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Abstract

The development of chemotherapeutic resistance resulting in tumor relapse is largely the 

consequence of the mechanism of competitive release of pre-existing resistant tumor cells selected 

for regrowth after chemotherapeutic agents attack the previously dominant chemo-sensitive 

population. We introduce a prisoner’s dilemma game theoretic mathematical model based on the 

replicator of three competing cell populations: healthy (cooperators), sensitive (defectors), and 

resistant (defectors) cells. The model is shown to recapitulate prostate-specific antigen 

measurement data from three clinical trials for metastatic castration-resistant prostate cancer 

patients treated with 1) prednisone, 2) mitoxantrone and prednisone and 3) docetaxel and 

prednisone. Continuous maximum tolerated dose schedules reduce the sensitive cell population, 

initially shrinking tumor burden, but subsequently “release” the resistant cells from competition to 

re-populate and re-grow the tumor in a resistant form. The evolutionary model allows us to 

quantify responses to conventional (continuous) therapeutic strategies as well as to design adaptive 

strategies. These novel adaptive strategies are robust to small perturbations in timing and extend 

simulated time to relapse from continuous therapy administration.
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1. Introduction

In his now classic 1961 study of competition for space between two species of barnacles in 

the intertidal zone off the Scottish coast, Connell (1961) discovered something interesting. 

The blue barnacles Balanus normally occupied the intertidal zone, while the brown 

barnacles Chthamalus occupied the coast above high tide. Despite the commonly held belief 

that each occupied their own niche because of different adaptations to local micro-

conditions, Connell hypothesized that the colonization of the intertidal zone by Balanus was 

actually preventing Chthamalus from inhabiting this region. To test this, he removed the blue 

barnacles from the intertidal zone and tracked the subsequent penetration of Chthamalus into 

this region. He concluded that Chthamalus had undergone relief from competition with 

Balanus which allowed it to flourish where previously it could not. The point, he 

emphasized, was there was nothing inherent about the micro-environment of the intertidal 

zone that was preventing Chthamalus from occupying this region. It was simply the 

competition against a more dominant species that was holding it back. Without the presence 

of that species, Chthamalus happily claimed both zones as fundamental niches. Thus, the 

important notion of competitive release was formulated (see Grant (1972)). When two (or 

more) sub-species compete for the same resources, with one species dominating the other, if 

the dominant species is removed, this can provide the needed release from competition that 

can allow the less dominant species to flourish. The mirror image of competitive release is 

the related notion of character displacement developed by Brown and Wilson (1956) in 

which competition can serve to displace one or more morphological, ecological, behavioral, 

or physiological characteristics of two closely related species that develop in close 

proximity. These concepts are now well established as part of the overall framework of co-

evolutionary ecology theory and play an important role in the evolution of chemotherapeutic 

resistance in cancer (Attolini and Michor, 2009; Enriquez-Navas et al., 2015; Greaves and 

Maley, 2012; Merlo et al., 2006).

Since co-evolution among competing clones and subclones is now a well established Nowell 

(1976) process in malignant tumors, the mechanism of competitive release should be 

expected to play a role and affect the chemotherapeutic strategies one might choose to 

eliminate or control tumor growth. Indeed, tumor relapse and the development of chemo-

therapeutic resistance is now thought largely to be a consequence of the evolutionary 

mechanism of competitive release of pre-existing resistant cells in the tumor which are 

selected for growth after chemotherapeutic agents attack the subpopulation of chemo-

sensitive cells which had previously dominated the collection of competing subpopulations. 

This concept, perhaps most forcefully advocated by Gatenby and collaborators Gatenby 

(2009), is gaining acceptance by clinicians. A recent (2012) systematic literature analysis of 

cancer relapse and therapeutic research showed that while evolutionary terms rarely 

appeared in papers studying therapeutic relapse before 1980 (< 1%), the language usage has 

steadily increased more recently, due to a huge potential benefit of studying therapeutic 

relapse from an evolutionary perspective Aktipis et al. (2011). Anticancer therapies strongly 

target sensitive cells in a tumor, selecting for resistance cell types and, if total eradication of 

all cancer cells is not accomplished, the tumor will recur as derived from resistant cells that 

survived initial therapy Perry (2008). It is argued by Gatenby (2009) that eradicating most 

West et al. Page 2

J Theor Biol. Author manuscript; available in PMC 2020 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



disseminated cancers may be impossible, undermining the typical goal of cancer treatment 

of killing as many tumor cells as possible. The underlying assumption of this approach has 

been that a maximum cell-kill will either lead to a cure or, at worst, maximum life extension. 

Taking cues from agriculturists who have long abandoned the goal of complete eradication 

of pests in favor of applying insecticides only when infestation exceeds a threshold in the 

name of “control” over “cure,” there are those who advocate for a shift from the cure 

paradigm in cancer treatments to a control paradigm (Beckman et al., 2012; Gatenby, 2009).

1.1. The likelihood of pre-existing resistance

Pre-existing resistant cells should generally be present in all patients with late-stage 

metastatic disease (for single point mutations which confer resistance), a conclusion 

supported by probabilistic models (Bozic and Nowak, 2017) and from tumor samples taken 

prior to treatment (Kreuzer et al., 2003; Roche-Lestienne and Preudhomme, 2003) which 

have been reported for melanoma (Kemper et al., 2015), prostate cancer (Romanel et al., 

2015), colorectal cancer (Diaz Jr et al., 2012; Laurent-Puig et al., 2014), ovarian cancer 

(Schwarz et al., 2015), and medulloblastoma (Morrissy et al., 2016). According to this view, 

treatment failure would not be due to evolution of resistance due to therapy, but rather the 

pre-existing presence of resistant phenotypes that are relatively sheltered from the toxic 

effects of therapy (Enriquez-Navas et al., 2015).

