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Abstract

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder. Finding the 

biomarkers associated with ASD is extremely helpful to understand the underlying roots of the 

disorder and can lead to earlier diagnosis and more targeted treatment. Although Deep Neural 

Networks (DNNs) have been applied in functional magnetic resonance imaging (fMRI) to identify 

ASD, understanding the data driven computational decision making procedure has not been 

previously explored. Therefore, in this work, we address the problem of interpreting reliable 

biomarkers associated with identifying ASD; specifically, we propose a 2-stage method that 

classifies ASD and control subjects using fMRI images and interprets the saliency features 

activated by the classifier. First, we trained an accurate DNN classifier. Then, for detecting the 

biomarkers, different from the DNN visualization works in computer vision, we take advantage of 

the anatomical structure of brain fMRI and develop a frequency-normalized sampling method to 

corrupt images. Furthermore, in the ASD vs. control subjects classification scenario, we provide a 

new approach to detect and characterize important brain features into three categories. The 

biomarkers we found by the proposed method are robust and consistent with previous findings in 

the literature. We also validate the detected biomarkers by neurological function decoding and 

comparing with the DNN activation maps.

1 Introduction

Autism spectrum disorder (ASD) affects the structure and function of the brain. To better 

target the underlying roots of ASD for diagnosis and treatment, efforts to identify reliable 

biomarkers are growing [1]. Significant progress has been made using functional magnetic 

resonance imaging (fMRI) to characterize the brain changes that occur in ASD [2].

Recently, many deep neural networks (DNNs) have been effective at identifying ASD using 

fMRI [3, 4]. However, these methods lack model transparency. Despite promising results, 

the clinicians typically want to know if the model is trustable and how to interpret the 

results. Motivated by this, here we focus on developing the interpretation method for 

deciphering the regions in fMRI brain images that can distinguish ASD vs. control by the 

deep neural networks.
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There are three main approaches for interpreting the important features detected by DNNs. 

One approach is using gradient ascent methods to generate an image that best represents the 

class [5]. However, this method cannot handle nonlinear DNNs well. The second approach is 

to visualize how the network responds to a specific corrupted input image in order to explain 

a particular classification made by the network [6]. The third one uses the intermediate 

outputs of the network to visualize the feature patterns [7]. However, all of these existing 

methods tend to end up with blurred and imprecise saliency maps.

The goal of our work is to identity biomarkers for ASD, defined as important regions of 

interest (ROIs) in the brain that distinguish autistic and healthy controls. Different from 

traditional brain biomarker detection methods, by utilizing the high dimensional feature 

capturing ability of DNNs and brain structure, we propose an innovative 2-stage pipeline to 

interpret biomarkers. Different from above DNN visualization methods, our main 

contribution includes a ROI-based image corruption and generating procedure. In addition, 

we analyze the feature importance using the distribution of DNN predictions and statistical 

hypothesis testing. We applied the proposed method on multiple datasets and validated our 

robust findings by decoding neurological function of biomarkers, viewing DNN intermediate 

outputs and comparing literature reports.

2 Method

2.1 Two-stage Pipeline With Deep Neural Network Classifier

We propose a corrupting strategy to find the important regions activated by a well-trained 

ASD classifier (Fig. 1). The first stage is to train a DNN classifier for classifying ASD vs. 

control subjects. The DNN we use (2CC3D) has 6 convolutional, 4 max-pooling and 2 fully 

connected layers, followed by a sigmoid output layer [4] as shown in the middle of Fig. 1. 

The number of kernels are denoted on each layer in Fig. 1. Dropout and l2 regularization are 

applied

Algorithm 1

Important Feature Detection For Binary Classification

 Input: X0, a group of images from class 0; X1, a group of images from class 1; f, DNN classification model.

