of synaptic dysfunction in
frontal cortex lysates. While PSD95, synaptophysin, syn-
taxin 1-A, and SNAP-23 protein levels remain unaltered
by TDP-43 overexpression alone or low-grade systemic
inflammation, SNAP-25 expression levels were reduced
by half in the brains of LPS-treated TDP-43 AAV9 mice
(Fig. 4d, e). SNAP-25 is an essential component of N-
ethylmaleimide-sensitive factor attachment protein re-
ceptor (SNARE) complexes, which mediate synaptic
communication through initiating fusion of synaptic
vesicles [43].
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Fig. 3 Chronic low-grade systemic inflammation impairs spatial memory in TDP-43 overexpressing mice. a Time spent on the rotating rod.
Statistical analysis was carried out using a repeated measures two-way ANOVA with Fisher's least significant difference (LSD) post hoc test (n = 6
mice/group, *p < 0.05 between GFP and TDP-43 regardless of ip. treatment; #p < 0.05 between GFP-LPS against all other groups). b Grip
strength of mice front paws performance. Statistical analysis was carried out using a one-way ANOVA with Bonferroni post hoc test (n = 6 mice/
group). ¢ Grip strength of mice hind paws performance. Statistical analysis was carried out using a one-way ANOVA with Bonferroni post hoc test
(n = 6 mice/group). d Radial arm water maze performance. Statistical analysis was carried out using a repeated measures two-way ANOVA with
Fisher's least significant difference (LSD) post hoc test (n = 6 mice/group; *p < 0.05 between GFP-LPS and TDP-43-LPS; #p < 0.05 between GFP-
saline and TDP-43-LPS; and p < 0.05 between GFP-LPS and TDP-43-saline; Ap < 0.05 between GFP-saline and TDP-43-saline). e The total number
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.

TDP-43 overexpression induces astrogliosis and
microgliosis

Thus far, our data suggested that low-grade systemic in-
flammation can promote TDP-43-induced neurodegen-
eration, resulting in cognitive impairment. Given that
the deregulation of TDP-43 can induce neuroinflamma-
tion and increase neuronal death through NF-«kB signal-
ing [28, 44], we decided to explore whether the observed
effects were due to alterations in the NF-«kB pathway.
Our biochemical analysis demonstrated no changes in
phosphorylation of NF-kB p65 or IKPa degradation
within the confines of our study design (data not
shown). Next, we explored the effects of systemic in-
flammation and/or TDP-43 overexpression in the brain
in other aspects of neuroinflammation, including astro-
cytosis and microgliosis. Indeed, TDP-43 overexpression

alone—and independent of LPS—increased astrocytic ac-
tivation, as measured by increased GFAP staining inten-
sity (Supplementary Figure 2A-B) and western blotting
(Supplementary Figure 2C-D). However, neither TDP-43
overexpression nor LPS treatment altered aquaporin 4
levels, a marker for astrocytic end-feet (Supplementary
Figure 2E). TDP-43 overexpression also led to marked
increases in microgliosis, measured by several markers
including Ibal, CD11b (Fig. 5a—c), MHCII (Fig. 5d, e),
and CD45 (Fig. 5f, g). While both MHCII and CD45
markers can be expressed by microglia [45, 46], MHCII
is highly expressed in dendritic cells and lymphocytes
while CD45 is expressed in almost all hematopoietic
cells [47-49]. Interestingly, staining for MHCII and
CD45 was absent from GFP AAV9 brains and dramatic-
ally increased in TDP-43 AAV9 brains. Additionally,
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CD45 staining revealed that although activated micro-
glial cells were present, other cells void of processes
were highly abundant, indicating the possibility of
peripheral cell infiltration. Surprisingly, low-grade sys-
temic inflammation alone did not significantly alter
astrocytosis or microgliosis. However, LPS-mediated
neuroinflammation can vary dependent on the brain
region, since we observed significant increases in
inflammation-responsive proteins iNOS, RGS14, and
phosphorylated CamKIIp in hippocampal, but not
frontal cortex, homogenates from mice in our study
(Supplemental Figure 3A-B).