The likelihood of pre-existing resistance has important therapeutic implications. If we 

assume no pre-existing resistance, then most models predict maximum dose-density therapy 

will reduce the probability of resistance largely because this treatment minimizes the number 

of cell-divisions, thereby minimizing the risk of a mutation leading to acquired resistance 

(Enriquez-Navas et al., 2015). By contrast, in pre-existing resistance scenarios, the 

maximum dose-density therapy strategy lends itself to competitive release due to the 

evolutionary nature of tumor progression. Most pre-clinical efforts that aim to maximize the 

short-term effect of the drug on sensitive cells does not significantly affect the long-term 

control of cancer (Bozic and Nowak, 2017). This is because the phenomenon of competitive 

release can occur via the harsh selective pressure imposed by the tumor microenvironment 

after cancer therapies diminish the presence of the dominant (i.e. the chemo-sensitive) 

subpopulation. Additionally, the process of metastasis may allow a resistant subpopulation 

in the primary tumor to emerge elsewhere (Venkatesan and Swanton, 2016).

1.2. Leveraging the cost of pre-existing resistance

Pre-existing mutations that are responsible for conferring resistance may be associated with 

a phenotypic cost, or a reduced fitness, compared to the average fitness of the sensitive cell 

population (Gatenby et al., 2011; 2009). Even factoring in this fitness cost, deleterious 

mutations are still expected to be present in late-stage metastatic cancers (Bozic and Nowak, 

2014). This cost can come in many ways, such as an increased rate of DNA repair, or an 

active pumping out of the toxic drug across cell membranes. All of these strategies use up a 

finite energy supply that would otherwise be available for invasion into non-cancerous 

tissues or proliferation. The rapid removal of chemo-sensitive cells during therapy releases 

the resistant population from unwanted competition and thereby permits unopposed 

proliferation of the resistant cell population. In contrast, the goal of an adaptive therapy is to 
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maintain a stable tumor burden that permits a significant population of chemo-sensitive cells 

for the purpose of suppressing the less fit but chemo-resistant populations, consistent with 

the philosophy that it takes an evolutionary strategy to combat an evolving tumor 

(Venkatesan and Swanton, 2016). There is some evidence that adaptive therapies may be 

beneficial for a range of fitness cost (or lack thereof) and therapeutic sensitivity (Gallaher et 

al., 2018; Hansen et al., 2017).

A theoretical framework for these adaptive therapies first developed by Gatenby et al. 

(2009), leverages the notion that pre-existing resistance is typically present only in small 

population numbers due to a cost of resistance. This less fit phenotype is suppressed in the 

Darwinian environment of the untreated tumor but treatments that are designed to kill 

maximum numbers of cells remove the competition for the resistant population and 

ultimately select for that population during tumor relapse1 While the goal of an adaptive 

therapy (to capitalize on the competition resistant subpopulations incur through maintaining 

a stable sensitive cell population) has gained some level of acceptance, the ideal adaptive 

therapy schedule in practice, for different tumor types and growth rates is far from settled. 

Gatenby’s paper modulates dose density only, while stating that an ideal adaptive therapy 

would also modulate the drug, as well as the dose schedule (both dose and density) (Gatenby 

et al., 2009). Some of these evolutionary ideas were tested experimentally using mouse 

models with modulated dose strength and dose vacations designed to maintain a stable, 

controllable tumor volume (Enriquez-Navas et al., 2016; Seton-Rogers, 2016). This two-

phase adaptive therapy involved an initial high-dose phase to treat the exponential growth of 

the tumor and a second phase designed for stable tumor control using a variety of strategies 

(such as decreasing doses or skipping doses when stability is achieved). Several spatial, 

agent-based computational models have modulated dose strength with respect to a threshold 

value of tumor size (a fraction of the original tumor burden) (Bacevic et al., 2017; Gallaher 

et al., 2018). Findings suggest that adaptive therapies based on evolutionary treatment 

strategies that maintain a residual population of chemo-sensitive cells may be clinically 

viable, and is currently extended to an on-going clinical trial (NCT02415621) which 

adaptively controls the on/off cycling of abiraterone (Cunningham et al., 2017). We refer the 

reader to similar approaches used in mitigating antibiotic resistance (Andersson and Levin, 

1999; Gullberg et al., 2011).

With these advances in mind, the goal of this manuscript is to use the evolutionary 

framework introduced and advocated over the past 10 years (Bacevic et al., 2017; 

Cunningham et al., 2017; Gallaher et al., 2018; Gatenby, 2009; Gatenby et al., 2009) to 

mathematically model the important parameters of competitive release and use that 

framework to better understand therapeutic implications of the cost of developing resistance 

and to learn how to exploit competition between subpopulations. Here, we ignore clonal 

dynamics, mutations between subpopulations, and non-genetic (rapid, bidirectional) state 

transitions, to focus on the inter-subpopulation competition (Hoek and Goding, 2010; Pisco 

et al., 2013; Sharma et al., 2010). Specifically, we introduce a three-component replicator 

system with a prisoner’s dilemma payoff matrix (West et al., 2016b) to model the three 

1It is important to note that both high-dose, maximum tolerated dose schedules and low-dose, metronomic dose schedules have this 
cumulative goal of achieving maximum cell-kill over the course of many cycles of treatment
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relevant subclonal populations: healthy cells (H), sensitive cells (S), and resistant cells (R). 

