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ABSTRACT
We recently proposed a dual-slope technique for diffuse optical spectroscopy and imaging of scattering media. This technique requires a
special configuration of light sources and optical detectors to create dual-slope sets. Here, we present methods for designing, optimizing,
and building an optical imaging array that features m dual-slope sets to image n voxels. After defining the m × n matrix (S) that describes the
sensitivity of the m dual-slope measurements to absorption perturbations in each of the n voxels, we formulate the inverse imaging problem in
terms of the Moore–Penrose pseudoinverse matrix of S (S+). This approach allows us to introduce several measures of imaging performance:
reconstruction accuracy (correct spatial mapping), crosstalk (incorrect spatial mapping), resolution (point spread function), and localization
(offset between actual and reconstructed point perturbations). Furthermore, by considering the singular value decomposition formulation,
we show the significance of visualizing the first m right singular vectors of S, whose linear combination generates the reconstructed map. We
also describe methods to build a physical array using a three-layer mesh structure (two polyethylene films and polypropylene hook-and-loop
fabric) embedded in silicone (PDMS). Finally, we apply these methods to design two arrays and choose one to construct. The chosen array
consists of 16 illumination fibers, 10 detection fibers, and 27 dual-slope sets for dual-slope imaging optimized for the size of field of view and
localization of absorption perturbations. This particular array is aimed at functional near-infrared spectroscopy of the human brain, but the
methods presented here are of general applicability to a variety of devices and imaging scenarios.
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I. INTRODUCTION

In the field of diffuse optics, the propagation of photons travers-
ing a highly scattering medium is studied. The optical quantities
of interest are the absorption coefficient related to the probability
of photon absorption and the reduced scattering coefficient related
to the probability of effective isotropic scattering. A common dif-
fuse optics technique used in the study of biological tissue is Near-
InfraRed Spectroscopy (NIRS), named such since it focuses on pho-
tons in the wavelength range of ∼600 nm to ∼1000 nm. This range
typically corresponds to a much lower absorption coefficient than
the reduced scattering coefficient in biological tissues, which are the
targets of NIRS.

NIRS can be implemented in three different domains char-
acterized by different temporal profiles of the incident light and
optical detection methods. In each domain, light is delivered into
a diffuse medium and detected after it has propagated through the
medium, typically 10 mm–40 mm from the source. The simplest

domain is Continuous Wave (CW)-NIRS where the temporal sig-
nal of the injected light is a constant intensity value.1 In CW-
NIRS, one can typically only measure changes in optical properties
from a baseline or reference condition. The most information-rich
domain is Time-Domain (TD)-NIRS in which a pulse of light on
the order of picoseconds in duration is delivered to the medium,
and the optical signal is detected as the photon time-of-flight distri-
bution.2 Finally, Frequency-Domain (FD)-NIRS lies somewhere in
between CW-NIRS and TD-NIRS information-wise. In FD-NIRS,
the source intensity is modulated sinusoidally at a frequency on
the order of 100 MHz and the amplitude and phase of the opti-
cal signal are detected.3 In this article, we will focus on the use of
FD-NIRS.

A common implementation of NIRS is in the reflectance mode,
in which the scattering medium is often modeled by a semi-
infinite geometry. NIRS is a common technique in the field of
biomedical optics where the medium in question is biological tis-
sue. FD-NIRS or TD-NIRS can be used to measure absolute optical
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properties of tissue.4 In this case, the reduced scattering coefficient
provides morphological information (i.e., size scale of scatterers)
and the absorption coefficient provides biochemical information
(i.e., concentration of chromophores). The most sought-after opti-
cal property is absorption since it can be converted into absorber
concentrations (oxyhemoglobin, deoxyhemoglobin, water, melanin,
lipids, etc.) within the tissue. The change in the absorption coeffi-
cient is a quantity of interest, which can be obtained in all three
domains. It provides information about chromophore dynamics
within the tissue. Examples of NIRS applications include the skele-
tal muscle5 to measure blood flow or oxygen consumption, breast
tissue6 to detect breast cancer, and brain7 for the assessment of
cerebral hemodynamics. In the case of brain, NIRS can be used
to provide functional (fNIRS) information regarding brain activa-
tion or diagnostic information regarding cerebral blood flow or
autoregulation.

Each of these measurement modalities can be implemented for
point measurements (focusing on one location of the target tissue) or
for imaging using an array of sources and detectors (providing infor-
mation on a large area of the target tissue). The advantage of imaging
is to provide spatial information about the quantity of interest. This
technique is described as Diffuse Optical Imaging (DOI) since the
purpose is to provide images of optical properties, whether abso-
lute values or relative changes. DOI has been implemented on the
brain using many measurements between a single source and a single
detector [Single-Distance (SD)].8 DOI is often implemented in CW-
NIRS1 but has also been shown to benefit from the extra information
provided by FD-NIRS.9

A common question when designing a DOI experiment is what
geometry to use for the arrangement of sources and detectors. Many
experiments have been done by placing optical sources according to
the 10–20 system (or similar) commonly used in ElectroEncephalo-
Gram (EEG) experiments.10–12 However, work has also been done
designing optode arrays specifically for DOI. For example, previous
work includes comparing different array configurations,13,14 opti-
mizing or assessing array designs,12,15,16 realizing an automated or
guided array design for specific brain regions,10,11,17–20 tessellation of
optode modules to produce an array,21 designing for wearables,22,23

and studying how an array acts in regard to simulated perturba-
tions.24,25 Additionally, some overviews and reviews of fNIRS arrays
and array design have been published.26–28 All these methods have
provided the community with various ways to design and position
arrays for functional experiments, as well as presenting a plethora of
differing array designs.

The field of DOI of tissue, especially in non-invasive appli-
cations to the human brain, continues to struggle with optical
measurements dominated by superficial perturbations.29–31 In fact,
the desired signal in fNIRS comes from the brain (deep) but is
contaminated by contributions from superficial hemodynamics.32

Recently, we developed an approach with the goal of suppressing
the superficial signal and providing a signal dominated by deep per-
turbations. This approach, named Dual-Slope (DS)33 for its use of
an average of two paired slopes of the optical signal vs source–
detector distance, was inspired by the geometry described in the
self-calibrating approach for absolute FD-NIRS measurements.34

The DS method inherited practical advantages of the self-calibrating
approach, namely, an insensitivity to signal drifts of instrumental
origin and an ability to make absolute measurements without any

calibration, but focuses on measuring localized changes in optical
absorption. DS experiments on the brain have been shown to rein-
force the idea of deep signal dominance when compared to data
collected using more traditional NIRS SD methods.35

This article describes the design of a DOI array for use specif-
ically with DS data. No such array has yet been designed for use on
human subjects aiming at fNIRS measurements. In fact, previously
referenced arrays were not designed with DS as a consideration. The
purpose of the content herein is to provide methods to design and
evaluate a DS-based imaging array so that the reader may create one
themselves. This provides the framework for a whole family of DS
imaging arrays. After laying out these methods, we then describe two
specific arrays that we designed and the one we built using the meth-
ods described. The concepts and methods described in this article
will allow researchers to design and construct the DS-based imaging
array for their own applications. In doing so, a novel set of arrays
can be created focused on DS data, which has not been done in the
past.

This article is structured as follows. First, we describe the
theoretical background related to DS data collection and image
reconstruction (Sec. II). Then, we describe methods to design a
source–detector arrangement for DS imaging (Sec. III A 1) and to
evaluate that arrangement (Sec. III A 2). Next, we describe the design
methodology for a fiber-based DS imaging array (Sec. III B 1) and
how such an array may be constructed (Sec. III B 2). Finally, we
describe the two specific arrangements (Sec. IV A) and a final optical
array (Sec. IV B) that we designed. We conclude with discussions of
DS imaging applications and areas of improvement (Sec. V).

