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Abstract

Background: Biomechanical characterization of human performance with respect to fatigue and 

fitness is relevant in many settings, however is usually limited to either fully qualitative 

assessments or invasive methods which require a significant experimental setup consisting of 

numerous sensors, force plates, and motion detectors. Qualitative assessments are difficult to 

standardize due to their intrinsic subjective nature, on the other hand, invasive methods provide 

reliable metrics but are not feasible for large scale applications.

Methods: Presented here is a dynamical toolset for detecting performance groups using a non-

invasive system based on the Microsoft Kinect motion capture sensor, and a case study of 37 
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cancer patients performing two clinically monitored tasks before and after therapy regimens. 

Dynamical features are extracted from the motion time series data and evaluated based on their 

ability to i) cluster patients into coherent fitness groups using unsupervised learning algorithms 

and to ii) predict Eastern Cooperative Oncology Group performance status via supervised learning.

Findings: The unsupervised patient clustering is comparable to clustering based on physician 

assigned Eastern Cooperative Oncology Group status in that they both have similar concordance 

with change in weight before and after therapy as well as unexpected hospitalizations throughout 

the study. The extracted dynamical features can predict physician, coordinator, and patient Eastern 

Cooperative Oncology Group status with an accuracy of approximately 80%.

Interpretation: The non-invasive Microsoft Kinect sensor and the proposed dynamical toolset 

comprised of data preprocessing, feature extraction, dimensionality reduction, and machine 

learning offers a low-cost and general method for performance segregation and can complement 

existing qualitative clinical assessments.
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1. Introduction

In oncologic practice, clinical assessments of performance stratify patients into subgroups 

and inform decisions about the intensity and timing of therapy as well as cohort selection for 

clinical trials. The Karnofsky performance status (KPS) (Karnofsky and Burchenal, 1948) 

and the ECOG/World Health Organization (WHO) performance status (Oken et al., 1982) 

are two equally prevalent measures of the impact of disease on a patient’s physical ability to 

function. The Karnofsky score is an 11-tier measure ranging from 0 (dead) to 100 (healthy) 

whereas the ECOG score is a simplified 6-tier score summarizing physical ability, activity, 

and self-care: 0 (fully active), 1 (ambulatory), 2 (no work activities), 3 (partially confined to 

bed), 4 (totally confined to bed), 5 (deceased) (Oken et al., 1982).

Although these metrics have been employed for many decades due the practicality, 

standardization of patient stratification, and speed of assessment, prospective studies have 

revealed inter- and intra-observer variability (Péus et al., 2013), gender discrepancies 

(Blagden et al., 2003), sources of subjectivity in physician assigned performance 

assessments (Péus et al., 2013), and a lack of standard conversion between the two different 

scales (Buccheri et al., 1996). Nevertheless performance status provides clinical utility 

because it is able to differentiate patient survival (Kawaguchi et al., 2010; Radzikowska et 

al., 2002). Consequently, the existing protocol of assigning a performance status based on an 

inherently subjective assessment must be refined to achieve a more objective classification 

of a patient’s physical function.

In contrast to the qualitative and relatively practical nature of physician assessments in the 

clinic, laboratory based invasive methods have been developed to biomechanically quantify 

elements of human performance. Many of these efforts have conducted gait analysis using 

accelerometer, gyroscope and other types of wearable sensors and motion capture systems 
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(Tao et al., 2012) to detect and differentiate conditions in patients with osteoarthritis (Turcot 

et al., 2008), neuro-muscular disorders (Frigo and Crenna, 2009), and cerebral palsy 

(Desloovere et al., 2006). The shortcomings of more extensive assessments such as gait 

analysis include high cost, time required to perform tests, and general difficulty in 

interpreting results (Simon, 2004). The need for new technologies has been emphasized, 

particularly in the oncology setting (Kelly and Shahrokni, 2016), to bridge the gap between 

subjective prognostication using KPS or ECOG performance status and objective, yet 

cumbersome assessments of performance.