TDP-43 overexpression promotes blood-brain barrier
permeability

Given the presence of mononuclear CD45-positive cells,
we surmised that TDP-43 overexpression could induce
peripheral cell infiltration. Therefore, brain tissue sec-
tions were labeled with CD3 and CD4 receptor antigens,
both found in T lymphocytes. As suspected, TDP-43
overexpression, regardless of systemic inflammation, led
to marked increases in CD3+ (Fig. 6a, b) and CD4+ (Fig.
6¢c, d) T lymphocyte infiltration, suggesting increased
blood-brain barrier (BBB) permeability. The loss of BBB
integrity was further confirmed by intense immuno-
globulin G (IgG) staining along the frontal cortex of
TDP-43 AAV9 mice, since the BBB restricts access of
large molecules into the brain, let alone whole cells (Fig.
6e, f). IgG infiltration was also confirmed by western
blotting using the same antibody. These effects were as-
sociated with increased endothelial cell activation
markers, including ICAM1, VCAM, and caveolin 1 (Fig.
6,h). Moreover, TDP-43 overexpression also led to the

presence of cerebral microbleeds, determined by Prussian
blue staining (Fig. 6i, j). Pericyte activation, as measured
by PDGEFR levels, was also observed (Supplementary Fig-
ure 4A-B). However, tight junction proteins (ZO-1, occlu-
din, claudin 5, and claudin 3), surprisingly, were not
altered (Supplementary Figure 4C-D).

Low-grade systemic inflammation in TDP43
overexpressing mice promotes neutrophil infiltration
Next, we measured the levels of a range of inflammatory
cytokines in frontal cortex homogenates, similar to our
recent report [50]. Low-grade systemic inflammation in
GFP AAV9 mice did not alter the levels of any of the cy-
tokines measured (Fig. 7a). TDP-43 overexpression,
however, increased levels of RANTES in the frontal cor-
tex. Interestingly, the expression of KC-GRO and MIP-
la was increased in the frontal cortex of LPS-treated
TDP-43 AAV9 mice only. As KC-GRO and MIP-1a are
chemotactic inflammatory signals involved in neutrophil
recruitment [51], we stained brain tissue sections for the
Ly6B.2 receptor, which is highly expressed by murine
neutrophils [52]. Immunohistochemical labeling revealed
that TDP-43 overexpression alone promoted neutrophil
infiltration in the brain parenchyma compared to both
the saline- and LPS-treated GFP AAV9 mice (Fig. 7b, c).
Meanwhile, low-grade systemic inflammation in TDP-43
AAV9 mice further exacerbated Ly6B.2+ neutrophil in-
filtration. The data ultimately suggests that TDP-43-
induced BBB permeability may be responsible for the
compounded effects of systemic inflammation on behav-
ior impairments, neuronal loss, and synaptic dysfunction
observed in LPS-treated TDP-43 AAV9 mice.
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Discussion

The etiology of several neurodegenerative diseases, in-
cluding ALS, FLTD, and AD, remains elusive. Neverthe-
less, research has identified several mutations and
proteins in the brain that accelerate disease progression
and have become key pathological features, such as
TDP-43. Additionally, further studies have consistently
observed systemic inflammatory changes in these dis-
eases, giving rise to the idea of, not only systemic

inflammation as a trigger for neurodegeneration, but
also an intrinsically altered immune system [19]. With
this in mind, our study sought to investigate the inter-
action between the systemic inflammatory response and
TDP-43-associated pathology. While several TDP-43
transgenic models are available [33, 34, 53], the global
TDP-43 expression in forebrain neurons confounds the
effects it may have on certain neuronal subtypes and
brain regions. Therefore, an AAV9 overexpression
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approach proved advantageous to explore TDP-43 in a
way more relevant to human disease. Altogether, we
demonstrate that low-grade systemic inflammation ac-
celerated neurodegeneration and induced cognitive im-
pairments in TDP-43 overexpressing mice. In our study,
several cell types were activated as a result of TDP-43
overexpression. Interestingly, LPS-treated TDP-43