II. BACKGROUND
A. Dual-slope (DS) method

The Dual-Slope (DS) method was recently developed for Near-
InfraRed Spectroscopy (NIRS). Results involving a single DS set have
been published in Frequency-Domain (FD)-NIRS35–37 and Time-
Domain (TD)-NIRS.38 Additionally, the first attempt at imaging
using DS in phantoms has also been presented.24,33

DS relies on the averaging of two measurements of slope. In
FD-NIRS, the phase (ϕ) or the intensity (I) of the detected light
signal can be measured using one source and one detector; this
is dubbed Single-Distance (SD). Using data at multiple source–
detector distances (ρ), the slopes of linear functions of intensity and
phase [to the first approximation, ln(ρ2I) and ϕ in a semi-infinite
geometry] vs ρ can be measured. These slope measurements can
be achieved with either a single detector and multiple sources or
multiple detectors and a single source. Both cases are referred to
as Single-Slope (SS) measurements. In this work, we assume that
each SS is only made of two SD measurements for simplicity; how-
ever, in general, one may consider SS measurements using more
than two SDs. A DS measurement is achieved by averaging two
SSs under the following requirements37 (the following description
assumes each SS is made of one source and two detectors for sim-
plicity): (1) a DS set is made of two SSs (SS1 and SS2); (2) the dif-
ference between the source–detector distances for both SSs must be
the same (∣ρSD2 − ρSD1∣SS1 = ∣ρSD2 − ρSD1∣SS2); and (3) the detector
for the shorter SD measurement in SS1 must be the same detector
for the longer SD measurement in SS2.
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The SS measurements of the slope of ln(ρ2I) vs ρ (SSI) or ϕ vs ρ
(SSϕ) can be measured as the change from some baseline value (∆SSI
or ∆SSϕ). This is done since the goal of the measurements is not
reconstruction of absolute optical properties, but instead measure-
ments of changes in absorption from a baseline value. Conversion of
these changes in slope into absorption changes is done by introduc-
ing a Differential Slope Factor (DSF), which can be calculated using
absolute optical properties or generalized optical pathlengths.35 The
measured absorption changes associated with DS measurements
(Δμ[DSY]

a ) are expressed as the average of the absorption changes
obtained from each SS measurement that makes up the DS set (here,
we indicate I or ϕ with the general datatype Y for brevity),

Δμ[DSY]
a = −1

2
( ΔSSY1

DSFSSY1
+

ΔSSY2

DSFSSY2
), (1)

where the DSF depends on the datatype (Y) and the SS set (1 or 2).
When designing DS sets or a full array of DS measurements,

the above requirements must be met. In addition to these require-
ments, there are also two practical constraints37 (based on typical
NIRS instrumental limits): (1) all source–detector distances should
be between 20 mm and 40 mm (the low end limited to achieve pref-
erentially deep sensitivity and the upper limit limited by detector
noise or source power) and (2) the difference between the source–
detector distances for the SSs should be between 10 mm and 20 mm
(the low end limited by measurement noise and the upper limit due
to the detector dynamic range).

The challenge in designing a DS imaging array primarily lies in
meeting all these requirements and constraints. This must be done
while still achieving as many DS sets as possible (given a limited
number of sources and detectors) and overlapping the sensitivities
of DS sets as much as possible.

B. Sensitivity maps
Theoretical investigation of the Dual-Slope (DS) method

started with the examination and comparison of the sensitivity maps
of Single-Distance (SD), Single-Slope (SS), and DS data.35–37 These
sensitivity maps are computed using the concept of generalized opti-
cal pathlength.39 These pathlengths are found analytically using the
assumed or known absolute optical properties of the medium. Each
datatype [intensity, I, and phase, ϕ, in the Frequency-Domain (FD)]
has its own generalized pathlength associated with it. Here, we will
again denote the datatype with the letter Y that can indicate either I
or ϕ. The sensitivity of a given DS set i to the voxel j [(SDSY ,ij)] can
be written as the average of the SS sensitivities that make up the DS
set i [(SSSY ,i,j)1 and (SSSY ,i,j)2],

SDSY ,i,j = 1
2
[(SSSY ,i,j)1 + (SSSY ,i,j)2] =

Δμ[DSY]
a,i

Δμ[Act]
a,j

. (2)

On the right-hand side of Eq. (2), we have expressed the DS sensi-
tivity as the ratio of the measured absorption change by the DS set i
(Δμ[DSY]

a,i ) to the actual absorption change in the voxel j (Δμ[Act]
a,j ).36

The measured absorption change is the effective absorption change
that is measured if the actual change in a datatype would be caused
by a homogeneous change in the absorption coefficient. The SS sen-
sitivities are expressed in terms of the generalized pathlengths (we

again assume only two SD measurements in a SS set, at distances
ρSD1 and ρSD2),

(SSSY ,i,j)k =
⟨ℓY⟩(ρSD2,i,k,

→

rj) − ⟨ℓY⟩(ρSD1,i,k,
→

rj)
⟨LY⟩(ρSD2,i,k) − ⟨LY⟩(ρSD1,i,k) , (3)

where ⟨ℓY⟩(ρSD1,i,k,
→

rj) is the partial pathlength for the datatype Y
at the distance ρSD1 in the SS set k that is part of the DS set i that
goes through the voxel j centered at

→

rj and ⟨LY⟩(ρSD1,i,k) is the total
pathlength for the datatype Y at the distance ρSD1 in the SS set k that
is part of the DS set i.

Using these formulations, the sensitivity regions for DS sets
can be found analytically for any medium for which the generalized
pathlengths are known (they can be found using the complex fluence
and reflectance functions).36,39 We have reported these sensitivity
maps for data collected with various types of DS sets.37 In this work,
we will assume a semi-infinite homogeneous medium with extrap-
olated boundary conditions for our calculation of sensitivities. As
such, the optical parameters associated with the sensitivity maps will
be the baseline absorption coefficient (μa0) and reduced scattering
coefficient (μ′s0).

C. Image reconstruction
The sensitivity maps for each Dual-Slope (DS) set within an

array easily lend themselves to linear image reconstruction methods.
We consider the following forward problem as the basis of our lin-
ear reconstruction, which is an extension of Eq. (2) for many voxels
j and measurements i:

⇀

Δμ[DSY]
a = S ⇀Δμ[Act]

a , (4a)

⇀

Δμ[DSY]
a =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δμ[DSY]
a,1
⋮

Δμ[DSY]
a,i
⋮

Δμ[DSY]
a,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4b)

⇀

Δμ[Act]
a =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δμ[Act]
a,1
⋮

Δμ[Act]
a,j
⋮

Δμ[Act]
a,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4c)

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11 ⋯ ⋯ S1j ⋯ ⋯ S1n
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

Si1 ⋱ ⋱ Sij ⋱ ⋱ Sin
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

Sm1 ⋯ ⋯ Smj ⋯ ⋯ Smn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4d)

where
⇀

Δμ[DSY]
a is the m × 1 vector of DS absorption measurements,

⇀

Δμ[Act]
a is the n × 1 vector of voxel absorption changes, and S is the

m× n matrix of sensitivities. Note that the sensitivity matrix is highly
non-square (having many more columns than rows) since there are
typically many more voxels than measurements (m≪ n).
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In this work, we consider a linear image reconstruction using
the Moore–Penrose pseudoinverse of S, which has been used previ-
ously in diffuse optical tomography.9,14,30,31 We note that the linear
problem could be considered one step in a non-linear reconstruc-
tion. The linear inverse problem is formulated as

⇀

Δμ[Rcn]
a = S+ ⇀Δμ[DSY]

a , (5)

where
⇀

Δμ[Rcn]
a is the n × 1 vector of reconstructed voxel absorption

changes and S+ is the n ×m Moore–Penrose pseudoinverse of S.
The Moore–Penrose pseudoinverse can be formulated in var-

ious ways and may or may not include Tikhonov regularization,
which aids in smoothing noise in the measurement. The typi-
cal matrix formulation of the Moore–Penrose pseudoinverse with
Tikhonov regularization is as follows:9

