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Abstract
Dilated cardiomyopathy (DCM) belongs to the most frequent forms of cardiomyopathy mainly characterized by cardiac 
dilatation and reduced systolic function. Although most cases of DCM are classified as sporadic, 20–30% of cases show a 
heritable pattern. Familial forms of DCM are genetically heterogeneous, and mutations in several genes have been identi-
fied that most commonly play a role in cytoskeleton and sarcomere-associated processes. Still, a large number of familial 
cases remain unsolved. Here, we report five individuals from three independent families who presented with severe dilated 
cardiomyopathy during the neonatal period. Using whole-exome sequencing (WES), we identified causative, compound 
heterozygous missense variants in RPL3L (ribosomal protein L3-like) in all the affected individuals. The identified variants 
co-segregated with the disease in each of the three families and were absent or very rare in the human population, in line 
with an autosomal recessive inheritance pattern. They are located within the conserved RPL3 domain of the protein and 
were classified as deleterious by several in silico prediction software applications. RPL3L is one of the four non-canonical 
riboprotein genes and it encodes the 60S ribosomal protein L3-like protein that is highly expressed only in cardiac and skel-
etal muscle. Three-dimensional homology modeling and in silico analysis of the affected residues in RPL3L indicate that 
the identified changes specifically alter the interaction of RPL3L with the RNA components of the 60S ribosomal subunit 
and thus destabilize its binding to the 60S subunit. In conclusion, we report that bi-allelic pathogenic variants in RPL3L are 
causative of an early-onset, severe neonatal form of dilated cardiomyopathy, and we show for the first time that cytoplasmic 
ribosomal proteins are involved in the pathogenesis of non-syndromic cardiomyopathies.

Introduction

Pediatric cardiomyopathies are inherited forms of struc-
tural heart diseases. They occur with an incidence of 1–2 
in 100,000 individuals and include common presentations 
such as hypertrophic (HCM) and dilated cardiomyopathy 
(DCM) as well as rare, infrequent forms such as restric-
tive (RCM), noncompaction (NCM), mixed and arrhythmo-
genic right ventricular cardiomyopathies (Lee et al. 2017; 
Vasilescu et al. 2018). Besides exogenous factors like infec-
tion and toxins, pediatric cardiomyopathies can result from 
germline mutations. Pathogenic variants in a large set of 
genes have been associated with these conditions, but the 
yield of genetic testing still remains low, especially for non-
syndromic cases (Vasilescu et al. 2018).
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Pediatric DCM is a genetically heterogeneous disorder. 
It can be inherited in different modes including autosomal 
dominant, autosomal recessive, X-linked and mitochon-
drial inheritance. This complicates genetic testing and 
variant interpretation, especially as variants in the same 
gene can cause different cardiomyopathy-related pheno-
types. Mutations in genes encoding for components of the 
sarcomere, the Z-disc and the desmosome have been iden-
tified in DCM as well as pathogenic variants in genes cod-
ing for components of the nuclear envelope (Taylor et al. 
2007; Bates et al. 2012; Kindel et al. 2012; Towbin 2014). 
Additionally, DCM can also occur as part of a congenital 
myopathy as observed, e.g., in patients with Duchenne 
muscular dystrophy, and mutations in underlying genes 
can affect both skeletal and heart muscle tissues (Spurney 
2011; Barp et al. 2015). Most of the known genetic causes 
of DCM are autosomal dominantly inherited, though the 
implementation of next-generation sequencing (NGS)-
based approaches has led to the identification of novel 
genes associated with autosomal recessive DCM, mainly 
in severe childhood-onset cardiomyopathies (i.e., LEMD2, 
ACADVL, CAP2, TAF1A) (Long et al. 2017; Abdelfatah 
et al. 2019; Aspit et al. 2019; Carlus et al. 2019; Reza 
et al. 2019).

Still, the genetic background of severe childhood-onset 
DCM is poorly understood and largely underdiagnosed. 
Currently, genetic testing in individuals with DCM who 
have a positive family history of cardiomyopathy identifies 
causative mutations in only approximately 25% (Murphy 
et al. 2016). Therefore, the identification of novel DCM-
associated genes and mutation signatures not only impacts 
on genetic testing and on counseling, but also offers the 
opportunity to develop novel, disease-specific therapies for 
structural heart diseases based on new pathophysiological 

insights obtained by the analysis of the functional role of 
these genetic factors.