AAV9 mice presented with an altered phenotype despite
no appreciable changes in astrocytic/microglial activa-
tion, endothelial/pericytic activation, T cell infiltration,
BBB leakage, or hemosiderin deposits. Though we did
observe LPS-driven cytokine changes in TDP-43 overex-
pressing brains, suggesting inflammation-associated cas-
cades are taking place (KC-GRO and MIP-1a). We
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surmise that TDP-43 alone is sufficient in mediating in-
flammation and probably masked the subtle effects of
low-grade systemic inflammation in the frontal cortex.
This is conceivable since TDP43 alone leads to signifi-
cant neuronal loss.

The radial arm water maze (RAWM) is generally
known to test spatial learning, which is strongly tied to
hippocampal function; however, we observed significant
learning impairment in the cortical TDP-43 overexpress-
ing mice subjected to LPS. In support of our findings,
studies indicate that spatial memory is not strictly tied
to the hippocampus as it is not affected following hippo-
campal insults in certain tasks [54—58], contending that
task-dependent memory demands dictate the use of dis-
tinct brain regions [59]. We reason that cortical TDP-43
in synergy with systemic inflammation directly impaired
RAWM performance in mice by affecting the cortico-
hippocampal networks [60-62]. In agreement, several
studies demonstrate that manipulations of the cortex
impaired the performance in spatial memory tasks [63—
68]. Finally, we cannot exclude the role that LPS-
induced hippocampal neuroinflammation observed in
TDP-43 overexpressing mice has on RAWM perform-
ance. It is plausible that the altered hippocampal signal-
ing is partially responsible for the slowed performance.
Overall, our results correlate with a recent consensus
study on patients with limbic age-related TDP-43

encephalopathy (LATE) demonstrating that TDP-43
neuropathology precipitated learning and spatial mem-
ory decline similar to AD in patients [69].

TDP-43 overexpression increased IgG, as well as
CD3+ and CD4+ T cell infiltration, which were associ-
ated with increased endothelial signaling since both
ICAML1 and caveolin 1 facilitate leukocyte infiltration in
the brain [70, 71]. Further, increased VCAMI1 levels
were observed following TDP-43 overexpression, indi-
cating impaired endothelial barrier integrity [72]. There-
fore, it is also plausible that the TDP-43-dependent cell
infiltration is partially due to the blood-brain barrier
(BBB) permeability and/or dysfunction. For example, in
an animal model of tau overexpression, aged mice
showed increased Evans blue extravasation while also
displaying significant T cell infiltration without reported
tight junction loss [73]. Additionally, free hemoglobin
released from extravasated red blood cells can be toxic
to neurons and we observed an increase in hemosiderin
deposits in areas of TDP-43 overexpression, which indi-
cates BBB disruption. Surprisingly, we did not observe
significant reductions in tight junction proteins, which
could reflect limitations of the technique used; for in-
stance, sensitivity, given that we achieved ~ 20% trans-
duction efficiency in the frontal cortex. Regardless, our
data reveal for the first time the interplay between per-
ipheral cell infiltration signaling—as well as BBB