To this end, we propose a non-invasive motion-capture based performance assessment 

system which can (i) characterize performance groups using solely kinematic data and (ii) be 

trained to predict ECOG scores by learning from various physicians in order to reduce bias 

and intra-observer variability. The Microsoft Kinect is used as the motion-capture device due 

to its low cost, and ability to extract kinematic information without the need of invasive 

sensors. We describe and test a data processing and analysis pipeline using a cohort of 40 

cancer patients who perform two clinically supervised tasks before and after therapy at USC 

Norris Comprehensive Cancer Center, Los Angeles County+USC Medical Center, and MD 

Anderson Cancer Center.

2. Methods

A set of dynamical analysis and machine learning tools is developed to gather kinematic 

information from recordings of patients performing tasks (Fig. 1) with the goal of validating 

the experiment design by performing unsupervised classification of performance categories 

(Fig. 1, step 4a), as well as supervised learning of physician assigned ECOG performance 

status (Fig. 1, step 4b). Although we illustrate the use of the toolset by exploring its 

application to an oncology cohort, the following methods are general and may be used to 

characterize patient performance in other settings.

2.1. Experimental setup

The Kinect depth sensor employs an infrared laser projector to detect a representative 

skeleton composed of 25 anatomical points (Fig. 2A) and recordings are post-processed 

using Microsoft Kinect SDK (v2.0) to extract 3-dimensional displacement time series data 

for the 25 points. The Microsoft Kinect sensor is used in the clinical setting to record 

patients performing two tasks: (i) task-1 requires patients, who start from a sitting a position, 

to stand up and sit down on an adjacent elevated medical table (Fig. 2B), (ii) task-2 requires 

patients to walk 8 ft towards the Kinect sensor, turn, and return to the original position (Fig. 

2C). Both tasks are performed by each patient before and after a therapy cycle, providing 

two samples for each task for a total of four time series per patient. In both tasks the Kinect 

camera is secured to a tripod on a table, and oriented so as to capture the entire figure. 

Details about the data collection, skeletal data extraction, and experimental setup are 

described by Nguyen and Hasnain in Nguyen et al. (2017).
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2.2. Data preprocessing

Due to irregularities in the positioning of the Kinect camera across different experiments, 

time series for task-2 is distorted such that a level plane (e.g. clinic floor) appears sloped in 

the recordings. To resolve this, an automated element rotation about the x-axis is performed. 

The angle of distortion θ ranges between 5 and 20° in the time series studied. The second 

preprocessing step involves manually segmenting the series to trim irrelevant data in the 

beginning and end of each task while the patient is stationary.

2.3. Feature extraction

The position vector, ri (t) = xi(t), yi(t), zi(t)  for an anatomical joint i is used to calculate its 

velocity magnitude,

vi(t) = ṙ i(t) (1)

and acceleration magnitude,

ai(t) = r̈ i(t) (2)

using the mean-value theorem. In the absence of distribution of mass information, specific 

kinetic energy,

kei(t) = 1
2vi2(t) (3)

and specific potential energy,

pei(t) = gΔzi = g zi(t) − zi(t = 1) (4)

quantities are used to describe the energy signature of each anatomical joint. The sagittal 

angle, θs(t), is defined as the angle formed between the vector originating at the spine base 

and pointing in the direction of motion, and the vector connecting points 1 and 3 (Fig. 2A) at 

each time point t.

Time series corresponding to the hand (7, 8, 11, 12, 22, 23, 24, 25 in Fig. 2A) and feet (15, 

16, 19, 20 in Fig. 2A) joints are relatively noisy therefore these time series are precluded 

from analysis, yielding 13 joints of interest in Fig. 2. In summary, the list of extracted 

features for each task performed by a patient during a single visit includes vi, ai, kei, pei, θs 

for i = 1,…,13 anatomical joints resulting in 53 time series features per task, and K = 106 

time series features per visit (Fig. 4).

2.4. Time series similarity

For a given patient and task the before- and after-therapy time series of each feature are 

compared using a Euclidean metric dynamic time warping (DTW), which assigns a distance 
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of zero for completely identical series and larger distances for more dissimilar series. 