We consider healthy cells as the surrounding non-neoplastic cells that do not contribute to 

the overall growth of the tumor, but nevertheless compete with neoplastic cells for space and 

resources. Using the nullcline information in a triangular phase plane representation of the 

nonlinear dynamics of the system, we first show the essential ingredients that render 

competitive release possible. Then, using the parameters that control selection pressure 

(hence relative growth rates) on the three subclonal populations, we attempt to maintain the 

tumor burden at low levels so that the resistant population does not reach fixation.

1.3. Retrospective analysis of metastatic castration-resistant prostate cancer

A recent retrospective analysis of tumor measurement data (PSA levels) from eight 

randomized clinical trials with metastatic castration-resistant prostate cancer (mCRPC) used 

a simple linear combination of exponentials model to estimate the growth and regression 

rates of disease burden over time (Wilkerson et al., 2017). In total, over 67% of patients were 

fit to models with a positive regrowth rate, indicating failure due to resistance. Prostate-

specific antigen (PSA) measurement data for patients in each treatment silo (prednisone 

only, mitoxantrone and prednisone, docetaxel and prednisone) were obtained through the 

Project Data Sphere open data portal ((https://www.projectdatasphere.org), and we show that 

this model is able to adequately fit data for each treatment type with the additional capability 

of allowing us to track responses to conventional therapeutic strategies and design new 

adaptive strategies as the tumor evolves. The model can be used to test previously proposed 

adaptive therapies, but we propose a novel schedule utilizing quantitative tools from 

nonlinear dynamical systems theory which use the current global state of the nonlinear 

replicator system with respect to the nullcline curves of the equations as well as parameters 

controlling relative fitness levels of the competing sub-populations. The simulated 

chemotherapeutic strategies that we implement, based on tracking the phase-space structure 

of replicator system, are ones that can adapt on the same timescale as the inherent timescale 

of evolution of the subpopulations comprising the tumor, i.e. are as dynamic as the tumor. 

While this approach cannot be preplanned by the oncologist at the beginning of therapy like 

classical strategies, we provide discussion to explain how an evolutionary game theory 

model describing the fitness landscape (described below) is useful to understand the 

underlying features of a dynamical fitness landscape associated with a cost to resistance: a 

three-way prisoner’s dilemma. Specifically, the model indicates a boundary over which an 

adaptive therapy will cease to be effective. Our model focuses on cost to resistance, as 

opposed to specific mechanisms of resistance (i.e. hormone resistance, for example). This 

has the advantage in some ways as being agnostic to resistance mechanisms, but on the other 

hand, in this manuscript, we can not distinguish between different mechanisms: the analysis 

explores the effect of a fitness competition between subpopulations on the competitive 

release phenomenon. Three common therapies used in mCRPC do show that a fit of our 

model to prostate data lead to the emergence of a cost of resistance in a majority of patients, 

without pre-determining a value to the cost in the model a priori. Similarly, ref. Wilkerson et 

al. (2017) found that continuous administration of different therapies (i.e. different resistance 

mechanisms) is associated with slow tumor regrowth rates (i.e. a cost of resistance conferred 

to growth potential). We now describe the model.
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2. Materials and methods

A schematic of a finite-population three component model (healthy, sensitive, resistant) of 

competitive release is shown in Fig. 1, where the tumor consisting of sensitive and resistant 

cells is competing with the surrounding healthy tissue. At diagnosis (see Fig. 1, left), the 

tumor is dominated by sensitive cells (red) which out compete the surrounding healthy 

population (blue) during unhindered tumor progression. A small portion of resistant cells 

(green) remains in small numbers, suppressed by the larger sensitive population. After 

several rounds of chemotherapy, the tumor shrinks, leaving the resistant population largely 

unaffected (Fig. 1, middle). Inevitably, the tumor relapses due to the small number of 

sensitive cancer cells remaining after therapy (Fig. 1, right). In the absence of competition 

from the dominant sensitive population, the resistant cells grow unhindered, rendering 

subsequent rounds of chemotherapy less effective. Subsequent application of identical 

therapies will have a diminished effect. Fig. 2 shows the process in a ‘Müller fishplot’, 

which we will use later to track the subclonal populations. This representation was first 

utilized in cancer to compare modes of clonal evolution in acute myeloid leukemia (see Ding 

et al. (2012)) and is particularly useful in computational models where every cell type can be 

tracked in time. A fishplot shows the tumor burden (vertical axis) over time (horizontal 

axis). The first resistant cell is assumed to arise from a single sensitive cell, undetectable by 

current methods of measurement. The schematic depicts unhindered tumor growth after the 

first driver mutation (Fig. 2, left) where the tumor grows exponentially before diagnosis, 

during which time a resistant mutation occurs (Fig. 2, middle). After diagnosis (dashed line), 

a regimen of continuous chemotherapy shows initial good response and tumor regression, 

but the resistant population grows back (although at a slower growth rate) unhindered by 

competition, leading to relapse (Fig. 2, right). Previously, a linear combination of 

exponentials model has been proposed to track the tumor quantity via prostate-specific 

antigen (PSA) measurement data (Carvalhal et al., 2010). The tumor quantity q(t) is a 

function of the exponential death rate of the sensitive cells, d. the exponential growth rate of 

the resistant cells, g, and the initial fraction of resistant cells, f (Bozic and Nowak, 2017). In 

this equation, q(t) is the tumour burden at time t in days, normalized to the PSA level at t = 

0, (see Fig. 3, blue lines). The model can be written as follows:

q(t) = (1 − f)e−dt + fegt . (1)