S+ = ST(SST + αI)−1
, (6a)

α = a ×max(diag(SST)), (6b)

where α is the Tikhonov regularization parameter that scales with
the maximum singular value of S and a is a tunable parameter that
should be chosen based on the noise in the measurement to optimize
signal-to-noise against smoothing in the reconstructed image. The
Moore–Penrose pseudoinverse can also be formulated in terms of
the Singular Value Decomposition (SVD) of S,

S = UΣVT , (7a)

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 0 0 0 ⋯ 0
0 ⋱ 0 0 0 ⋯ 0
0 0 σi 0 0 ⋯ 0
0 0 0 ⋱ 0 ⋯ 0
0 0 0 0 σm ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7b)

where U is the m × m matrix of left singular vectors of S, V is the
n × n matrix of right singular vectors of S, and ∑ is the diagonal
m × n matrix of m singular values (σi) of S. Using the SVD of S, the
Moore–Penrose pseudoinverse without Tikhonov regularization is
formulated as follows:40

S+ = VΣ−1UT , (8a)

Σ−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/σ1 0 0 0 0
0 ⋱ 0 0 0
0 0 1/σi 0 0
0 0 0 ⋱ 0
0 0 0 0 1/σm
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8b)

where the inverse of the singular value matrix (∑−1) of size n × m
has a trivial solution using the inverse of the singular values (1/σi).
Here, we note possible instability in the calculation of the Moore–
Penrose pseudoinverse if there are singular values that are close to
zero.

Depending on the application and need, either formulation of
the Moore–Penrose pseudoinverse may be helpful. In the scope of

this work, we use both to examine and understand characteristics of
the sensitivity matrix for a given optical array and understand how
the image reconstruction will behave. We utilize this understanding
to inform the imaging array design process.

III. METHODS AND DESIGN
A. Source–detector arrangement
1. Arrangement design

a. Dual-slope (DS) set discovery. To design a Dual-Slope (DS)
imaging arrangement, we start with a pen and paper design of a con-
figuration that is suitable to create many DS sets. Then, we use a
DS set discovery algorithm that takes the source and detector coor-
dinates as inputs. The algorithm finds all the possible DS sets that
meet the requirements and considerations (Sec. II A).

The algorithm starts by finding all the possible Single-Distance
(SD) sets within the arrangement (Fig. 1), which is trivial given
that s sources and d detectors result in s × d possible SD sets.
However, the algorithm then eliminates any SD sets that do not
meet the minimum and maximum distance constraints [20 mm and
40 mm, respectively; constraint (1) in Sec. II A]. This results in all
SD measurements that meet the distance requirements within the
arrangement (and their number mSD).

Then, the algorithm moves on to find all the possible Single-
Slope (SS) sets (Fig. 2). This is done by looping through every com-
bination of two SD sets [mSD × (mSD − 1)/2 combinations]. For each
possible combination of two SD sets, two conditions are imposed to
realize a suitable SS set: (1) An exclusive or (xor) that the sources
xor the detectors are the same for the two SD sets (i.e., the SD sets
share a source or a detector but not both) and (2) the difference
between the source-detector distances of the two SD sets lies within a
range set by minimum and maximum acceptable values [10 mm and
20 mm, respectively; constraint (2) in Sec. II A]. This step results
in all the possible SS measurements in the arrangement (and their
number mSS).

Finally, the algorithm finds all the possible DS sets within the
arrangement (Fig. 3). Again, a loop is entered that loops through
all combinations, this time of SS sets [mSS × (mSS − 1)/2 combi-
nations]. For each SS combination, five checks are done to ensure
that the two SS sets form a new DS set: (1) between the two SS sets,
there are exactly two unique sources and two unique detectors; (2)
between the two SS sets (four SD sets), there are no repeated source–
detector pairs (i.e., there are four unique SD sets); (3) between the
two SS sets, the sources/detectors that make up the shorter/longer
SD measurement are not the same (i.e., no source or detector is
used for the long or the short measurement more than once); (4)
the difference between the SD measurements for each SS set that
comprises the DS set is the same; and (5) the DS set found at
each iteration is new and has not already been found in a previ-
ous iteration. Checks (1) and (2) ensure the first DS requirement,
check (3) ensures the third requirement, and check (4) ensures the
second requirement (Sec. II A). The result of the algorithm is to
identify all possible DS sets in the arrangement (and their number
mDS = m).

The realization of this algorithm allows for the automatic dis-
covery of DS sets from any list of source and detector coordinates.
The various checks ensure the DS requirements are met and there
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FIG. 1. Flowchart showing the Single-Distance (SD) discovery part of the full Dual-
Slope (DS) discovery algorithm, showing one required check.

are tunable parameters that allow the constraints to be changed
(minimum source–detector distance, etc.). The algorithm has a run
time of ∼200 ms (for 10 detectors and 16 sources) on Microsoft
Surface Pro 2017 (Redmond, WA, USA) running an Intel Core i5-
7300U (Santa Clara, CA, USA) Central Processing Unit (CPU) at 2.6
GHz with 8 GB of Random Access Memory (RAM). Furthermore,
it can be used to iteratively refine the position of the sources and

FIG. 2. Flowchart showing the Single-Slope (SS) discovery part of the full Dual-
Slope (DS) discovery algorithm, showing two required checks.
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FIG. 3. Flowchart showing the Dual-Slope (DS) discovery part of the full DS
discovery algorithm, showing five required checks.

detectors by rearranging them (using different starting points) or
applying position refinement (Sec. III A 1 b) and finding the new
possible DS sets over multiple iterations.

b. Position refinement. Once all the Dual-Slope (DS) sets for
an arrangement have been identified, the exact positions of the
sources and detectors are refined. This is done by introducing forces
between array elements acting such that desired parameters of the
DS sets are met. The dynamical system is then allowed to reach equi-
librium through Euler’s method for solving a system of ordinary
differential equations, and the new coordinates of the sources and
detectors are saved (Fig. 4). Such a system can also be used to find
valid source–detector arrangements that meet the DS requirements
from random starting positions of the sources and detectors.

Four parameters control the final positions in the system: the
nominal source–detector distance for the short leg of a Single-Slope
(SS) set (ρ0s), the nominal distance for the long leg (ρ0l), the nominal
difference between source–detector distances in a SS set (∆ρ0), and
the minimum source–detector separation (ρmin). The final arrange-
ment will have DS sets with distances as close to their nominal values
as possible given the overall connections between the elements of
the arrangement, and the minimum separation ensures no detector
will be saturated by a close source. Other than the four parameters
above, another five parameters control the dynamics of the simu-
lation and how the equilibrium is reached: the element mass (M),
the spring constant {K [mass/time2 (or force/length)]}, the damp-
ing ratio (ζ), the repulsion coefficient {ξ [mass × length2/time2 (or

FIG. 4. Example position refinement for one Dual-Slope (DS) set. (a) Evolution
of the positions of sources (1 and 2) and detectors (A and B) after random start
positions, showing their trajectories as lines and final positions as symbols. (b)
Free body diagram of all forces acting on sources and detectors. (c) Evolution of
the four Single-Distance (SD) source–detector distances. (d) Evolution of the two
Single-Slope (SS) source–detector distances’ difference.
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energy)]}, and the time step (∆t). The damping ratio controls the
damping coefficient (C = 2ζ

√
KM [mass/time]) and is set to slightly

below 1 to cause a slight underdamping, thus allowing the system to
converge.