Although DTW provides a distance which does not satisfy the triangle inequality and 

therefore is not a metric, it has been used extensively for time series clustering and 

classification (Ratanamahatana and Keogh, 2004). In the present work, DTW is used to 

describe changes in the extracted features where it is necessary to detect similar series 

despite noise and distortions which are intrinsic to the Kinect sensor and subsequent 

skeleton extraction. Consequently, the pair of before and after-therapy time series are 

assigned a DTW distance, dDTW(p,k), for each patient p and feature k:

D(p, k) = dDTW (p, k) = DTW X1, k
p , X2, k

p
(5)

where X1, k
p  and X2, k

p  are the time series of patient p’s feature k for visits 1 and 2 

respectively. Calculating the DTW distance between before- and after-therapy visits for P 
patients and K features results in a matrix D ∈ℝP×K of DTW distances. This matrix captures 

the changes in the dynamical feature set before and after therapy. Feature distance vectors 

d k′ ∈ ℝP  for k′ = 1, …, K, whose entries are dDTW(p,k′), are columns of D.

2.5. Dimensionality reduction

In practical applications, and the clinical case study presented here the number of patients 

who completed both visits, P = 37 ≪ K, therefore further dimensionality reduction is 

required before implementing learning algorithms based on the matrix D in order to avoid 

overfitting and the curse of dimensionality (Domingos, 2012). Here, we use principal 

component analysis (PCA) to recast D into a lower dimension space while still maintaining 

most of the variance in the data. The scale of DTW distances are feature dependent, 

therefore column-wise standardization of D is performed prior to PCA. This process results 

in a reduced distance matrix Dr ∈ℝP×N, comprised of N principal components, where N ≤ P.

2.6. Unsupervised clustering

Performance groups are detected in reduced principal component space by employing the K-

medoids algorithm, where number of clusters, k, corresponds to the number of performance 

groups detected. The K-medoids algorithm is chosen as the unsupervised algorithm for its 

insensitivity to outliers and fast implementation for the small dataset studied.

The overall quality of the resulting clusters is assessed by varying (i) the number of clusters 

in the K-medoids algorithm, and (ii) the number of principal components N in the low 

dimensional distance matrix Dr and measuring the silhouette s of the resulting clusterings as 

well as the concordance between a given learned clustering and three clinical clusterings 

based on changes in weight before and after therapy,

Δ weight = weightAfter therapy − weightBefore therapy (6)

and change in ECOG performance status before and after therapy,
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Δ ECOG = ECOGAfter therapy − ECOGBefore therapy (7)

and the number of unexpected hospital visits (UHV) where patients are grouped into 0, 1, 

and > 1 UHV over the course of the entire study. Changes in physician and coordinator 

assigned ECOG scores are used in this comparison.

The similarity between the ΔECOG, Δweight, UHV and Kinect based unsupervised 

clusterings is measured using the Rand index (RI):

RI C, C′ = a + b
n
2

(8)

where C and C′ are two clusterings of n objects, a is the number of objects in the same 

clusters in C and C′, and b is the number of objects in separate clusters in C and C′. RI = 0 

when there is complete disagreement between two clusterings, and RI = 1 for identical 

clusterings.

2.7. Supervised classification

Instead of comparing a given patient’s before- and after-therapy time series samples directly 

to each other as described in Section 2.4, a reference time series from a prototypical sample 

can be used to compare to the before- and after-therapy series separately. This approach 

allows for the construction of a distance matrix from a single patient visit, and enables 

subsequent machine learning models of the corresponding physician, coordinator, and 

patient assigned ECOG performance status. Three healthy subjects perform tasks 1 and 2 to 

generate the prototypical samples which serve as the reference points for patient 

performance, and DTW distances between a patient’s time series data and the prototypical 

samples offers a standardized measure of performance. The DTW distances to each of the L 
= 3 prototypical healthy samples are averaged for patient p’s extracted feature k from visit v, 