This model, shown to be a reasonably good description of the changing tumor size during 

therapy for colorectal, prostate, and multiple myeloma cancers, identifies the important 

parameters in competitive release: initial fractional resistance (f), and birth/death rates (g, d) 

for the resistant and sensitive populations, respectively. The model is used to fit prostate-

specific antigen (PSA) measurement data from retrospective analysis of three randomized 

clinical trials with metastatic castration-resistant prostate cancer to estimate the growth (g) 

and regression (d) rates of disease burden over time. Four representative patients are chosen 

from the control arms of each randomized trial and shown in Fig. 3: treatment with 

prednisone only (Michaelson et al., 2013) (left column: Figs. 3B, E, H and K); treatment 

with mitox-antrone and prednisone (Tannock et al., 2004) (middle column: Figs. 3C, F, I and 

L) and treatment with docetaxel and prednisone Petrylak et al. (2015) (right column: Figs. 

West et al. Page 6

J Theor Biol. Author manuscript; available in PMC 2020 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3D, G, J and M). PSA data and model fits are normalized by q (t = 0) (black dots) and 

exponential fits are shown in blue.

Despite the fact that the model (1) curve-fits data reasonably well (labeled “exp.” in Fig. 3), 

it contains no evolutionary information or concepts, a keystone principle behind competitive 

release. We also include in the Fig. 3 fits of our model presented here Eqs. (2) and (3) in red 

(labeled “rep.” in Fig. 3, where q(t) is given by Eq. (4), below). Our evolutionary model is 

able to capture similar trends as the exponential model of equations Eq. (1) but has the 

important property of allowing us to calculate cost of resistance associated with model fit. 

While each drug (columns) may have very different resistance mechanisms, ten of the 

twelve patients shown have a cost of resistance (α − β, described below). In the last section 

we will describe the dynamical phase portrait and implement adaptive strategies to capitalize 

on competition between resistant and sensitive subpopulations in order to maintain tumor 

control.

2.1. The replicator equation model

The dynamics of the fitness landscape of three competing cell types are described by the 

replicator equation (see Traulsen et al. (2005)), which is a deterministic birth-death process 

in which birth and death rates are functions of cell fitness, and cell fitness is a function of 

prevalence in the population. Each ith cell type (i = 1, 2, 3) competes according to Eq. (2), 

where x1, x2, x3 are the corresponding frequency of healthy (H), sensitive (S) and resistant 

(R) cells, respectively, such that Σixi = 1.

ẋi = fi − 〈f〉 xi (2)

fi = 1 − wi + wi(Ax )i (3)

Here, x  is the vector x = (x1, x2, x3)T  and (Ax)i is the ith element of vector Ax. The 

prevalence of each sub-population, xi, changes over time according to the changing 

population fitness, fi, as compared to the average fitness of all three populations 

〈f〉 = f1x1 + f2x2 + f3x3. If the fitness of the sub-population is greater than the average 

fitness (fi − 〈f〉 > 0), that sub-population grows exponentially, whereas if it is less 

(fi − 〈f〉 < 0), it decays.

In order to directly compare results to previously published models of tumor quantity, q(t), 
during competitive release (i.e. Eq. (1)), the tumor quantity can be written as the sum of the 

resistant and sensitive tumor populations (x2, x3 respectively), q(t),

q(t) = x2(t) + x3(t), (4)

normalized by it’s initial condition, q(0). This is shown in a schematic in Fig. 3A. These 

represent the same subpopulations shown in green (resistant) and red (sensitive) in Fig. 2.
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Before therapy, each subpopulation (healthy, chemo-sensitive, and resistant cells) the 

selection pressure is constant across all cell types (i.e. wi ≡ w, i = 1, 2, 3) at a level that 

represents the natural selection pressure the tumor environment imposes on the different 

subpopulations. These values discussed in the literature are typically small, in the range wi ≡ 
w ≈ 0, 1 – 0, 3, This is a weighting parameter between neutral dynamics (w = 0) and fitness-

dependent dynamics (w = 1). Typically in replicator systems, this parameter scales out with 

time. In our model, we treat each subpopulation selection parameter independently. We 

implement chemotherapy in our model by changing the selection pressure parameters on 

each of the subpopulations of cells. Therapy can be administered at different doses (i.e. 

values of the drug concentration: c; 0 ≤ c ≤ 1). A higher value of c indicates a stronger dose 

of chemotherapy drug (described in more detail in West and Newton (2017)). This follows 

the schematic in Fig. 4 which depicts the change in the fitness landscape before and after 

therapy. In Fig. 3, dose concentration is assumed to be constant for a specific drug while 

patient-specific parameters are the selection pressure (w), cost of resistance (discussed 

below), and initial fraction of resistant cells (f). Values are altered as follows (see Fig. 4 for 

explanation of changing fitness landscape):

w1 = (1 + c)w (healthy) (5)

w2 = (1 − c)w (sensitive) (6)

w3 = w (resistant) (7)

The fitness landscape (Eq. 3) is described in detail by the entries of the payoff matrix A,

A =
H
S
R

H S R
a b 0
ℎ j k
l m n

(8)

where each pairwise cell-cell interaction is described by the row and column values, which 

are parameters in the fitness equation (3). The 3 × 3 payoff matrix is constructed as a 

standard prisoner’s dilemma matrix where healthy cells are the cooperators and sensitive/

resistant cells are the defectors. In the absence of resistant cells, we describe in more detail 

the dynamics of the system and its relevance to tumor growth in the appendix. The key 

features are the Gompertzian growth of the cancer cell population which saturates at a lower 

overall population fitness level than the initial all healthy cell population. This necessitates 

the following inequalities of the payoff matrix below Eq. (8): h > a > j > b, l > a > n > o, and 

k > n > j > m, Note that these payoff entries remain constant before and during therapy: 

chemotherapy is viewed as affecting the selection balance among the three subpopulations. 