The above parameters are used to control four forces that act
upon each source and detector, which are combined using Newton’s
second law of motion [Fig. 4(b)],

M⃗̈r = ΣF⃗SD + ΣF⃗ΔSS + ΣF⃗repul + F⃗damp, (9)

where ⃗̈r is the acceleration vector for a given element, F⃗SD is the
Single-Distance (SD) force, F⃗ΔSS is the SS difference in source–
detector distance forces, F⃗repul is the repulsion force, and F⃗damp is the
damping force. We note that the key force in this method encourag-
ing the creation of DS sets is F⃗ΔSS, which, when applied to symmetric
SSs, causes the arrangement to converge to a valid DS arrangement.
The use of this force in this way makes this method novel and specific
to DS.

The SD force causes sources and detectors to be attracted to
positions that will make the source–detector distance close to the
nominal values (ρ0s or ρ0l),

F⃗SD = K(∥r⃗SD∥ − ρ0)r̂SD, (10)

where ∥r⃗SD∥ is the Euclidean distance between the element consid-
ered and its pair, r̂SD is the unit vector pointing from the element to
its pair, and ρ0 is the nominal distance between the elements (ρ0s or
ρ0l, depending on whether the SD pair is the short or long distance
pair in a SS set).

The SS difference in forces causes SS sets to be attracted to con-
figurations that have a difference in the source–detector distances
close to the nominal value (∆ρ0),

F⃗ΔSS = K(∣∥r⃗SD2∥ − ∥r⃗SD1∥∣ − Δρ0)r̂ΔSS, (11)

where ∥r⃗SD1∥ and ∥r⃗SD2∥ are the Euclidean source–detector distances
for the two SD pairs and r̂ΔSS is the unit vector pointing from the
element considered to the element of the SS set of the same type.
For example, for a common source SS set that contains one source
and two detectors (A and B), there will be r̂ΔSS pointing from A
to B, which controls the force that acts upon A, and vice versa for
B. Thus, each SS set creates two F⃗ΔSS forces that act on the non-
common element types in the set. Additionally, if two SS sets form
a DS set, the symmetric nature of the requirements creates resulting
SS differences in forces that encourage the DS requirements to be
met.

The repulsive force pushes sources and detectors apart such
that detectors will not become saturated by near sources. The force
only activates if sources and detectors get closer than the minimum
distance (ρmin),

F⃗repul = ξ
⎛
⎝

1
ρmin
− 1
∥r⃗repul∥

⎞
⎠H(ρmin − ∥r⃗repul∥)r̂repul, (12)

where ∥r⃗repul∥ is the Euclidean distance between the element and its
repulsor, H is the Heaviside step function, and r̂repul is the unit vector
pointing from the element to its repulsor.

Finally, the damping force creates non-conservation friction
within the system, allowing for convergence,

F⃗damp = −C⃗̇r, (13)

where ⃗̇r is the velocity vector. Euler’s method with a step of Δt is used
to iteratively solve Eq. (9), finding the position of each source and
detector (⃗r) at each time step. When the system converges to equi-
librium, the new positions of the arrangement elements are saved,
and the arrangement is optimized for the desired nominal distances.
Furthermore, the DS set discovery algorithm may be run again in the
case of iterative design.

2. Arrangement evaluation methods

a. Examination of S+S. With various arrangements produced
using the design methods (Sec. III A 1), we need a way to spec-
ify the performance of different arrangements to choose the most
effective one for imaging. This is done by examining the imaging
system in terms of the Moore–Penrose pseudoinverse for image
reconstruction. The following discussions assume no regularization.
Substituting Eq. (4) into Eq. (5) yields

⇀

Δμ[Rcn]
a = S+S

⇀

Δμ[Act]
a , (14)

where the n × n matrix S+S is the key operator that transforms the
actual absorption perturbation vector into the reconstructed one. In
the ideal case where the matrix S+S is the identity matrix, the image
reconstruction would be perfect. This requires the pseudoinverse to
be equal to the true inverse, which implies that S is a square matrix
(i.e., m = n, the same number of voxels as measurements). This
can be achieved by choosing a medium voxelization with only m
voxels and reconstructing equivalent absorption changes for those
large voxels. However, this would require uniform absorption prop-
erties across such large voxels and the use of a sensitivity matrix that
reflects the size of such large voxels. Furthermore, the goal of imag-
ing is to reconstruct maps of absorption perturbations with a fine
voxel grade to represent arbitrary shapes of optical perturbations.
Thus, we will focus on cases where n ≫ m, and we will examine
ways to specify how close S+S is to the identity matrix.

The first method we use to examine S+S is by producing the

reconstruction (
⇀

R) vector, which can be visualized in a voxelated
map. This vector is defined as

⇀

R = diag(S+S)/m, (15)

where the diagonal elements of S+S are normalized by m since the
trace of S+S is equal to m. This normalizes

⇀

R such that the sum of its
elements is equal to one. The reconstruction map (made of the n val-
ues of the reconstruction vector elements for the n voxels) shows the
weight with which the imaging system reconstructs an actual per-
turbation into its true voxel (higher values are better). In the ideal
case, the vector’s elements would be all one. Visualizing the recon-
struction map shows which parts of the medium will reconstruct
perturbations well.

The second map that is used to visualize S+S compared to the
identity is the crosstalk (

⇀

C) vector. This vector is defined as

⇀

C = (S+S
⇀

1 − diag(S+S))/(n − 1), (16)

where
⇀

1 is the n × 1 vector of one. Conceptually, the elements of the
crosstalk vector are the average of the off-diagonal elements of S+S
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for each row. The n values of the crosstalk vector elements indicate
the average weight with which actual perturbations elsewhere in the
medium are reconstructed to a given voxel (lower values are better).
In the ideal case,

⇀

C would be a vector of zeros. When visualized as
a map, it shows where the imaging system will reconstruct actual
perturbations in the incorrect voxel.

Aside from the reconstruction and crosstalk vectors, there are
also scalar values that can be used to evaluate the imaging effective-
ness of S. One value is the condition number of S, which represents
the instability of the imaging system. The condition number (κ) is
defined as

κ = ∥S∥∥S+∥, (17)

where smaller κ is better.40 Here, we use the ℓ2-norm for our dis-
cussion, but the condition number can be defined as any norm that
is desired. For comparison, in the best case of Gaussian random
sampling, κ = σ(1). However, in the worst case of a singular S,
κ = ∞.

The above two maps and one scalar method for evaluating
the imaging performance of an optical arrangement of sources and
detectors are inspired by the mathematics of image reconstruction,
focusing on the stability of the imaging system and closeness to the
identity. In Sec. III A 2 b, we examine the imaging system in terms
of common imaging metrics.

b. Resolution and localization. Determining the resolution
and offset (localization) of reconstructed perturbations can be done
efficiently by considering S+S as a matrix of unit voxel impulse
response vectors. This can be seen by examining Eq. (14) and con-

sidering
⇀

Δμ[Act]
a that contains all zeros except a 1 in the element j

(a unit perturbation only in the voxel j). Then,
⇀

Δμ[Rcn]
a will be the

jth column of S+S. Thus, S+S contains the response vectors (in its
rows and columns since it is symmetric) for a unit perturbation
in each voxel. In this section, we discuss efficient ways to calculate
resolution and localization maps in MATLAB (MathWorks, Nat-
ick, MA, USA). However, the methods could be adapted to other
programming languages.

For notation, we introduce the resolution matrix (Γ) and the
localization matrix (Δ) as follows:

Γ = [⇀Γx,
⇀

Γy,
⇀

Γz], (18)

Δ = [⇀Δx,
⇀

Δy,
⇀

Δz], (19)

where Γ and Δ are both n × 3 matrices containing the map of res-
olution or localization in each coordinate direction (three columns
for x, y, and z). For example, the j element of

⇀

Γx (Γx,j) is the recon-
structed Full Width at Half Maximum (FWHM) resolution along x

for a perturbation in the voxel j. Additionally, the jth element of
⇀

Δx
(Δx,j) is the offset between the actual perturbation location and the
reconstructed maximum location along x for a perturbation in the
voxel j.