Xv, k
p ,

dDTW
v (p, k) = 1

L ∑
l = 1

L
DTW Xv, k

p , Xk
l

(9)

where Xk
l  is the lth prototypical sample’s feature k, and visit v = 1 is the before-therapy 

sample and visit v = 2 is the after-therapy sample. Subsequently a standardized DTW 

distance matrix, Ds ∈ℝ2P×K, is formulated in which each patient contributes a total of two 

rows for the two visits. Ds represents the task-1 and task-2 average DTW distance between a 

patient’s performance and the three prototypical samples. Along with a ℝ2P vector of a 

ground-truth target variable, Ds can be used to develop supervised learning models. Here, we 

use the physician, coordinator, and patient assigned ECOG performance status as the target 

variables in three separate models.
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3. Results & discussion

3.1. Current clinical parameters

37 patients completed the before and after therapy visits, and the corresponding physician 

and coordinator ECOG scores were recorded for a total of 74 visits, while only 31 patients 

reported ECOG scores (Table 1).

For the subset of 57 cases of patient reported ECOG scores, from either one or both visits, 

the mutual information (MI) association between physician ECOG and patient ECOG scores 

is MI = 0.0653, while the association between coordinator ECOG and patient ECOG is MI = 

0.1661. Consequently, there is a larger agreement between the coordinator and patient scores 

in the current experiment, however, more data needs to be collected to verify this trend.

Fig. 3A shows the relationship between physician ΔECOG (Eq. (7)) and change in weight 

over therapy, where change in weight follows a normal distribution (Fig. 3B). However, due 

to the large spread of change in weight for ΔECOG = 0 group in Fig. 3C, there is no clear 

relation between ΔECOG and Δweight, suggesting either the patients are unhindered even 

when undergoing large weight change (e.g. patients 5, 9, 11 Fig. 3A) or that physicians 

consider other physical and expression cues more heavily while assigning ECOG scores.

Binning patients by the percent change in weight into groups of those who lose weight after 

therapy (Δweight < 2%), maintain weight (− 2% ≤Δweight ≤ 2%), and gain weight (Δweight 

> 2%) results in a weight based clustering of the patients, which has a RI = 0.509 (n = 37 

patients) with the physician ΔECOG clustering. The UHV clusters are comprised of 16, 9, 

and 11 patients in the 0, 1, and > 1 UHV groups, and has a RI = 0.498 (n = 36) with the 

physician ΔECOG. Although the time points of the physician ECOG scores correspond to 

the before and after therapy visits, the UHV events are summed over the entire course of the 

study. The level of concordance between physician ECOG and existing clinical parameters 

serves as a benchmark for the unsupervised clustering in step 4a (Fig. 1).

3.2. Validation of preprocessing and choice of DTW

A hierarchical Euclidean distance based clustering of the task-1 and task-2 feature distances 

d k′ (Fig. 5A, feature names in Fig. 5B) reveals that changes detected by DTW in most 

features are related mainly to other features of the same task, with the exception of a few 

features which correlate across tasks. These cross-task associated features include potential 

energies of the knee joints, and task 2 sagittal angle and left elbow potential energy to a 

lesser extent (purple, Fig. 5A). The smaller clusters within the larger task 1 (blue, Fig. 5A) 

and task 2 (red, Fig. 5A) clusters validate the preprocessing and DTW calculations of across-

therapy time series feature because anatomically related sites appear in coherent subclusters. 

For instance the potential energy of the left and right hips (joints 13 and 17, Fig. 2A) and 

spine base (joint 1, Fig. 2A) appear in the same subclusters for both tasks respectively. 

Furthermore, the velocities for the knee joints 14 and 18 are more closely related in the 

task-2 subcluster than the task-1 subcluster, which makes sense intuitively because the knees 

synchronously oscillate while walking in task-2, but perform unique functions in the task-1 

twisting motion of turning towards and climbing the medical table. Therefore, the choice of 
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using DTW, despite its dependence on the underlying scale of the time series being 

compared, is suitable for the subsequent unsupervised and supervised learning analyses.

3.3. Low dimension representation

The distance matrix D consisting of 106 feature distance vectors d k′ (56 per task) shown in 

Fig. 5A constitutes a high dimensional representation of changes in the biomechanical 

performance of tasks 1 and 2 before and after therapy because the number patient samples is 

much less than the number of features: P = 37 ≪ K = 106.