This is implemented in our model by a change in the selection pressure parameters only Eqs. 

(5)–(7). More discussion of why the prisoner’s dilemma matrix, which models the evolution 

of defection, is a useful paradigm for cancer can be found in West et al. (2016a,b) and the 

appendix.
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2.2. The linearized system and the cost of resistance

An additional important feature of the payoff matrix is the notion of the cost of resistance 
which is highlighted in Fig. 4A. With no therapy, the sensitive cells exhibit fastest growth 

due to their higher fitness value relative to both the resistant population and the healthy 

population. The difference between the baseline fitness values of the sensitive cells and the 

resistant cells can be thought of as the ‘price paid’ by the resistant population to retain their 

resistance to toxins. This cost, in our model, is quantified as the difference in the (linearized) 

growth rates of the two populations (type 2: sensitive; type 3: resistant). Linearizing Eqs. (2) 

and (3), (which form a cubic nonlinear system if expanded out) gives rise to the sensitive-

resistant uncoupled system:

ẋ2 = αx2 (9)

ẋ3 = βx3, (10)

with the growth parameters:

α = w1(1 − a) + w2(ℎ − 1) (11)

β = w1(1 − a) + w3(l − 1) . (12)

Using Eqs. (5)-(7) gives:

α = w(ℎ − a) − cw(ℎ + a − 2) (13)

β = w(l − a) + cw(1 − a) . (14)

With no therapy, c = 0, we have:

α = w(ℎ − a) (15)

β = w(l − a) . (16)

We call the fitness cost of resistance the difference between these growth rates with no 

therapy, hence (α − β) = w(h − l), where we require h > l in the payoff matrix. However, the 

w parameter is patient-specific, allowing each patient a varied cost.

3. Results

It is useful to view the nonlinear dynamical trajectories of the system using the trilinear 

coordinates shown in Fig. 5A, which gives a representation of the clonal phase space for 

every possible value of x  (Sandholm et al., 2012). The corners represent saturation of a 

single cell type (e.g. the top corner represents x = [1, 0, 0] or all healthy cells). The healthy 
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(H; top corner), sensitive (S; bottom left corner), and resistant (R; bottom right corner) 

populations compete according to Eq. (2) and follow trajectories shown (black) in Fig. 5C.

Fig. 5C shows the complete dynamical information for untreated patient dynamics (c = 0, α 
= 0.020, β = 0.018, w = 0.1). All internal trajectories (black lines) lead to tumor growth and 

eventual saturation of the sensitive population (bottom left corner, “S”). Instantaneous 

relative velocity is indicated by background color gradient (blue to red). Subpopulation 

“nullclines,” the curves for which ẋi = 0 are shown for healthy (dashed blue), resistant 

(dashed green), and sensitive (dashed red). On one side there is positive growth (ẋi > 0); on 

the opposite side negative growth (ẋi < 0). These nullclines delineate the phase space into 

three regions.

• Region 1: ẋH > 0 ẋS > 0 ẋR < 0;

• Region 2: ẋH < 0 ẋS > 0 ẋR < 0;

• Region 3: ẋH < 0 ẋS > 0 ẋR > 0.

Likewise, Fig. 5D shows the complete dynamical information for the patient treated with 

chemotherapy (c = 0.6, α = 0.020, = 0.018, w = 0.1). Trajectories initially move away from 

the sensitive/resistant corners toward healthy, but subsequently relapse to the saturation of 

the resistant subpopulation. The phase space for treated dynamics is divided into six regions 

by the three nullclines.

Region 1: ẋH > 0 ẋS > 0 ẋR < 0;
Region 2: ẋH > 0 ẋS < 0 ẋR < 0;
Region 3: ẋH > 0 ẋS < 0 ẋR > 0;
Region 4: ẋH < 0 ẋS < 0 ẋR > 0;
Region 5: ẋH < 0 ẋS > 0 ẋR > 0;
Region 6: ẋH < 0 ẋS > 0 ẋR < 0.

An important detail emerges from the model: during treatment, the resistant nullcline is 

reached before the healthy nullcline (Fig. 5D). For example, a tumor with an initial 

diagnosis in region 2 (see Fig. 5D) can be expected to respond to treatment. The trajectory 

will follow along the black line towards the healthy corner (i.e. decreasing tumor quantity) 

until the trajectory passes over the nullcline for the resistant subpopulation (dashed green 

line; ẋR = 0) reaching region 3. Subsequently, the trajectory passes the healthy nullcline 

(dashed blue line; ẋH = 0) and the tumor relapses (ẋH < 0), this time toward saturation of 

the resistant sub-population.

If the desire is to maintain treatment until the point of positive progression, this occurs when 

the trajectory is far past the resistant nullcline. Appearances (based on tumor burden) can be 

deceiving - while the tumor may appear to be responding, the overall state may be well past 

the point of no return, and the resistant population is preparing to re-populate.
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3.1. Managing competitive release

Fig. 5B shows a schematic of the two resistant nullclines from 5 C and D (untreated: solid 

green line; treated: dashed green line) overlaid on the same phase portrait. From the initial 

condition (purple dot) treatment begins as the trajectory (solid blue line) approaches the 

nullcline, positive resistant growth can be avoided by a well-timed drug holiday (solid red 

line). Here, we propose an adaptive therapy with the goal of trapping the trajectory between 

the treated resistant nullcline and the untreated resistant nullcline, creating an orbit in a 

closed loop for a finite period of time to ‘steer’ tumor evolution in region 2 of Fig. 5B. We 

do this by altering the dose concentration parameter c (a parameter that can be accessed 

clinically) in Eq. (5) in an off-on (bang-bang) fashion, Eqs. (6) and (7) between the two 

resistant nullclines: the untreated nullcline from Fig. 5C and the treated nullcine from 5 D.