Zamudio et al. Journal of Neuroinflammation (2020) 17:283

permeability or dysfunction—and TDP-43 pathology.
Since the microvasculature of the BBB allows for tight
regulation of components between the blood and the
brain [74, 75], rendering LPS to act mainly through
endothelial receptor signaling [76], increased BBB per-
meability is most likely responsible for the compounded
effects of LPS in TDP-43 overexpressing mice. This
could be due to the infiltration of LPS or other LPS-
induced blood elements [77] into the brain parenchyma.
The extravasation of T cells could exacerbate TDP-43
induced neurodegeneration. This is in agreement with
studies showing that CD3+ T cell infiltration in the
hippocampus promotes neuroinflammation and cogni-
tive dysfunction in tau overexpressing models [78].
Interestingly, we also observed the presence of CD45-
and MHCII-positive mononuclear cells following TDP-
43 overexpression, but not GFP, indicating the possibil-
ity for infiltrating monocytes/macrophages. Several stud-
ies have linked macrophage infiltration to be detrimental
in mice, for example, infiltration of macrophages in the
brain after seizures in mice contributes to neuroinflam-
mation [79]. Also, infiltrating macrophages impairs
spatial memory and hippocampal long-term potentiation
(LTP) in leptin receptor-deficient mice through the in-
duction of pro-inflammatory cytokines [80]. Thus, it is
plausible that infiltrating monocytes/macrophages, in
addition to T cells, can drive neuroinflammation and
contribute to TDP-43-mediated neurodegeneration.
Although TDP-43 overexpression alone led to periph-
eral cell infiltration, low-grade systemic inflammation in
TDP-43 AAV9 mice increased the infiltration of neutro-
phils into the brain through KC-GRO and MIP-1a sig-
naling [51, 81]. Neutrophil infiltration has been
extensively associated with detrimental effects in neuro-
degenerative diseases [82, 83], for example, preventing
neutrophil extravasation into the brain of transgenic
models of amyloid deposition reduce AD neuropathol-
ogy and improved cognitive function [84]. Similarly, the
increased neutrophil infiltration in the TDP-43 overex-
pressing brain following low-grade systemic inflamma-
tion could be partly responsible for the alterations in
neuronal loss and cognitive performance in our study.
However, further studies are needed to understand not
only the role of differential infiltrating cell populations
in TDP-43-mediated BBB dysfunction but also the dis-
tinctive function of peripheral cells in the context of an
altered immune response and the diseased brain.
Wild-type TDP-43 neurotoxic effects have been exten-
sively studied in various models of overexpression [33,
34, 53], linking TDP-43-dependent neurodegeneration
to transcription factor nuclear factor-kB (NF-kB) signal-
ing [28, 85], synaptic plasticity [86], and the heat shock
response [32, 87, 88]. Since ALS [89, 90], FTD [91], and
AD [92] present with BBB alterations and are associated
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with pathological TDP-43, our data provides an important
link between the two. We predict, based on our findings,
that patients with brain-related TDP-43 proteinopathies
have increased susceptibility to neurodegeneration, not
only because of the toxicity of high TDP-43 levels but be-
cause of its global impact on brain function, rendering the
immune-privileged organ vulnerable to blood components
toxic to brain cells and the immune response. After all, a
vast array of toxic or allergenic substances, in addition to
microbes, can threaten body homeostasis and launch the
immune response as a protective mechanism, which can
inadvertently harm the brain. In fact, given that a number
of patients with neurodegenerative diseases present with
low-grade systemic inflammation [12-18], it is not sur-
prising that the altered immune response may affect
brains with BBB abnormalities and/or impair neurovascu-
lar unit function leading to increased BBB permeability
and peripheral cell infiltration.

Conclusion

Overall, our results uncover a novel role of TDP-43 in
blood-brain barrier permeability and leukocyte recruit-
ment which can compromise the brains of patients with
TDP-43 proteinopathies and alter disease progression,
especially in association with other inflammatory condi-
tions. The data also shed light on TDP-43 as a factor
explaining the BBB abnormalities observed in patients
diagnosed with neurodegenerative diseases while also
supporting a new body of research regarding the role of
TDP-43 in alterations of the neurovascular unit.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512974-020-01952-9.