1: ℙo
0 f X0  and ℙo

1 f X1

2: JSD+/ −
o JSD ℙo

0, ℙo
1 ▹ by bootstrapping

3: for r in ROIs do

4:  ℙc
0 f(X\r

0 ), ℙc
1 f(X\r

1 ) ▹ by sampling

5:  JSD+/ −
c JSD ℙc

0, ℙc
1 , Sℎift0 ℙc

0 − ℙo
0, Sℎift1 ℙc

1 − ℙ0
1

6:  if JSD+
c < JSD−

o or median ℙc
0 > median ℙc

1  then ▹ fool the classifier

7:   do Wilcoxon(Shift) one tailed test

8:   if ℙ0 1 and ℙ1 0 then

9:    r is an important feature for both classes
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10:   else if only ℙ0 1 then

11:    r is an important feature for class 0

12:   else if only ℙ1 0 then

13:    r is an important feature for class 1

14:   end if ▹ ⇒ means significant shift

15:  end if

16: end for

to avoid overfitting. The study in [4] demonstrated that we can achieve higher accuracy 

using the 2CC3D framework, since it integrates spatial-temporal information of 4D fMRI. 

Each frame of 3D fMRI is downsampled to 32×32×32. We use sliding-windows with size w 
and stride length stride to move along the time dimension of the 4D fMRI sequence and 

calculate the mean and standard deviation (std) for each voxel’s time series within the 

sliding window. Given T frames in each 4D fMRI sequence, by this method, T − w
stride + 1 2-

channel images (mean and std fMRI images) are generated for each subject. We define the 

original fMRI sequence as I(x, y, z, t), the mean-channel sequence as I(x, y, z, t) and the std-

channel as I (x, y, z, t). For any x, y, z in {0, 1,···, 31},

I(x, y, z, t) =
∑τ = t + 1 − w

t I(x, y, z, τ)
w

(1)

I (x, y, z, t) =
∑τ = t + 1 − w

t I(x, y, z, τ) − I(x, y, z, t) 2

w − 1 . (2)

The outputs are probabilistic predictions ranging in [0, 1]. The second stage is to interpret 

the output differences after corrupting the image. We corrupt a ROI of the original image 

and put it in the well-trained DNN classifier to get a new prediction (section 2.2). Based on 

the prediction difference, we use a statistical method to interpret the importance of the ROI 

(section 2.3).

2.2 Prediction Difference Analysis

We use a heuristic method to estimate the feature (an image ROI) importance by analyzing 

the probability of the correct class predicted by the corrupted image.

In the DNN classifier case, the probability of the abnormal class c given the original image 

X is estimated from the predictive score of the DNN model f : f(X) = p(c|X). Denote the 

image corrupted at ROI r as X\r. The prediction of the corrupted image is p(c|X\r). To 

calculate p(c|X\r), we need to marginalize out the corrupted ROI r:

p c X\r = Exr ∼ p xr X\r p c X\r, xr , (3)
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where xr is a sample of ROI r. Modeling p(xr|X\r) by a generative model can be 

computationally intensive and may not be feasible. We assumed that an important ROI 

contains features that cannot be easily sampled from the same ROI of other classes and is 

predictive for predicting its own class. Hence, we approximated p(xr|X\r) by sampling xr 

from each ROI r in the whole sample set. In fMRI study, each brain can be registered to the 

same atlas, so the same ROI in different images have the same spatial location and number 

of voxels. Therefore, we can directly sample xrs and replace xr with them. Then we flatten 

the xr and xr as vectors xr and xr. From the K sampled xr
ks, we calculate the Pearson 

correlation coefficient ρk = cov(xr
k, xr)/σxr

kσxr, where k ∈ {1, 2, …,K}, ρ ∈ [−1, 1]. Because 

sample size of each class may be biased, we will de-emphasize the samples that can be 

easily sampled, since p(c|X\r) should be irrelevant to the sample set. Therefore, we will do a 

frequency-normalized transformation. We divide [−1,1] into N equal-length intervals. Each 

ρk will fall in one of the intervals. After K samplings, we calculate Ni, the number of sample 

correlations in interval i, where i ∈ {1,2, …, N}. For the ρk located in interval i, the 

frequency-normalized weight is wk = 1
N ⋅ Ni

. Denote Xk′  as the image X replacing xr with xr
k. 