For computation of these matrices in MATLAB, we must con-
sider the data format. S+S (SpS) has size n × n ([n, n] = size(SpS)),

but we want to consider the response maps in a three-dimensional
(3D) coordinate system. Thus, SpS is reshaped as follows:

SpS_grid2 = reshape(SpS, . . .
[ny, nx, nz, ny, nx, nz]),

where nx, ny, and nz are the number of voxels in the x, y, and z direc-
tions, respectively. Now, SpS_grid2 is a six-dimensional (6D) array,
where the first three dimensions can index a perturbation location
and the remaining 3D array is the reconstructed map (note switch-
ing the indexing to the last three would produce the same result since
SpS is symmetric). For example,

reconMap = squeeze(. . . SpS_grid2(iy, ix, iz, :, :, :)),
where reconMap is the 3D array of the reconstructed map for a unit
perturbation at the voxel [iy, ix, iz]. The resolution and localization
are computed for each of the three dimensions. Thus, first we find
the linear reconstruction along the axis of interest (x shown here),

Mrcn_gridx = sum(sum(. . . SpS_grid2, 4), 6),
where Mrcn_gridx is the four-nonsingular-dimensional array con-
taining the linear reconstruction (along the fifth dimension) for a
perturbation in every voxel location (first three dimensions). This is
obtained by summing the 3D reconstructed maps along the y and z
directions (fourth and sixth dimensions). The same method can be
used for the other two directions by summing over different indices.
With S+S in this form, we can now quickly find the resolution and
localization maps along each dimension.

We define the resolution in terms of the FWHM that can
be computed in one line using the data structured in this way (x
direction shown),

Gamma_x = sum(Mrcn_gridx >
= . . . (max(Mrcn_gridx, [], 5)/2), . . . 5) ∗ dx,

where Gamma_x is
⇀

Γx reshaped to be a 3D map and dx is the voxel
pitch in the x direction. Similar reasoning follows for the other two
directions.

For the localization map, we must first create a 3D array of
actual perturbation location indices in each dimension for every
voxel location (x direction shown),

[∼, XX,∼] = meshgrid(1 : ny, 1 : nx, 1 : nz),
where XX is the 3D array of the x indices of the actual perturba-
tion location for a perturbation in every possible location. Next, the
indices of the reconstructed maxima must be found (again for the x
direction),

[∼, maxInds_x] = max(Mrcn_gridx, . . . [], 5),
where maxInds_x is the 3D array with the x index of the maxi-
mum of the reconstructed image for an actual perturbation in every
voxel location. Finally, we can compare XX to maxInds_x to find the
localization map,

Delta_x = (maxInds_x − XX)⋆dx,

where Delta_x is
⇀

Δx reshaped to be a 3D array for visualization.
As before, the same process can be used to find the y and z
directions.
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This method of finding the resolution and localization maps
allows for quick evaluation of how perturbations are expected to
be reconstructed. Doing so provides another tool for evaluating the
imaging performance of optical arrangement designs (in addition to
the methods described in Sec. III A 2 a). In Sec. III A 2 c, we discuss
another method through which image reconstruction can be exam-
ined, thus providing another evaluation of optical arrangements for
imaging.

c. Singular value decomposition (SVD). Instead of looking at
the Moore–Penrose pseudoinverse in terms of its typical formula-
tion [Eq. (6)], we can also think of it in terms of Singular Value
Decomposition (SVD). Equation (8) shows the SVD based formu-
lation, which we can use to examine S+S and gain more insights into
the imaging system. Combining Eqs. (7) and (8) to find S+S yields

S+S = VΣ−1UTUΣVT , (20)

which can be simplified to

S+S = [⇀V1, . . . ,
⇀

Vm,
⇀

0, . . . ,
⇀

0]VT , (21)

by the orthogonality of U (i.e., U−1 = UT) and the multiplication of
∑−1 [Eq. (8a)] and ∑ [Eq. (7a)], which yields an n × n matrix with
1 in the first m diagonal elements and 0 elsewhere. In Eq. (21),

⇀

0 is
an m×1 vector of zeros of which there are n−m in the matrix within
the brackets on the right-hand side. From this formulation, we can
see that the imaging system matrix (S+S) is completely formulated
using the right singular vectors.

The importance of the right singular vectors of S can be seen
when substituting Eq. (21) into Eq. (14),

⇀

Δμ[Rcn]
a = [⇀V1, . . . ,

⇀

Vm,
⇀

0, . . . ,
⇀

0]VT ⇀Δμ[Act]
a , (22)

where it can be seen by the orthogonality of V that if
⇀

Δμ[Act]
a is any

of the first m right singular vectors of S (or any linear combina-
tion of them), then a perfect reconstruction will be achieved (i.e.,
⇀

Δμ[Rcn]
a = ⇀

Δμ[Act]
a ). Conversely, if

⇀

Δμ[Act]
a is any of the last n − m

right singular vectors, then a null reconstruction will be achieved

(i.e.,
⇀

Δμ[Rcn]
a = ⇀0). This means that

⇀

Δμ[Rcn]
a is spanned by the vectors

(
⇀

V1, . . . ,
⇀

Vm). In other words, any reconstructed image must be some
linear combination of the first m right singular vectors of S. This fact
can be used to further evaluate the imaging system by visualizing
these m vectors as maps in three-dimensional (3D) space, keeping in
mind that any image reconstructed by the system must be a linear
combination of these maps.

We may also revisit the condition number (κ) in terms of
SVD. Equation (7) shows Σ as containing the m singular values of S
(σ1, . . . , σm). We consider the singular values ordered such that σ1 is
the maximum singular value and σm is the minimum singular value.
Therefore, κ can also be expressed as40

κ = σ1

σm
, (23)

showing that the condition number (meaning the system stability)
can be thought of as the ratio of biggest and smallest singular values.

This suggests that a better conditioned system will have a set of sin-
gular values within a relatively small range, while an ill-conditioned
system will have a large difference between the largest and small-
est singular values. Therefore, yet another method for looking at the
stability/condition of the imaging system is to examine the m singu-
lar values and noting how much they differ. For example, if the first
m − 1 singular values have approximately the same order of magni-
tude but σm is near zero, the condition number of the system may be
improved by ignoring a redundant measurement.

For better understanding of the use of singular values, we may
consider two simple examples with m = 2 and n = 3. First, we con-
sider the case where one measurement is very weakly sensitive to the
medium, S = [ 1

3 , 1
3 , 1

3 ; 0, 0, 10−6]. Then, σ1 = 0.6, σ2 = 8 × 10−7, and
κ = 7 × 105, showing that one measurement is problematic. Second,
we consider the case where the two measurements are close to the
same sensitivity, S = [ 1

3 , 1
3 , 1

3 ; 1
3 , 1

3 + 10−6, 1
3 − 10−6]. Then, σ1 = 0.8,

σ2 = 10−6, and κ = 8 × 105, showing again there is a problematic
measurement (this time because one is redundant). We note that
examining these values cannot be done blindly since their magni-
tudes are dependent on the specific reconstruction parameters being
considered, and different issues may cause similar effects. However,
examining singular values can provide guidance when combined
with other evaluation methods or when compared to two similar
designs.