A low dimension representation is achieved by performing PCA on distance matrices D 
consisting of task-1, task-2, and both task features to generate the reduced matrices Dr for 

comparison (Fig. 5C). In each case, a small number of reduced dimensions can explain a 

significant portion of the variance in the high-dimensional space. Specifically, reduced 

matrices for task-1 and task-2 each require 8 principal components to describe nearly 90% 

of variance in the corresponding high dimensional distance matrices. 13 principal 

components are required to capture a similar amount of variance when distance features 

from both tasks are included in D due to the relative lack of cross-task association between 

distance features shown in Fig. 5A. Nevertheless, the subsequent results are based on D 
which contains features from both tasks so as to prevent loss of information, and the 

additional task features do not adversely affect the learning algorithms.

The feature clustering and dimensionality reduction analyses in Fig. 5 illustrate the fact that 

both clinical tasks provide unique information and to use one test in the absence of the other 

would incur a loss of biomechanical information.

3.4. Detecting performance clusters

Changes in the before- and after-therapy performance of tasks 1 and 2 are captured in Dr, 

and the number of performance clusters detected in Dr is a latent variable derived by 

selecting the number of clusters, k, in the K-medoids clustering algorithm which minimizes 

the distance to a representative cluster patient, or medoid, in the reduced low-dimensional 

space spanned by the N principal components. Therefore the choice of the number of 

performance clusters, from strictly the machine learning perspective, is dependent on the 

balance between N and the corresponding quality of the clustering which is measured by the 

silhouette s ∈ [−1,1]. Higher values of s indicate higher intra-cluster cohesion and lower 

inter-cluster cohesion for a given patient. This balance is shown in Fig. 6, where greater 

number of dimensions in Dr generally correspond to lower average s. For instance, no matter 

the choice of k, a N = 2 distance matrix Dr cannot be clustered with a higher silhouette than 

a N = 1 distance matrix.

Here we seek the number of performance clusters to be much less than the number of 

patients in order to validate the unsupervised clustering with the three cluster Δweight, 

ΔECOG, and UHV clusterings, however, in general, larger values of k result in a higher 

resolution performance clustering of the patient group which in turn can be compared to 

higher resolution clinical categorizations.
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From Fig. 6A, we select the N = k = 3 clustering and visualize it on the first two principal 

components in Fig. 6B, and compare all of the k = 3 clusterings to the physician ΔECOG, 

ΔWeight, and UHV clusterings in Fig. 6C. The number of principal components used in Dr 

to segregate patients in to k = 3 clusters is varied and the corresponding concordance, as 

measured by RI is shown on the left axis and the average silhouette on the right axis of Fig. 

6C. Although the average silhouette of the K-medoid clusterings decreases with N, RI (K-

medoid, ΔECOG), RI (K-medoid, ΔWeight), and RI (K-medoid, UHV) are maximized by N 
= 4, 17, and 19 principal components respectively.

As the number of principal components in the low-dimension space is varied, the 

concordance between the K-medoids clusters and the physician ΔECOG (black), ΔWeight 

(yellow), and the UHV (green) clusterings also changes (Fig. 6C). The K-medoids clustering 

has a higher RI with the ΔWeight clustering for most choices of N compared to the 

benchmark RI = 0.509 between physician ΔECOG and ΔWeight (Fig. 6C). As illustrated in 

Fig. 6C, the ΔECOG, ΔWeight, UHV, and the unsupervised clusterings all have a similar 

concordance, therefore, the distance matrix D of before- and after-therapy performance of 

task-1 and task-2 offers an objective platform to stratify patients, and, as shown by the RI 
metric, may achieve concordance with existing clinical measurements.

The RI between the unsupervised K-medoid clusterings and the clinical clusterings 

including the physician and coordinator assigned ΔECOG clusterings is shown in Table 2. 

The K-medoid clustering has the highest RI with the UHV clusters, and the second highest 

association with the ΔWeight. The coordinator ΔECOG clusters are more associated with the 

ΔWeight and UHV clusters than the physician ΔECOG clusters. Although these trends are 

particularly interesting, larger datasets are required to validate these RI values and to fully 

detect statistically significant disparities. Nevertheless, Table 2 shows that the K-medoid 

unsupervised clusterings based on kinematic changes in task-1 and task-2 across therapy 

offers a unique but useful patient clustering.