Here, we present bi-allelic pathogenic variants in RPL3L 
in five affected children from three independent fami-
lies originating from Germany, Colombia, and Spain. All 
affected children were born to healthy parents and presented 
with a severe form of early-onset DCM leading to neona-
tal heart failure. We used a GeneMatcher-based approach 
(Sobreira et al. 2015) to connect the three centers at the 
Columbia University Irving Medical Center (New York, 
USA), the University Medical Center Göttingen (Göttin-
gen, Germany) and the Instituto de Investigación Hospital 
12 de Octubre (i + 12) (Madrid, Spain), in which clinical 
examination of patients and/or genetic analyses took place. 
In a whole-exome sequencing approach, we were able to 
show that all five individuals carry compound heterozygous 
missense variants in RPL3L encoding a skeletal and heart 
muscle-specific component of the 60S ribosomal subunit. 
We confirmed all identified variants in RPL3L by Sanger 
sequencing and verified their co-segregation with the disease 
in the respective families. All variants affect highly con-
served residues, and three-dimensional homology modeling 
as well as in silico analysis of the affected residues in RPL3L 
indicate that the changes specifically alter the interaction of 
RPL3L with the 60S ribosomal subunit and thus destabilize 
its binding to the 60S subunit.

Materials and methods

Subjects

All subjects or their legal representatives gave written 
informed consent for the molecular genetic analyses and for 
publication of the results. This study was performed accord-
ing to the Declaration of Helsinki protocol and approved by 
the local institutional review boards (Columbia University 
Irving Medical Center, USA; University Medical Center 
Göttingen, Germany; Instituto de Investigación Hospital 12 
de Octubre (i + 12), Spain). DNA from participating family 
members was extracted from peripheral blood lymphocytes 
by standard extraction procedures.

Whole‑exome sequencing

In family 1, WES of both affected children, their non-
affected sibling and their parents was carried out using 
the IDT xGen Exome Research Panel v1.0 enrichment kit 
(Integrated DNA Technologies) on an Illumina NextSeq500 
sequencer (Fig. 1a, left panel). WES data analysis and filter-
ing of variants were carried out using the exome analysis 
pipeline ‘Varbank 2′ of the Cologne Center for Genomics 
(CCG, University of Cologne, Germany).

Fig. 1   Pedigrees, genetic and clinical characterization of three fami-
lies with DCM carrying bi-allelic variants in RPL3L. a Pedigrees 
of families 1–3, genotypes and electropherograms of the identified 
RPL3L variants. All affected siblings carry compound heterozy-
gous variants in RPL3L, while all parents were heterozygous carri-
ers of one of the identified variants. Non-affected siblings were either 
homozygous for the wild-type allele (individual III.2, family 1) or 
heterozygous carrier of only one identified RPL3L variant (individual 
IV.2, family 2; individual III.1, family 3). n/a, DNA sample not avail-
able. b Echocardiogram in parasternal short-axis view of individu-
als III.1 (upper panel) and III.3 (lower panel) of family 1 including 
measurements and z-scores. Note end-diastolic dilation of the right 
ventricle and muscular hypotrophy of the septal and posterior wall. 
Asterisk and bold letter indicate pathological values. RVAW, right 
ventricular anterior wall. RVedD right ventricular end-diastolic diam-
eter. IVSed intraventricular septum end-diastolic. LVedD left ventricu-
lar end-diastolic dimension. LVPWDd left ventricular posterior wall 
dimension diastole. c Pathological evaluation of the explant heart 
tissue of individual IV.3 (family 2). H & E staining of the myocar-
dium revealed myocytolysis (green arrows) and fibrotic regions (black 
arrows)

◂
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In family 2, trio-based WES was performed at the Labo-
ratory of Personalized Genomic Medicine at Columbia 
University Irving Medical Center on DNA obtained from 
peripheral blood lymphocytes of individuals IV.3, III.3 and 
III.4 (Fig. 1a, middle panel). Exonic and adjacent intronic 
sequences were enriched from genomic DNA using the 
Agilent SureSelectXT Human All Exon v5 + UTRs cap-
ture kit (Agilent Technologies) according to the manufac-
turer’s protocol. Paired-end sequencing was performed on 
the Illumina HiSeq2500 platform. The sequence data were 
aligned to GRCh37/hg19 and variants were annotated using 
the Nextgene (version 2.3; SoftGenetics, LLC) software. 
Variant filtering and annotation were performed using an in-
house developed pipeline and reviewed as part of the clinical 
workflow for constitutional clinical exome sequencing in the 
laboratory of Personalized Genomic Medicine at Columbia 
University Irving Medical Center.