Hence, we approximate p(c|X\r) as

p c X\r ≈ ∑
k

wkp c Xk′ . (4)

2.3 Important Feature Interpretation

In the binary classification scenario, we label the reference class as 0 and the experiment 

class as 1. The original prediction probability of the two classes are denoted as ℙo
0 and ℙo

1, 

which are two vectors containing the prediction results p(c|X)s for each sample in the two 

classes respectively. Similarly, we have ℙc
0 and ℙc

1 containing p(c|X\r)s for the corrupted 

images. We assume that corrupting an important feature will make the classifier perform 

worse. One extreme case is that the two distributions shift across each other, which can be 

approximately measured by median ℙc
0 > median ℙc

1 . If this is not the case, we use Jensen-

Shannon Divergence (JSD) to measure the distance of two distributions:

JSD ℙ0, ℙ1 = 1
2KL(ℙ0‖ℙ0 + ℙ1

2 ) + 1
2KL(ℙ1‖ℙ0 + ℙ1

2 ) (5)

where KL ℙ0 ℙ1 = − ∑iℙ0(i)log ℙ1(i)/ℙ0(i) . Given two distributions ℙ0 and ℙ1, we use 

bootstrap method to calculate the upper bound JSD+ and the lower bound JSD− with 

confidence level, 1 − αJSD. We classify the important ROIs into different categories based on 

the shift of the prediction distribution before and after corruption. The one-tailed Wilcoxon 

paired difference test [8] is applied to investigate whether the shift is significant. We use 

false discovery rate (FDR) controlling procedure to handle testing the large number of ROIs. 

FDR adjusted q-value is used to compare with the significance level αW. The method to 

evaluate the feature importance is shown in Algorithm 1.

Li et al. Page 4

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2020 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3 Experiments and Results

3.1 Experiment 1: Synthetic Data Model

We used simulated experiments to demonstrate that our frequency-normalized resampling 

algorithm recovers the ground truth patch importance. We simulated two classes of images 

as shown in Fig. 2, with background = 0 and strips = 1 and Gaussian noise (μ = 0, σ = 0.01). 

They can be gridded into 9 patches. We assumed that patch B of class 0 and 1 are equally 
important to human understanding. However, in our synthetic model, the sample set was 

biased with 900 images in class 0 and 100 images in class 1. A simple 2-layer convolutional 

neural network was used as the image classifier, which achieved 100% classification 

accuracy. Since the shift of corrupted images was obvious, we used misclassification rate to 

measure whether p(c|X\r) was approximated reasonably by equally weighted sampling 

(which means wi = 1/K) or by our frequency-normalized sampling. In Table 1, our 

frequency-normalized sampling approach (‘Normalize’) is superior to the equally weighted 

one (‘Equal’) in treating patch B equally in both classes.

3.2 Experiment 2: Task-fMRI Experiment

We tested our methods on a group of 82 ASD children and 48 age and IQ-matched healthy 

controls. Each subject underwent a task fMRI scan (BOLD, TR = 2000ms, TE = 25ms, flip 

angle = 60°, voxel size 3.44 × 3.44 × 4mm3) acquired on a Siemens MAGNETOM Trio TIM 

3T scanner.

For the fMRI scans, subjects performed the ”biopoint” task, viewed point light animations of 

coherent and scrambled biological motion in a block design [2] (24s per block). The fMRI 

data was preprocessed using FSL [9] for 1) motion correction, 2) interleaved slice timing 

correction, 3) BET brain extraction, 4) spatial smoothing (FWHM=5mm), and 5) high-pass 

temporal filtering. The functional and anatomical data were registered and parcellated by 

AAL atlas [10] resulting in 116 ROIs. We applied a sliding window (w = 3) along the time 

dimension of the 4D fMRI, generating 144 3D volume pairs (mean and std) for each subject.