The added utility of the motion analysis based unsupervised clustering method shown here is 

the ability to achieve higher resolution clusterings of patients compared to physician or 

coordinator ΔECOG by increasing k in the K-medoids algorithm. Fig. 6D shows a 

comparison between N = 3 K-medoids and ΔWeight clusterings where k and the number of 

bins in the ΔWeight clustering are increased which leads to an increasing RI between the 

two clusterings and a maximum RI = 0.737 is reached at k = 9 clusters. This further 

demonstrates the potential clinical utility of the pipeline of analytical tools developed.

3.5. Learning physician ECOG performance status

A natural application of the Kinect motion capture system is to use the extracted kinematic 

signature of a patient’s task-1 and task-2 performance to learn the associated physician, 

coordinator, and patient assigned ECOG performance status, particularly if patients are 

examined by different physicians in order to reduce bias of the resulting model.

To learn the ECOG scores in the cancer patient cohort, we use the standardized distance 

matrix Ds (Section 2.7) and perform dimensionality reduction via PCA with scaling and 
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centering. As in the unsupervised model, dimensionality reduction is required due to the 

relatively small number of patients compared to the number of features.

In the 74 physician and coordinator assessments of the P = 37 patients there are 2 ECOG = 2 

cases. Since the majority of cases were ECOG = 0 or 1 scores, the two ECOG = 2 samples 

are excluded, and a binary classifier is trained to predict a 0 or 1 ECOG status using the two 

visits from P = 37 patients (excluding two ECOG = 2 cases from two separate patients), 

which results in a distance matrix for the physician and coordinator ECOG classifiers. For 

the patient classifier a Ds ∈ℝ57×106 matrix is used and the ECOG = 1,2, and 3 categories are 

combined due to limited data.

The association of the original features of Ds and its principal components with the ECOG 

status is measured by the point biserial correlation coefficient rpb, where positive rpb values 

indicate larger values of the feature are associated with ECOG = 1, and vice versa (Fig. 7).

For the physician ECOG, age has a rpb = 0.186, as older patients were more likely to receive 

higher ECOG scores and in comparison, 10 principal components in the reduced Ds have a 

higher absolute rpb. Principal components with the largest ||rpb|| are used to create and cross-

validate classifiers by leaving one patient’s two samples out as the test set. 10 principal 

components are used in a mixture-of-experts model comprised of a SVM, logistic 

regression, and a KNN model to predict physician ECOG with an average cross-validated 

test set accuracy of 84.7% accuracy. The same accuracy was achieved using the same 

number of principal components to predict coordinator ECOG with a SVM model. Top 5 

principal components were used to train a logistic regression model to predict patient ECOG 

= 0 or > 0 which performed at an accuracy of 80.7%.

4. Conclusions

A non-invasive motion capture system is proposed to measure the kinematic signature of 

clinically supervised patient assessments of performance. A toolset to pre-process and 

extract dynamical features from skeletal displacement data is combined with complimentary 

unsupervised and supervised learning schemes. The unsupervised clusters reveal a new and 

valuable grouping of patients in a cancer cohort undergoing therapy. Additionally, the 

supervised learning model is able to predict physician, coordinator, and patient assigned 

ECOG scores using the kinematic signature with a high level of accuracy. In comparison to 

the low-resolution ECOG scale, the present toolset provides a pipeline to develop a high 

resolution performance grading. In general, the dynamical characterization toolset may be 

used for prognostication in various applications where biomechanical signatures are 

reasonably correlated with existing clinical measures. The present work is a proof of concept 

of a low-cost non-invasive method for objectively assessing human performance in the 

clinic.
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Fig. 1. 
Schematic of dynamical and machine learning analysis pipeline. Raw skeletal displacement 

data (step 1) from two clinically monitored tasks are preprocessed (step 2) before feature 

extraction (step 3) and two mutually exclusive machine learning analyses are performed. 