Additional file 1: Figure S1. TDP-43 oligomers and c-terminal frag-
ments are not altered by TDP-43 overexpression. (A) Western blots of
RIPA and urea-soluble brain homogenates probed for total TDP-43 at a
high exposure to visualize oligomers and C-terminal fragments. (B) Quan-
tification of oligomers and C-terminal fragments in the RIPA and urea-
soluble fractions (n = 4 mice/group). Statistical analysis was carried out
using a one-way ANOVA with Bonferroni post-hoc test.

Additional file 2: Figure S2. TDP-43 overexpression increases astrocytic
activation. (A) Representative images depicting GFAP levels (red channel)
in the frontal cortex of mouse brain tissue. Scale bar = 20 um. (B) Quanti-
fication of GFAP levels. Statistical analysis was carried out using a one-
way ANOVA with Bonferroni post-hoc test (n = 4 mice/group; * p < 0.05).
(C) Representative blots probed for GFAP, aquaporin 4, and actin. (D)
Quantification of GFAP and (E) aquaporin 4 levels normalized to actin.
Statistical analysis was carried out using a one-way ANOVA with Bonfer-
roni post-hoc test (n = 4 mice/group; ** p < 0.01).

Additional file 3: Figure S3. Regional differences in LPS-driven neuroin-
flammation. (A) Representative blots probed for p-CamKII3, RGS14, and
iNOS in hippocampal and frontal cortex tissue lysates. (B) Quantification
of p-CamKIIB, RGS14, and iNOS normalized to actin. Statistical analysis
was carried out using one-way ANOVAs with Bonferroni post-hoc test (n
= 4 mice/group).

Additional file 4: Figure S4. TDP-43 overexpression induces pericyte
activation and does not alter tight junction protein levels. (A)
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Representative blots probed for CD13, PDGFRB, and GAPDH. (B) Quantifi-
cation of CD13 and PDGFRB levels normalized to GAPDH. Statistical ana-
lysis was carried out using a one-way ANOVA with Bonferroni post-hoc
test (n = 4 mice/group, * p < 0.05). (C) Representative blots probed for
laminin B, ZO-1, occludin, claudin 5, claudin 3, and actin. (D) Quantifica-
tion of laminin B, ZO-1, occludin, claudin 5, and claudin 3 levels normal-
ized to actin. Statistical analysis was carried out using a one-way ANOVA

with Bonferroni post-hoc test (n = 4 mice/group)
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delivery; NeuN: Neuronal nuclei; Ni*™*: Nickel sulfate; H,O,: Hydrogen
peroxide; MHCII: Major histocompatibility complex class Il; GFAP: Glial
fibrillary acidic protein; CD45: Cluster of differentiation 45; HCl: Hydrochloric
acid; CD11b: Cluster of differentiation molecule 11b; BCA: Bicinchoninic
assay; RIPA: Radioimmunoprecipitation assay buffer; CHAPS: 3-[(3-
Cholamidopropyl) dimethylammonio]-1-propanesulfonate hydrate; SDS-
PAGE: Sodium dodecyl-sulfate-polyacrylamide gel electrophoresis;

PVDF: Polyvinylidene fluoride; PSD95: Post-synaptic density protein 95; SNAP-
23: Synaptosome associated protein 23; ICAM1: Intercellular adhesion
molecule 1; ZO-1: Zonula occludens 1; VCAM: Vascular cell adhesion
molecule 1; PDGFRp: Platelet-derived growth factor receptor beta; GAPD

H: Glyceraldehyde 3-phosphate dehydrogenase; IR: Infra-red; IL-1a: Interleukin
1 alpha; II-1(3: Interleukin 1 beta; IL-10: Interleukin 10; VEGF: Vascular
endothelial growth factor; MIP-1a: Macrophage inflammatory protein 1-
alpha; KC-GRO: Chemokine (C-X-C motif) ligand 1; TLR4: Toll-like receptor 4;
NF-kB: Nuclear factor kappa-light-chain-enhancer of activated B cells;
SNARE: Synaptosome-associated protein receptor
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