In family 3, WES was performed on genomic DNA 
obtained from patients III.2 and III.3 following a standard 
protocol (Fig. 1a, right panel). Enrichment was carried out 
using the Agilent SureSelect Human All Exon V4 enrich-
ment kit (Agilent Technologies), the captured library was 
sequenced on an Illumina HiSeq2000 platform, and the reads 
were aligned against the human reference genome (GRCh37/
hg19, UCSC) to obtain candidate variants.

Variant confirmation and Sanger sequencing

Variant confirmations were performed using standard meth-
ods for PCR amplification and Sanger sequencing. Primer 
sequences are available on request. The coding sequence of 
the respective exons was analyzed and variants were con-
firmed by a second PCR on an independent DNA sample.

Prediction programs

In silico prediction of the variant effect for all missense vari-
ants was evaluated using SIFT, PolyPhen-2, MutationTaster, 
Combined Annotation Dependent Depletion (CADD), Men-
delian Clinically Applicable Pathogenicity (M-CAP), Mis-
sense badness, PolyPhen-2, and Constraint (MPC), Missense 
Variant Pathogenicity2 prediction (MVP2) and PrimateAI 
(Jagadeesh et al. 2016; Samocha et al. 2017; Qi et al. 2018; 
Sundaram et al. 2018).

Three‑dimensional homology modeling of human 
RPL3L

A model of RPL3L was constructed using the structure of 
RPL3 in the human ribosome (PDB code 3j3b, chain B) 
(Anger et al. 2013). An alignment of RPL3L to RPL3 was 
generated with the program bl2seq from the BLAST suite of 
sequence alignment programs. The model was constructed 

using the program NEST. To visualize RPL3L in the context 
of the ribosome, the model of RPL3L was superposed on to 
the structure of RPL3 using rigid body superposition and the 
60S RNA was added from the PDB structure 3j3f, chain 5.

Databases and web resources

The following databases and web resources were used for 
this study:

CADD, https​://cadd.gs.washi​ngton​.edu/snv
Clustal Omega, https​://www.ebi.ac.uk/Tools​/msa/clust​alo/
Ensembl, https​://www.ensem​bl.org/index​.html
gnomAD browser, https​://gnoma​d.broad​insti​tute.org/
M-CAP, https​://bejer​ano.stanf​ord.edu/mcap/
MutationTaster, https​://www.mutat​ionta​ster.org
OMIM, https​://www.ncbi.nlm.nih.gov/omim
PolyPhen-2, https​://genet​ics.bwh.harva​rd.edu/pph2/
SIFT, https​://sift.bii.a-star.edu.sg/
SMART, https​://smart​.embl-heide​lberg​.de/
UCSC browser, https​://genom​e.ucsc.edu/
UniProt, https​://www.unipr​ot.org/
Varbank2, https​://varba​nk.ccg.uni-koeln​.de/varba​nk2

Results

Case reports

Family 1 is a non-consanguineous family of German origin 
(Fig. 1a, left panel; Table 1). Individual III.1 was the first 
child born after an uneventful pregnancy. During pregnancy, 
ultrasound revealed a small patent foramen ovale (PFO). 
Perinatal monitoring revealed a DCM at the first day of 
life. Echocardiography showed dilated right ventricle (RV) 
and pulmonary arterial hypertension (Fig. 1b, upper panel). 
DCM progressed rapidly after birth leading to dilated left 
ventricle (LV), an ejection fraction (EF) of 28–32% and car-
diac decompensation at the age of 12 days (Fig. 1b, upper 
panel). Hypotonia was not observed. She died at the age of 
21 days. Myocardial pathology assessment showed degener-
ated myocytes with perinuclear vacuolization, hypertrophic 
muscle fibers and diffuse interstitial fibrosis. Her brother 
(individual III.3, Fig. 1a, left panel) was born after normal 
gestation and uneventful pregnancy. He was diagnosed 
with DCM and tricuspid insufficiency on the sixth day of 
life. DCM also progressed rapidly, resulting in massively 
dilated right atrium (RA) and RV. Left atrium (LA) was 
slightly dilated, LV was normal (Fig. 1b, lower panel). EF 
was calculated at 30–36% at the age of 14 days. He showed 
no signs of hypotonia and died on the 15th day of life due 
to acute cardiac decompensation. Autopsy confirmed DCM 
and excluded myocardial infections.