Unsupervised clustering (step 4a) of patients in a low dimensional space reveals the degree 

to which performance groups can by stratified using solely motion data. Supervised 

classification (step 4b) tests the ability of motion data to evaluate patients similar to 

physician ECOG performance status.

Hasnain et al. Page 12

Clin Biomech (Bristol, Avon). Author manuscript; available in PMC 2020 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
A) Kinect recordings are post-processed using Microsoft Kinect SDK (v2.0) to extract 

displacement time series data for a set of 25 anatomical joints and sites. B) Task-1 requires a 

patient to stand up from a chair and to sit at a medical table, a sample time series is shown. 

C) Task-2 sample time series, patient starts from a standing position (t = 1) and walks to a 

mark 8 ft away (t = 6) and returns to original position (not shown).
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Fig. 3. 
A) Relation between change in physician assigned ECOG (Eq. (7)) and percent change in 

weight before and after therapy. The absolute change in weight in kg is annotated above the 

circles, and patient ID is annotated below. B) Histogram and normal distribution fit to 

percent change in weight. C) Boxplot of change in weight by ΔECOG groups.
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Fig. 4. 
Example of extracted dynamical time series features (patient ID = 36). Before therapy (blue) 

and after therapy (red) feature time series are compared using DTW and the distances are 

annotated on the corresponding plots. A–E) Task-1 features. F–J) Task-2 features.
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Fig. 5. 

A) Hierarchical clustering dendrogram of task-1 and task-2 feature distance vectors d k′. All 

but a few features (highlighted in purple) cluster primarily by task. B) Feature label 

nomenclature for the dendrogram in A. C) Fraction of variance explained by principal 

components of (i) distance matrix D comprised of task-1 and task-2 (K = 106) features 

(black), (ii) distance matrix D comprised of task-1 (K = 53) features (blue), and (iii) distance 

matrix D comprised of task-2 (K = 53) features (red).
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Fig. 6. 
A) Quality of K-medoids patient clusterings measured by average silhouette s compared to 

the number of clusters k for different numbers of principal components N in the reduced 

distance matrix Dr. B) N = 3 and k = 3 K-medoids unsupervised clustering of patients shown 

in the plane formed by the first two principal components of Dr. C) The RI concordance 

between the k =3 K-medoids clusterings and physician ΔECOG (black), ΔWeight (yellow), 

and UHV (green) compared to benchmark RI associations among the ΔECOG, ΔWeight, and 

UHV based clusterings (solid lines). Quality of the K-medoids clusterings (gray) is shown 
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on the right axis. D) Concordance between clusterings where the number of clusters in K-

medoids and bins in ΔWeight are increased.
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Fig. 7. 
Point biserial correlation between physician assigned ECOG and kinematic features of Ds 

(black) and reduced space principal components of Ds (blue). Larger rpb values indicate 

association with ECOG = 1, and vice versa. The correlations of age and BMI with ECOG 

(gray dashed lines) serve as a comparison for the rpb of the kinematic features and principal 

components.
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Table 1

ECOG scores assigned to patients by physicians, coordinators, and patients themselves for the before and after 

therapy visits.

ECOG score distribution

0 1 2 3 Total

Physician 35 37 2 74

Coordinator 37 35 2 74

Patient 19 27 9 2 57

Clin Biomech (Bristol, Avon). Author manuscript; available in PMC 2020 September 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hasnain et al. Page 21

Table 2

Association between patient clusterings based on the following: 1) unsupervised K-medoids clustering (k =3 

clusters) of Dr, 2) ΔWeight: change in weight before and after therapy, 3) UHV: three clusters based on 0, 1, 

and > 1 unexpected hospital visits over the course of the study, 4) ΔECOGP: change in physician ECOG scores 

before and after therapy, and 5) ΔECOGC: change in coordinator ECOG scores before and after therapy.

Rand index between clusterings

K-medoids ΔWeight UHV ΔECOGP

ΔWeight 0.541

UHV 0.575 0.537

Δ ECOG P 0.571 0.509 0.498

Δ ECOG C 0.550 0.571 0.530 0.497
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