B. Physical array
1. Array design

Once the optimal geometrical arrangement of source and
detector locations has been determined, a design must be created
that physically realizes it. Depending on the specifics of the Near-
InfraRed Spectroscopy (NIRS) instrument, the array may contain
physical sources (laser diodes, light emitting diodes, etc.) and detec-
tors (photodiodes, avalanche photodiodes, etc.), or it may contain
optical fibers that deliver light to and from the investigated sam-
ple. In this work, we have used an Imagent V2 (ISS, Champaign,
IL, USA) NIRS instrument, which uses laser diodes and photomul-
tiplier tube detectors that are coupled to optical fibers. Specifically,
the light sources are coupled to SubMiniature version A (SMA) ter-
minated multimode optical fibers, whereas the optical detectors are
coupled to ferrule terminated fiber bundles connected via a collet.
For the detector fibers, we use 2 m long, 3 mm diameter fiber bun-
dles with 4.75 mm Outer Diameter (OD) ferrules (ISS O431). Two
separate optical fibers, one for each of the two wavelengths (690 nm
and 830 nm), deliver light at each source location. To accomplish
this, we use custom-built, 2 m long, 1 × 2 fanout fiber bundles with
1 m long split ends (Thorlabs, Newton, NJ, USA). The optical fiber
used was a 600 μm multimode fiber (Thorlabs FT600EMT) with a
furcation tubing jacket (Thorlabs FT038). The split ends are termi-
nated in SMA905 connectors (Thorlabs 10125A), and the common
end is terminated in a custom drilled and polished 2.5 mm OD fer-
rule (drilled from Thorlabs SF230-1). Given these optical fiber ter-
minations, the optical array was designed to arrange the 4.75 mm
OD detector fibers and the 2.5 mm OD source fibers in the desired
arrangement.

The overarching design of the array was a three-layer mesh
structure encapsulated in PolyDiMethylSiloxane (PDMS) [Fig. 5(a)].
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FIG. 5. Example array design methodology. (a) Basic schematic of the layered
array geometry. (b) Example Delaunay triangulation used for mesh design and
Voronoi partition used for fiber void design for a single Dual-Slope (DS) set. (c)
Basic schematic of parting line locations and fixture clamping methodology used
to design the array mold.

The first and third layers of the array are constructed from the
Ultra-High Molecular Weight (UHMW) polyethylene film (McMas-
ter Carr 85655K15, Elmhurst, IL, USA), and the middle (second)
layer is built from the polypropylene hook and loop fabric (McMas-
ter Carr 94975K42). PDMS used to encapsulate the array was Ecoflex
00-30 (Smooth-On, Macungie, PA, USA), which was mixed with
Calli India-ink (Daler-Rowney, Bracknell, England) to pigment the
array black.

The first and third UHMW mesh layers hold the fiber termina-
tions in their place within the arrangement. The design methodology
for the UHMW mesh is as follows: (1) the locations of the source and
detector ferrules are determined; (2) at each ferrule location, a hole
is created to accommodate the ferrule with an UHMW doughnut
surrounding it with an OD of 14.5 mm (i.e., we now have UHMW
toroidal islands at each ferrule location); and (3) the centers of the
doughnuts are connected with a Delaunay triangulation [Fig. 5(b)],
where each triangulation edge defines the centerline of a 5 mm wide

UHMW connector. The resulting mesh features UHMW circles sur-
rounding each ferrule with 5 mm wide connections between them.
This design strategy creates an interconnected mesh that will hold
the fibers in the arrangement locations. The fiber ferrules are epoxied
to the UHMW mesh using KwikWeld (J-B Weld, Sulphur Springs,
TX, USA).

The middle layer of hook fabric is cut to remove as much mate-
rial as possible, allowing the fibers to pass through the layer and
PDMS to fully surround all the parts. Enough hook fabric remains
to provide tension to the array when pulled, since this is the method
with which the array will be attached to other components (such as
a head cap). As such, the size of the hook fabric will overhang the
array by 25 mm once it has been encapsulated with PDMS. Both
the UHMW mesh and the hook fabric are cut using a paper cutter
(Cricut Maker, South Jordan, UT, USA).

Finally, after designing and constructing the various array lay-
ers, the assembly is encapsulated with PDMS. The first mesh layer is
placed 5 mm from the ferrule ends, the second layer of hook fabric
(hooks facing away from ferrule ends) is placed 5 mm from the first
mesh, and the third layer of mesh is placed 5 mm above the hook fab-
ric. Finally, the top of PDMS is poured such that it is flushed with the
top of the third layer. This procedure results in a total array thick-
ness of 15 mm. The outer perimeter of the array is such that it fully
encapsulates the mesh layers and leaves a 25 mm hook fabric over-
hung. On the bottom of the optical array, there are voids in PDMS
surrounding each fiber ferrule to allow the ferrules to push through
hair (in the case of non-invasive applications on the human head).
These negative spaces are 5 mm in height, and their shape is defined
using a Voronoi partition [Fig. 5(b)] between the fiber locations. The
edges of the partition are of a non-zero width such that each ferrule
is 7.5 mm to the edge of its void, or the partition width is 5 mm,
whichever creates a larger partition wall width. This creates a design
with walls of PDMS separating all fiber locations, ensuring that light
diffuses through the medium being probed and does not leak across
the surface.

We have now described the structure and materials for the con-
struction of an array. In Subsection III B 1 a, we discuss what design
methodology is used to incorporate the array into a head cap so that
the array can be used on the head of human subjects.

a. Cap design. Here, we consider functional Near-InfraRed
Spectroscopy (fNIRS) as the array’s primary use. As such, it is
designed to be placed on a human head to image optical prop-
erty changes within brain tissue. To achieve this, a polychloroprene
wet suit cap (NeoSport SH25V, Millville, NJ, USA) was modified
to accept the array and connect to the overhanging hook fabric.
Each cap can be designed to target a specific region on the subject’s
head, and different sized caps can be made for different subjects.
Additionally, caps can be washed between uses.

To construct a cap, a hole is cut to accommodate the pro-
file of the array. Then, the loop polypropylene hook and loop fab-
ric (McMaster Carr 94975K82) are sewn into the inside of the cap
with loops facing toward the head. The optical array can be placed
within the cap hole and fixed to the cap via the hook and loop.
Each cap is custom designed for size and head location. If neces-
sary, hook and loop tie straps are sewn to the outside of the cap to
provide extra tension to the array. This may be necessary to con-
form the array to the subject’s head. Cap construction is done using
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a sewing machine (Singer Heavy Duty 4423, La Vergne, TN, USA),
and components are attached using a black #69 polyester thread
(Selric).

2. Array construction methods
To realize the array design, the structure of the array is built

using a mold that holds all components in place while PDMS is
poured over the array. The general design of the array mold consists
of a series of fixtures that bolt together such that the fiber ferrules
are placed along the parting lines of the fixtures that are assem-
bled to create the mold [Fig. 5(c)]. In other words, the assembly
fixtures bolt together to sandwich the ferrules in place; once all the
fixtures are bolted together, their negative space creates the mold
for PDMS. Once this assembly is in place, a collar is bolted around
the array such that the hook fabric is sandwiched to guarantee that
when PDMS is poured, the fabric will not be encapsulated and will
overhang the array.

The order of assembly of the array is to (1) pull the fibers
through the three layers of mesh and hook fabric, (2) place the fer-
rules sandwiched between the fixtures to create a mold, (3) lower
the layers into the mold negative space, epoxy the ferrules to the
mesh, and affix the collar as to sandwich the middle layer, and (4)
pour PDMS and allow the array to set, at which point everything is
disassembled and the flash (excess material) is removed.

The primary material used for the mold was PolyLactic Acid
(PLA) fabricated using a Fused Filament Fabrication (FFF) 3D
printer (Ultimaker 2+, Utrecht, The Netherlands). The 3D-printed
material was sprayed with methyl methacrylate lacquer (Dupli-
Color DAL1695, Cleveland, OH, USA) to ensure there was no cure
inhibition of PDMS. The mold is bolted together using M5 × 0.8 mm
socket head cap screws of various lengths and matching nuts, which
were captured within the printed PLA mold.