https://cadd.gs.washington.edu/snv
https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.ensembl.org/index.html
https://gnomad.broadinstitute.org/
https://bejerano.stanford.edu/mcap/
https://www.mutationtaster.org
https://www.ncbi.nlm.nih.gov/omim
https://genetics.bwh.harvard.edu/pph2/
https://sift.bii.a-star.edu.sg/
https://smart.embl-heidelberg.de/
https://genome.ucsc.edu/
https://www.uniprot.org/
https://varbank.ccg.uni-koeln.de/varbank2
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Family 2 originated from Colombia and parents were 
second-degree cousins (Fig. 1a, middle panel; Table 1). 
Individual IV.3 is the third born child of healthy parents. 
He was first seen at 2 ½ months of age and presented with 
non-bilious, non-bloody vomiting and tachypnea. Echocar-
diogram showed severely decreased biventricular systolic 
function (EF 6%), moderate LV dilation (LV end-diastolic 
diameter 3.7 cm; z-score 6.9) with mild LA dilation, and 
mild tricuspid and mitral valve regurgitation. Chest X-ray 
revealed cardiomegaly with diffusely increased vascularity 
and a small right pleural effusion. Electrocardiogram showed 
right axis deviation with RV conduction delay, prominent 
LV forces for age and nonspecific ST and T wave abnormali-
ties. At 5 months of age, he underwent ABO-incompatible 
heart transplant. Pathology evaluation of the explant heart 
showed moderate myocyte hypertrophy, interstitial fibrosis, 

and multi-focal subendocardial myocytolysis with evidence 
of chronic LV ischemia (Fig. 1c). The LV endocardium was 
more thickened and fibrotic than the RV. Metabolic test-
ing, chromosomal microarray, and clinical cardiomyopathy 
gene panel were unremarkable except for the presence of 
long contiguous regions of homozygosity in multiple chro-
mosomes, consistent with known consanguinity of the par-
ents. He is currently 9 years of age, and his post-transplant 
course has been complicated by lymphoproliferative dis-
order confirmed on ileal biopsy, eosinophilic esophagitis, 
pancreatitis, left hydronephrosis, and a chronic anemia. We 
did not observe any signs of hypotonia or muscle issues, and 
measurements of creatine kinase (CK) level at the ages of 
2 months, 5, 6 and 7 years were essentially normal. His sister 
(individual IV.1, Fig. 1a, middle panel), the first-born child, 
was born after an uneventful pregnancy. At 2 months of age, 

Table 1   Summary of genetic data and clinical features of affected individuals

N/A not available, d.o.l. day of life, TI tricuspidal insufficiency, TR tricuspidal regurgitation, MR mitral regurgitation, PFO patent foramen ovale, 
VSD ventricular septal defect

Family Family 1 Family 2 Family 3

Pedigree ID III.1 III.3 IV.1 IV.3 III.2 III.3

Gender Female Male Female Male Female Male
Geographic origin Germany Germany Colombia Colombia Spain Spain
RPL3L variant c.923A > T 

(p.Asp308Val) 
and c.1027C > T 
(p.Arg343Trp)

c.923A > T 
(p.Asp308Val) 
and c.1027C > T 
(p.Arg343Trp)

N/A c.566C > T 
(p.Thr189Met) 
and c.922G > A 
(p.Asp308Asn)

c.80G > A; 
p.Gly27Asp 
and c.481C > T; 
p.Arg161Trp

c.80G > A; 
p.Gly27Asp 
and c.481C > T; 
p.Arg161Trp

Dilated cardio-
myopathy (age at 
diagnosis)

 +  (1st d.o.l.)  +  (6th d.o.l.)  +  (2 months)  +  (2 ½ months)  +  (1 ½ months)  +  (12th d.o.l.)

Pulmonary arterial 
hypertension

 +  – N/A –  +   + 

Low ejection frac-
tion

 +  (28–32%)  +  (30–36%) N/A  +  (6%)  +  (30%)  +  (25%)

Cardiac decompen-
sation

 +  (12th d.o.l.)  +  (15th d.o.l.)  +  (2 months)  +  (2 ½ months)  +  (1 ½ months)  +  (12th d.o.l.)