While all details of the ‘tumor phase space’ may not yet be directly measurable in the clinic, 

we propose that all successful adaptive therapies will operate in regions 1 and 2 in Fig. 5D; 

otherwise they ultimately will not be successful. In this way, meaningful insight is gained 

into the dynamics behind the cost to resistance, regardless of the mechanism of that 

resistance. Previous adaptive therapy schedules (described in the introduction; see (Bacevic 

et al., 2017; Cunningham et al., 2017; Enriquez-Navas et al., 2016; Gallaher et al., 2018)) 

have benefited from not crossing this “hidden” resistant nullcline. We now propose one 

example of an adaptive therapy schedule which actively captures and uses information from 

the dynamic phase space.

The simple control paradigm proposed to indirectly control the resistant population by 

systematically choosing when to administer therapy and when to give drug holidays. These 

holidays allow a sufficient number of sensitive cells to remain in order to suppress the 

resistant population. A continuous dose of therapy is administered until the treated nullcline 

(ẋR = 0) is reached (see Fig. 5D, green dashed line). This is the starting point of positive 

growth for the resistant population (further therapy would result in ẋR < 0). A drug holiday 

is then imposed until the second nullcline is reached (see Fig. 5C, green dashed line). The 

sensitive population is allowed to regrow until it is large enough to suppress the resistant 

population once again (and when ẋR = 0). Therapy is administered to allow the tumor to 

cycle back and forth between the two nullclines. This bang-bang (on-off) strategy allows an 

extension of relapse times. We emphasize that the specific times we turn the therapy on and 

off in this bang-bang strategy cannot be pre-planned, but depend on the position of the 

trajectory in the tumor phase space as the disease evolves.

Next, we measure the success of this control paradigm compared to continuous treatment via 

two important measures of therapy effectiveness: progression free survival (PFS) and time to 

relapse. PFS is the time to which the patient has a measured response, before relapse of the 

tumor: shown in Fig. 6A, bottom. A more useful metric is “time to relapse,” where disease 

reaches initial state. Measuring the effectiveness of a chemotherapy schedule based on the 

killing rate or progression free survival alone are not sufficient predictive measures of long-

term cancer control Bozic and Nowak (2017). PSA data from a single patient who relapsed 

due to treatment resistance (Fig. 3B) is replotted in Fig. 6A (black dots) along with the 

model best fit of continuous treatment (blue; therapy 1). Also shown are simulated new 
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drugs with increased effectiveness of killing sensitive cells (red, yellow) simulated by 

increasing the effective dose concentration with identical patient-specific parameters (from 

the patient in Fig. 3B). Each increased dose corresponds to a slightly shorter PFS, but an 

increased time to relapse to the initial tumor burden. However, despite the increase in relapse 

times, none of these doses optimizes tumor control, as seen in the fishplots (Fig. 6, B,C,D). 

At the point of relapse to the initial tumor burden, the tumor is dominated by the presence of 

resistant subpopulations (green), rendering future treatments ineffective. Oftentimes, the 

effectiveness of a new chemotherapy drug is be determined by PFS times when drugs that 

have high killing rates of sensitive cells may have shorter times to progression and lower 

total tumor burden at all times (everything else equal). The figure clearly shows that all 

treatments have similar progression free times but with a greater range of relapse times (even 

though continuous treatment always eventually leads to relapse).

Next, compare continuous treatments to the proposed control paradigm (solid black line) for 

identical initial conditions and identical drug dose. As seen in the fishplot (Fig. 6E), the 

resistant population (green) is suppressed during drug holidays, leading to an extended time 

without relapse. This adaptive technique is successful for two reasons. First, the drug 

holidays allow an adequate sensitive population size to suppress the growth of the lower-

fitness resistant population. Second, the resistant population is never allowed to reach a 

positive growth under treatment (ẋR < 0), therefore cannot take over the tumor cell 

population. In order to test the robustness of this method, similar control paradigms were 

simulated with error in administration times: slightly shorter time on therapy (1 day; Fig. 

6A; green) and slightly longer (1 day; Fig. 6A, purple). All else equal, it is better to err on 

the side of longer treatment on periods without decreasing off treatment time (purple).

4. Discussion

The chemotherapeutic scheduling strategies outlined in this paper cannot be pre-planned by 

the oncologist at the beginning of therapy like classical strategies (Norton and Simon, 1977), 

as they rely on significant decision making and continuous monitoring of the different 

subpopulations of cells that co-evolve as the tumor progresses. This means that the quality of 

the cell population monitoring system is crucial to the entire strategy, as has been pointed 

out in Fisher et al. (2015). There can be no adaptive tumor control strategy without 

continuous monitoring of the subpopulations as it is not the tumor burden that is of primary 

interest, but the heterogeneous balance of the subpopulations comprising the tumor. In 

addition, the information gleaned from a detailed monitoring system cannot be acted upon 

unless the various administered drugs are sufficiently targeted to act efficiently and 

exclusively on specific subpopulations. These two systems must be in place (sensing and 

actuating) in order to successfully shape the fitness landscape and steer a growth trajectory 

in a desired direction. We also want to emphasize a separate point, which is that it is not 

enough to know in detail the current state of the system in order to steer it successfully. One 

must also have a description of all possible nearby states of the system, both under 

therapeutic pressure and without therapy. Better yet is to have a global picture of all possible 

states of the system, with nonlinear nullcline information, as one would obtain by analyzing 

the full phase space of the entire system. With this information, one would know where to 
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steer the system to get to a desired state, even if one does not know how to achieve this 