We split 85% subjects (around 16k 3D volume pairs) as training set, 7% as validation set for 

early stopping and 8% as testing set, stratified by class. The model achieved 87.1% accuracy 

when evaluated on each 3D pair input of the testing set. Fig. 3(a) and (b) give two views of 

the important ROIs brain map (αJSD = 0.05, αW = 0.05). Blue ROIs are associated with 

identifying both ASD and control. Red ROIs are associated with identifying ASD only and 

green ROIs are associated with identifying control only. By decoding the neurological 

functions of the important ROIs with Neurosynth [11], we found 1) regions related to default 

mode and functional connectivity are significant in classifying both individuals with ASD 

and controls, which is consistent with prior literature related to executive functioning and 

problem-solving in ASD [2]; 2) regions associated with finger movement are relevant in 

classifying individuals with ASD, and 3) visual regions were involved in classifying 

controls, perhaps because controls may attend to the visual features more closely, whereas 

ASD subjects tend to count the dots on the video [12].
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3.3 Experiment 3: Resting-state fMRI

We also performed experiments on data from the ABIDE I cohort UM site [13, 9]. This 

resulted in 41 ASD subjects and 54 healthy controls. Each subject initially had 293 frames. 

As in the task-fMRI experiment, we generated 2-channel images. We used the weights of the 

pre-trained 2CC3D networks in experiment 2 as our initial network weights. We split 33 

ASD subjects and 43 controls for training (around 22k 3D volume pairs). 9 subjects were 

used as validation data for early stopping. The classifier achieved 85.3% accuracy in 

identifying individual 3D volume on the 10 subjects testing set. The biomarker detection 

results are shown in Fig. 4: 1) emotion related regions colored in blue are highlighted for 

both groups; 2) regions colored in red (viewing and moving related) are associated with 

identifying ASD; and 3) green regions (related to executive and lingual) are associated with 

identifying control.

3.4 Results Analysis

In experiment 2, since the subjects were under visual task, visual patterns were detected. 

Whereas in experiment 3, subjects were in resting state, so no visual regions were detected. 

In addition, we found many common ROIs in both experiments: frontal (motivation related), 

precuneus (execution related), etc. Previous research [2] also indicated these regions are 

associated with identifying ASD vs. control. Moreover, from the sub-figure (c), (d) of Fig. 3 

and 4, the groups of detected important regions are very stable when tuning JSD confidence 

level (1αJSD) and Wilcoxon testing threshold αW, except when αJSD is very small. This is 

likely because the original prediction distribution is fat tailed. Furthermore, we validate the 

results with the activation maps from the 1st and 2nd layers of the DNN. The output of each 

filter was averaged for 10 controls and for 10 ASD subjects. The 1st convolutional layer 

captured structural information and distinguished gray vs. white matter (Fig. 5(a)). Its 

outputs are similar in both control and ASD group. The outputs of the 2nd convolutional 

layer showed significant differences between groups in Fig. 5(b). Regions darkened and 

highlighted in Fig. 5(b) correspond to many regions detected by our proposed method.

4 Conclusions

We designed a 2-stage (DNN + prediction distribution analysis) pipeline to detect brain 

region saliency for identifying ASD and control subjects. Our sampling and significance 

testing scheme along with the accurate DNN classifier ensure reliable biomarker detection 

results. Our method was designed for interpreting important ROIs for registered images, 

since the traditional machine learning feature selection methods can not be directly used in 

interpreting DNNs. Moreover, our proposed method can be directly used to interpret any 

other machine learning classifiers. Overall, the proposed method provides an efficient and 

objective way of interpreting the deep learning model applied to neuro-images.
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Fig. 1: 
Pipeline for interpreting important features from a DNN
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Fig. 2: 
Synthetic Images
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Fig. 3: 
Important Biomarkers Detected in Biopoint Dataset
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Fig. 4: 
Important Biomarkers Detected in ABIDE Dataset

Li et al. Page 11

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2020 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5: 
Intermediate outputs (activation maps) of DNN
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Table 1:

Misclassfication rate when corrupting patch B

Class 0 Class 1

Equal 0.10 ± 0.01 0.91 ± 0.03

Normalize 0.49 ± 0.02 0.50 ± 0.01
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