IV. RESULTS
A. Two possible source–detector arrangements

We designed two source–detector arrangements with the pur-
pose of using the Dual-Slope (DS) phase (ϕ) (DSϕ) to preferentially
image deep tissue. Our goal was to design one arrangement with
many overlapping measurements in a small area for high Signal-to-
Noise Ratio (SNR) and resolution (Fig. 6) and another with large
lateral coverage and to prioritize localization of optical perturbations
(Fig. 7). The former array demonstrates the presented methods, and
the latter array allows for functional measurements where the loca-
tion of brain activation could be identified. The latter goal differs
from the goal of spatial resolution (former goal), which would imply
the discrimination of two close perturbations, which is not the goal
of the latter array.

The arrangements were designed for a total of 16 sources and 9
detectors for the first array or 10 detectors for the second. We started
the design process by manually placing the sources and detectors in
various tessellations and using the DS discovery algorithm to find
all the possible DS sets (Sec. III A 1 a). The arrangements with the
largest number of overlapping sets and best evaluation (focusing
on the goal for each array) results were chosen. The final arrange-
ments were based on a circular symmetry (Fig. 6) for the first and a
hexagonal tessellation (Fig. 7) for the second.

FIG. 6. Circular design of the Dual-Slope (DS) imaging arrangement. [(a)–(o)]
Examples of each of the types of DS sets within the source–detector arrangement.
(p) Full array showing all sources (1–16), detectors (A–I), and SD measurement
pairs (lines). (q) Histogram of all Single-Distances (SDs) that make up the short
distance of a Single-Slope (SS) set. (r) Histogram of all SDs that make up the long
distance of a SS set. (s) Histogram of all distance differences for SS sets.

The resulting circular arrangement [Fig. 6(p)] consists of 116
DS sets, while the resulting hexagonal arrangement [Fig. 7(h)] con-
tains 30 DS sets, four of which are redundant and averaged in anal-
ysis, resulting in m = 27. For the circular arrangement, there are 15
different DS set shapes that are either linear, trapezoidal, or rhombic
[Figs. 6(a)–6(o)]. Within the hexagonal arrangement, there are seven
different shapes of DS sets [Figs. 7(a)–7(g)] all of which are either
trapezoidal or rhombic. The four redundant sets of the hexagonal
arrangement [Fig. 7(g)] are averaged together since their regions of
sensitivity are very close to each other, and considering them sepa-
rately would increase the condition number of the system (Secs. III
A 2 a and III A 2 c). The whole hexagonal array contains a small
range of short and long distances [Figs. 7(i)–7(k)], showing that the
position refinement successfully homogenized the array.
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FIG. 7. Final hexagonal design of the Dual-Slope (DS) imaging arrangement. [(a)–
(g)] Examples of each of the types of DS sets within the source–detector arrange-
ment. (g) Four redundant DS sets combined into one. (h) Full array showing all
sources (1–16), detectors (A–J), and SD measurement pairs (lines). (i) Histogram
of all Single-Distances (SDs) that make up the short distance of a Single-Slope
(SS) set. (j) Histogram of all SDs that make up the long distance of a SS set. (k)
Histogram of all distance differences for SS sets.

1. Arrangement evaluation results
The evaluation methods rely on the creation of sensitivity maps

for each Dual-Slope (DS) set. For our simulations, we used an abso-
lute reduced scattering coefficient of 1.2 mm−1, an absolute absorp-
tion coefficient of 0.01 mm−1, an internal index of refraction of 1.4,
an external index of refraction of 1.0, and an optical modulation fre-
quency of 140.625 MHz. These optical properties are consistent with
those in the previous work concerning sensitivity maps36 and typical
values for the human brain.41

The goal of DS imaging is not to create three-dimensional (3D)
images but instead two-dimensional images representative of deep
perturbations. Thus, our simulation geometry featured only two lay-
ers of voxels along the depth coordinate z; a first superficial layer
with z in the range 0–10 mm, and a deeper layer (the one that
we wish our images to be mostly sensitive to) with z in the range
10–20 mm. Such layered geometry has been previously described

for use with DS.33 Laterally, for the circular array, the full volume
was 50.5 × 50.5 × 20 mm3 with voxels of 0.5 × 0.5 × 10 mm3, result-
ing in n = 20 402, while for the hexagonal array, the full volume was
121×121×20 mm3 with 1×1×0 mm3 voxels, resulting in n = 29 282.

The geometry was chosen to align with the goals of using the DS
phase (ϕ) (DSϕ) to achieve preferential deep sensitivity. The second
layer depth was chosen both because the brain is typically at a depth
>10 mm42,43 and because the typical depth of maximal sensitivity for
DSϕ is greater than 10 mm. In accordance with these goals, we show
the maps only for the second layer of voxels (10 mm–20 mm) and
only for DSϕ.

First, we examine the reconstruction (
⇀

R) and crosstalk (
⇀

C) maps
for our imaging systems (Sec. III A 2 a). For the circular array,
we note the reconstruction is focused on a small central region
[Fig. 8(a)] and the crosstalk map suggests preferential reconstruction
in a four-lobed ring around the center [Fig. 8(b)]. This is consistent

FIG. 8. S+S results: (a) reconstruction (R) and (b) crosstalk (C) for the circular
arrangement.
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FIG. 9. S+S results: (a) reconstruction (R) and (b) crosstalk (C) for the final
hexagonal arrangement.

with the design goals for this array, which sought to confine the sen-
sitivity to a small region. As a result, Fig. 8 suggests the circular
array has a coverage region with a radius of ∼10 mm (∼300 mm2)
for which 116 DS sets overlap.

Considering
⇀

R and
⇀

C for the hexagonal array and focusing on
the reconstruction map [Fig. 9(a)], we note that the array does not
feature homogeneous reconstruction. Notably, the array has high
reconstruction values at the center and below the top four detectors
(A–D). Additionally, there are low reconstruction values in various
regions surrounding the center, suggesting compromised sensitiv-
ity and poor reconstruction quality in these regions. Looking at the
crosstalk map [Fig. 9(b)], we notice high values in the center and
below sources 2 and 7, indicating that some perturbations will be
incorrectly reconstructed there. Low values in the crosstalk map
are seen below detectors I and F, which align with low values in
the reconstruction map; this suggests that the array has blind spots

in these locations. Overall, given our goal of large lateral coverage,
the array preforms reasonably well by covering a rough triangle of
∼7200 mm2, with the largest weakness being two poor sensitivity
locations below detectors I and F. Keeping this imaging performance
in mind, in a given experiment, the array should be placed such that
the best sensitivity area (underneath detectors A–D) is aligned with
the region of interest.

Second, we examine the resolution (
⇀

Γ) and localization (
⇀

Δ)
maps (Sec. III A 2 b). In the case of the circular array, a typical (aver-
age in the useable array region) lateral Full Width at Half Maximum
(FWHM) resolution of ∼10 mm is achieved [Fig. 10(a)] with a local-
ization error of about 1 mm [Fig. 10(b)]. This suggests that the array
could roughly resolve two point-like perturbations in its small imag-
ing area and reinforcing the goals for this design are met given that
it is capable of fine precise imaging in a small area.

Focusing on the hexagonal array, the resolution map
[Fig. 11(a)] shows that the expected lateral FWHM of the

FIG. 10. S+S impulse response results: (a) resolution (Γ) and (b) localization (Δ)
for the circular arrangement.
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FIG. 11. S+S impulse response results: (a) resolution (Γ) and (b) localization (Δ)
for the final hexagonal arrangement.

arrangement ranges from 20 mm to 30 mm in most regions. This
value is quite large and shows that the arrangement will not be
able to distinguish between two closely spaced perturbations. How-
ever, according to our goal, we prioritize localization over resolu-
tion. Thus, we look at the localization map [Fig. 11(b)] for metrics
of success. Over almost the entire array, the lateral localization is
∼5 mm. Therefore, the arrangement achieves both good localization
and large lateral coverage, along the lines of the design goals.