(clinically). In current state-of-the-art medical practice, such sophisticated sensor-actuator 

capability is not yet sufficiently developed as it is in many engineering contexts where 

versions of adaptive control theory are routinely used. Many similar challenges, and the 

necessary steps towards their implementation, present themselves in the ecology and pest 

control communities, and we point to Gould’s article (Gould, 1991) for a nice early 

overview. More recently, connections between the approaches developed in the past by 

ecologists and possible future strategies for oncologists have been discussed by Gatenby and 

collaborators (Gatenby and Brown, 2017). Other groups (Bratton et al., 2014; Ledzewicz 

and Schattler, 2002; Ledzewicz et al., 2017) have also developed highly mathematical 

approaches to tumor control from different points of view. Clearly not all of the clinical 

steps are in place to effectively test and implement many of the strategies that have been 

explored theoretically. Yet it is still important to continue to develop the kinds of 

mathematical models and computer simulations that would serve to identify the many 

possible schemes, parameter ranges, and sensitivities that could be tested via clinical trials 

that focus on adaptive therapies with the goal of suppression of potential evolution of 

resistance.
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Appendix A

To understand why the prisoner’s dilemma is a useful paradigm for tumor growth resulting 

from competing subpopulations, we focus on the 2 × 2 case only. The standard version of 

the prisoner’s dilemma payoff matrix (Nowak, 2006) in a 2 × 2 setting in which healthy cells 

compete with cancer cells is:

A = a b
c d = 3 0

5 1 , (17)

where the first row and column correspond to the payoffs associated with the cooperator (C) 

in the PD evolutionary game, and the second row and column correspond to the payoffs 

associated with the defector (D). In the simplest tumor growth paradigm in which a 

population of healthy cells competes with a population of cancer cells, the healthy cells are 

the cooperators, while the cancer cells are the defectors. In any mixed population 

x = xC, xD
T , 0 ≤ xC ≤ 1; 0 ≤ xD ≤ 1; xC + xD = 1, the fitness functions, f = (fC, fD)T , 

associated with the two subpopulations are:

f = Ax , (18)

which in component form yields:
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fC = (Ax )1 = 3 ⋅ xC + 0 ⋅ xD, (19)

fD = (Ax )2 = 5 ⋅ xC + 1 ⋅ xD, (20)

while the average fitness of the total population is given by the quadratic form:

〈f〉 = x ⊤Ax = 3xC
2 + 5xCxD + xD

2 ≥ 1. (21)

The average fitness of the healthy state xC, xD = (1, 0) is given by 〈f〉 xC = 1 = 3, while that 

of the cancerous state xC, xD = (0, 1) is given by 〈f〉 xD = 1 = 1, which minimizes the 

average fitness. Tumor growth is then modeled as a 2 × 2 evolutionary game governed by the 

replicator dynamical system:

ẋ̇C = fC − 〈f〉 xC, (22)

ẋD = fD − 〈f〉 xD . (23)

It is straightforward to show:

ẋD = [(c − a) − (d − b)]xD 1 − xD
1

1 − d − b
c − a

− xD , (24)

with fixed points at xD = 0, 1, (c − a)
(c − a) − (d − b) . From this, we can conclude (using values from 

eqn (17)) that for any initial condition containing at least one cancer cell: 0 < xD(0) ≤ 1, we 

have:

(i) xD 1, xC 0 as t ∞
(ii) 〈f〉 1 as t ∞ .

Condition (i) guarantees that the cancer cell population will saturate, while condition (ii) 

guarantees that the saturated state is sub-optimal, since 〈f〉 xD = 1 < 〈f〉 xC = 1 . For these 

two reasons, the prisoner’s dilemma evolutionary game serves as a simple paradigm for 

tumor growth both in finite population models, as well as replicator system (infinite 

population) models (Traulsen et al., 2005; West et al., 2016a; 2016b; West and Newton, 

2017). Note that the 2 × 2 system alone it not able to account for the evolution of resistance.
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Fig. 1. Schematic of competitive release in a tumor
– (a) Prior to treatment, a tumor consists of a large population of sensitive cells (red) and a 

small population of less fit resistant cells (green) competing for resources with the 

surrounding healthy cells (blue); (b) Chemotherapy targets the sensitive population (middle), 

selecting for the less fit resistant population that thrives in the absence of competition from 

the sensitive population; (c) Upon regrowth, the tumor composition has larger numbers of 

resistant cells, rendering the subsequent rounds of treatment less effective.
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Fig. 2. Clonal evolution of competitive release
– A fishplot (sometimes known as a Müller plot), showing the tumor quantity (vertical axis) 

and composition (sensitive: red; resistant: green) over time (horizontal axis, left to right) 

with important events annotated. After first driver mutation (left), initial exponential growth 

of sensitive population occurs until diagnosis (dashed line). Continuous therapy targeting the 

chemo-sensitive population responds well with a decrease in tumor burden. In the absence of 

sensitive cells, the resistant population (existing in small numbers before the start of therapy) 

grows to become the dominant subpopulation at relapse, albeit typically with lower 

exponential growth rate due to the cost of resistance.
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Fig. 3. Model fits of PSA measurement data for metastatic castration-resistant prostate cancer
– Prostate-specific antigen (PSA) measurement data of four representative patients from 

three randomised clinical trials with metastatic castration-resistant prostate cancer. (A) A 

single patient data shown with model fit Eq. (4) of growing resistant population (green), 

decaying sensitive population (red), where the sum represents an overall initial good 

response and eventual relapse (q(t), dashed line). Left column: treatment with prednisone 

only Michaelson et al. (2013); middle column: treatment with mitoxantrone and prednisone 