Finally, we consider the imaging system in terms of Singular
Value Decomposition (SVD) (Sec. III A 2 c). We present this only
for the hexagonal array for brevity, as the circular array would result
in 116 images. The first m right singular vectors show the span of all
possible reconstructed images for the hexagonal array (Fig. 12). For
this system, m = 27, and thus, the reconstruction must fit into 27
degrees of freedom that are shown in these singular vectors. Through
careful examination of these maps, we can see where it is possible
for the system to reconstruct images and where it is not. Notably,

FIG. 12. First m = 27 right singular vectors (V) for the final arrangement.

the upper right and left corners of the map cannot be reconstructed
well, which is expected since the array cannot have sensitivity there.
Aside from the right singular vectors, the condition number of the
system was also evaluated [Eqs. (17) and (23)]. This can be calculated
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FIG. 13. Layer profiles for the physical array construction. (a) First and third layer
mesh. (b) Middle layer hook fabric.

using the matrix norm or SVD, with SVD having the advantage of
giving the option to examine the other singular values as well. For
this system, the condition number is on the order of 1014, suggest-
ing that the system is ill-conditioned. However, this is expected and

FIG. 14. Mold design used to construct the final array. (a) Bottom view showing
bolts attaching seven fixtures to create the mold. (b) Top view showing parting
line locations sandwiching the fiber ends. (c) Cross section showing three lay-
ers captured within the mold. (d) Isometric view of the full mold assembly before
encapsulating PolyDiMethylSiloxane (PDMS) is poured.

known for a diffuse optical imaging system. What should be noted is
the improvement that was achieved by averaging the redundant DS
sets [Fig. 7(g)] When the system considers these separately (in which
case m = 30), the condition number is on the order of 1015 and the
last three singular values approach zero. Therefore, removing the
redundant measurements via averaging improved the condition of
the system by an order of magnitude.

B. Physical array
The physical array was designed around the final hexagonal

source–detector arrangement (Fig. 7) since large coverage of func-
tional imaging was desired. First, the mesh and hook fabric layers
were designed (Sec. III B 1) and cut (Fig. 13). All other components
of the array were prefabricated (source and detector fibers).

Then, the array was assembled using a mold built from clamped
fixtures (Sec. III B 2). The mold was constructed from seven fixtures
clamped together by 13 bolts such that all 26 fibers were captured
by being clamped at the parting lines [Figs. 14(a) and 14(b)]. The
three layers were placed within the mold, with the middle layer of
hook fabric clamped by a collar that encompassed the whole mold
and was attached with 16 bolts [Fig. 14(c)]. The mesh layers (first
and third layers) were fixed to the fibers with epoxy. Finally, with
all parts held in place and the mold assembled, black silicone was
poured to encapsulate the array [Fig. 14(d)]. Once silicone cured,
the mold was disassembled, and the array was cleaned to finish the
build.

FIG. 15. Final array design and construction. (a) Rendering of the bottom side of
our final array design. (b) Picture of the final array after construction. (c) Picture of
the final array attached to the Imagent V2 instrument with the array applied onto
an optical phantom.
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The final physical array realized the designed arrangement
(Fig. 15). Given the design, the array can flex to conform to various
surfaces including the human head, and the fibers can push through
hair given the voids surrounding them.

V. DISCUSSION
The final hexagonal optical array was designed with the specific

purpose of applications in functional Near-InfraRed Spectroscopy
(fNIRS) imaging. This is the first optical array specifically designed
for Dual-Slope (DS) phase imaging with FD-NIRS on human sub-
jects. Of course, this array also collects Single-Distance (SD) data,
as well as optical intensity measured with CW-NIRS. Therefore, the
array may be used in experiments where the DS data (intensity or
phase) are compared to SD data (intensity or phase) to investigate
optimal conditions for imaging with selective sensitivity to deeper
vs superficial tissues. Additionally, the large size of the array and
the emphasis on localization would allow for identification of the
brain activation location in fNIRS protocols. The large array size
has the further advantage of broader coverage, which is important
for experiments in which multiple neighboring brain areas are acti-
vated. Finally, this DS array design features the Self-Calibrating (SC)
advantages of insensitivity to instrumental drifts and changes in
optical coupling with tissue, and calibration-free absolute measure-
ments.34 This allows for robust measurements weakly impacted by
motion or instrumental artifacts.

Aside from fNIRS experiments, the array could also be used
for non-invasive optical measurements of tissue where preferentially
deep sensitivity is desired. Possible applications include breast and
skeletal muscle imaging, where the tissue of interest is below the
superficial layer of skin and adipose tissue.

All the aforementioned applications would take advantage of
the array’s DS imaging capability; however, the array could also be
implemented in the SC mode by combining DS intensity and phase
data. In such a mode, the goal would not be to achieve preferen-
tially deep sensitivity as for phase DS, but rather to measure absolute
optical properties. In the SC mode, the array could image abso-
lute optical properties of tissue without the need for calibration and
with insensitivity to instrumental drifts. The applications of an array
designed for DS data collection are numerous.

The arrays shown here are just two particular cases of a Dual-
Slope (DS) imaging array. The purpose of this article is to provide
a methodology and guidance for the design of a whole family of DS
optical arrays (Sec. III). The final hexagonal array reported here was
designed for large lateral coverage and good localization of optical
perturbations. However, DS arrays can be designed for better spatial
resolution, such as the circular array, or with other more complex
goals in mind. In any case, the same methods described here can be
used for DS array design.

There are a number of areas for improvements to the method-
ology and design. For example, a whole set of methods could be
created to optimize the image reconstruction, such as changing the
array geometry or optimizing regularization. We acknowledge that
regularization was not considered here since it is typically employed
to combat noise and we considered noiseless simulations. However,
the presented methods could be expanded to include the effect of
regularization, which would likely smooth the maps and worsen
resolution.

Additionally, one may expand on the goal of localization con-
sidered here, which assumes the presence of a single perturbation.
Along these lines, other image reconstruction techniques can be
used, for example, methods inspired by compressed sensing for
sparse solutions, which find the solution with the minimum number
of voxels with non-zero perturbations.44

For improvements to the physical design, the first one is the
enhancement of the subject’s comfort and mobility. Thinning the
array design or adding relief cuts in silicone would make it more flex-
ible, improve the subject’s comfort, and facilitate the conformable
application to the curved head surface. A design for the head cap
that does not encompass the entire head would also be beneficial to
some subjects in the clinic, or in experiments where multiple probes
are used simultaneously on the subject’s head.

Finally, we stress again that the methodology described here
for designing and constructing a DS imaging arrangement can be
applied to a variety of NIRS devices. Here, we have designed the
array around a fiber-based instrument (ISS Imagent V2). However,
the same arrangement design methodology can be applied to devices
that use different types of optical fibers and fiber terminations or that
use optical probes with directly embedded light sources and optical
detectors.

VI. CONCLUSION
In this article, we have laid out the methods to design an imag-

ing arrangement of illumination and optical collection points for use
with Dual-Slope (DS) optical data (Sec. III A 1). We then describe
various methods to evaluate the imaging performance of a given
optical arrangement (Sec. III A 2). Given an arrangement design,
we then lay out the methodology for building a physical fiber-based
imaging array (Sec. III B). We then present two DS imaging arrays
that we designed and one we built using these methods (Sec. IV).
The arrays we present feature all the practical advantages of the
DS technique (preferentially deep sensitivity and suppression of
instrumental drifts and motion artifacts) implemented in an imaging
modality.

The purpose of the designed final hexagonal array is for use
in functional Near-InfraRed Spectroscopy (fNIRS) experiments. The
goal of these experiments is to localize an activated brain area with
minimal contributions from confounding superficial perturbation
dynamics. However, the methods described here have more general
applicability, as shown with the circular array design. An entire fam-
ily of DS imaging arrays may be designed and built for a variety of
applications and devices using the methods that we have laid out.
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