Tannock et al. (2004); right column: treatment with docetaxel and prednisone Petrylak et al. 
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(2015). PSA data is normalized by q(t = 0) (black dots). The data is fit using the exponential 

model (Eq. (1); blue curve) and the replicator model (Eqs. (2) and (3)). Each patient is fit 

reasonably well with both models. Data was fit by parameter sweep of cost (α − β, Eqs. (15) 

and (16), initial fractional resistance f and selection pressure w. Parameters used are α − β = 

[0.02, 0.07, 0.20, 0.00, 0.20, 0.00, 0.20, 0.03, 0.20, 0.01, 0.15, 0.19]; f = [0.20, 0.02, 0.09, 

0.05, 0.03, 0.07, 0.10, 0.10, 0.09, 0.10, 0.03, 0.03]; w = [0.10, 0.20, 0.20, 0.30, 0.20, 0.10, 

0.30, 0.15, 0.10, 0.15, 0.20, 0.20] for B − M respectively.
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Fig. 4. Fitness landscape before and during therapy
– (A) Before therapy, a driver mutation leads to a fitness advantage of the cancer cell (red) 

and a subsequent resistant-conferring mutation comes at a fitness cost (green). Parameters 

determined by the prisoner’s dilemma payoff matrix reflect these relative fitness differences. 

(B) Rather than change the elements of the game payoff matrix directly, the selection 

parameter is manipulated for healthy (increased) and cancer (decreased) subpopulations 

such that w1 − w2 = 2c. (C) Changes in wi results in a new relative fitness of each 

subpopulation during therapy. The fitness of the resistant population is unaffected by 
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therapy’s selective pressure, but the healthy population is given an advantage over the 

chemo-sensitive population.

West et al. Page 23

J Theor Biol. Author manuscript; available in PMC 2020 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. Dynamic phase portraits before and during chemotherapy
– (A) Trilinear coordinate phase space representation; (B) Schematic of proposed adaptive 

therapy concept using the resistant nullclines to determine therapy “on” and “off” times in 

order to trap the tumor in the controllable region 2, and reach approximate cycle that repeats 

back on itself in red. The continuous therapy is also plotted in dashed blue, for comparison. 

Two nullclines divide the triangle into 3 regions; region 1: ẋR < 0 for both therapy on and 

off; region 2: ẋR > 0 for therapy off and ẋR < 0 for therapy on; region 3: ẋR > 0 for both 

therapy on and off. (C) Before chemotherapy, the healthy (H), sensitive (S), and resistant (R) 

populations compete on a dynamical fitness landscape, with several solution trajectories 

shown (black) and the instantaneous relative velocity indicated by background color gradient 

(red to blue). All internal trajectories lead to tumor growth and eventual saturation of the 

sensitive population (bottom left corner). Each population nullcline (line of zero growth: 

ẋi = 0) is plotted: healthy (dashed blue), sensitive (dashed red), and resistant (dashed green). 

The nullclines divide the triangle into 3 regions. Region 1: ẋH > 0 ẋS > 0 ẋR < 0; Region 2: 

ẋH < 0 ẋS > 0 ẋR < 0; Region 3: ẋH < 0 ẋS > 0 ẋR > 0; (D) Chemotherapy alters the 

selection pressure to the disadvantage of chemo-sensitive cancer population and advantage 

of the healthy population (shown for c = 0.6, α = 0.020, β = 0.018, w = 0.1). In this case, the 
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nullclines divide the triangle into 6 regions; Region 1: ẋH > 0 ẋS > 0 ẋR < 0; Region 2: 

ẋH > 0 ẋS < 0 ẋR < 0; Region 3: ẋH > 0 ẋS < 0 ẋR > 0; Region 4: ẋH < 0 ẋS < 0 ẋR > 0;
Region 5: ẋH < 0 ẋS > 0 ẋR > 0; Region 6: ẋH < 0 ẋS > 0 ẋR < 0; Solution trajectories 

(black) show initial trajectory toward healthy saturation (triangle top) but eventual relapse 

toward resistant population (bottom right of triangle) upon passing the resistant nullcline.
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Fig. 6. The effect of dose on tumor relapse and progression free survival under continuous and 
adaptive therapy
– (A) PSA data is from a single patient (see Fig. 3B) under continuous treatment 

(Mitoxantrone and Prednisone) is replotted (black dots) along with the best model fit (Eq. 

(2), (3)) in blue. Using identical patient parameters, continuous treatment of two “new”drugs 

with higher effectiveness (i.e. increased effective dose, c) is shown in red and yellow. Time 

to relapse significantly increases with increasing dose while the progression free survival 

shows marginal, but decreasing, difference. An adaptive therapy (see Fig. 5B) is also 

simulated (solid black line), showing an increased control over the tumor; Similar control 

paradigms were simulated with error in administration times: slightly shorter time on 

therapy (1 day; green) and slightly longer (1 day; purple). (B) The same four therapies are 

shown in a fish plot. Continous therapies show relapse to initial tumor size is dominated by 

chemo-resistant population (green). The adaptive therapy successfully suppressed the growth 

of the resistant population (bottom). Parameters used: α − β = 0.02; w = 0.10; f = 0.2.
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