Heart valve disease –  +  (TI) N/A  +  (TR,MR)  +  (MR)  +  (MR,TR)
Electrocardiogra-

phy findings
– – N/A RV conduction 

delay, ST and T 
abnormalities

ST and T abnor-
malities

ST and T abnor-
malities

Additional findings PFO – N/A lymphoproliferative 
disorder (post 
transplantation)

– VSD (muscular)

Cardiac muscle 
biopsy

 +  – –  +  – –

Myocytolysis  +  N/A N/A  +  N/A N/A
Interstitial fibrosis  +  N/A N/A  +  N/A N/A
Hypertrophic 

muscle
fibers

 +  N/A N/A  +  N/A N/A

Heart transplanta-
tion (age)

– – –  + 
(5 months)

 + 
(5 months)

–

Death (age)  +  (21st d.o.l.)  +  (15th d.o.l.)  +  (2 months) – –  +  (30th d.o.l.)
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she presented with fatigue, vomiting, and lethargy. Heart 
failure was detected and she died 6 days later. Her clinical 
care was entirely in Colombia and medical records are not 
available. The unaffected brother (individual IV.2; Fig. 1a, 
middle panel) is a 10-year-old boy, who underwent cardiac 
screening around 2 years of age. He is currently clinically 
unremarkable.

Family 3 is a non-consanguineous family of Spanish ori-
gin (Fig. 1a, right panel; Table 1). The affected individual 
III.2 is the second-born child of healthy parents. She was 
born after an uneventful pregnancy and was admitted due 
to cardiogenic shock on her 48th day of life. She was diag-
nosed with DCM with severe ventricular dysfunction and 
pulmonary blood pressure at 50% of the systemic pressure. 
Orthotopic heart transplantation was performed at 5 months 
of age. Currently, she is 10 years old. Her brother, the third-
born child, was admitted with the diagnosis of DCM and 
secondary heart failure on 12th day of life (individual III.3, 
Fig. 1a, right panel). His clinical state suffered rapid dete-
rioration due to cardiogenic shock, which normalized after 
respiratory and hemodynamic stabilization. Subsequently, he 
suffered two cardiac arrests and died on the 14th day of life.

As the pedigrees of all three families suggested a genetic 
factor causative of the DCM, we performed NGS-based 
analyses of affected and healthy family members to deter-
mine possible genetic factors involved in the pathogenesis 
of DCM in these families.

WES analysis

In family 1, we performed WES on DNA extracted from 
blood lymphocytes of both affected children, their non-
affected sibling and their parents. WES data analysis and 
filtering of variants were carried out using the exome analy-
sis pipeline ‘Varbank 2′ (Cologne Center for Genomics Uni-
versity of Cologne, Germany). We obtained a mean coverage 
of 93–106 reads, and 98.2%–99.0% of targets were covered 
more than 10x. After exclusion of de novo, homozygous 
or compound heterozygous variants in known genes associ-
ated with DCM, WES data were filtered for variants with 
a coverage of more than 6 reads, a minimum quality score 
of 10, an allele frequency ≥ 25%, a minor allele frequency 
(MAF) < 0.5% in the gnomAD database (Karczewski et al. 
2019), and no annotation in the in-house WES datasets of 
the CCG. We did not detect any homozygous or de novo var-
iants that were shared in the affected individuals and absent 
in the healthy sibling. Analysis for compound heterozygous 
variants revealed putative causative variants in only one 
gene, RPL3L. Both affected siblings carried compound het-
erozygous variants, c.923A > T and c.1027C > T, in RPL3L 
inherited either from their father (c.923A > T) or mother 
(c.1027C > T), whereas the non-affected sibling carried the 
wild-type sequence on both alleles (Fig. 1a, left panel).

In family 2, trio-based WES of the affected individual 
IV.3 and both parents was performed at the Laboratory of 
Personalized Genomic Medicine at Columbia University 
Irving Medical Center (Fig. 1a, middle panel). Identified 
variants were assessed for clinical phenotypic match and 
American College of Medical Genetics and Genomics 
(ACMG) guidelines for the interpretation of sequence vari-
ants (Richards et al. 2015). WES data were filtered for de 
novo, homozygous or compound heterozygous variants with 
allele frequencies of less than 1% in the databases of the 
1000 Genomes project and the Exome Variant Server (EVS; 
NHLBI Exome Sequencing Project). We excluded patho-
genic or likely pathogenic variants in any of the known genes 
associated with cardiomyopathy and subsequently analyzed 
the WES data for novel putative causative variants. This 
analysis revealed compound heterozygous variants in RPL3L 
in individual IV.3. The index patient carried the paternally 
inherited c.566C > T variant and the maternally inherited 
c.922G > A variant in RPL3L. We confirmed these variants 
by Sanger sequencing and co-segregation analysis revealed 
heterozygous carrier status for one variant (c.566C > T) in 
the healthy sibling IV.2 (Fig. 1a, middle panel).

In family 3, we performed WES on genomic DNA 
obtained from patients III.2 and III.3 (Fig. 1a, right panel) 
and we applied the following criteria for filtering of the WES 
data: a minor allele frequency (MAF) < 1% in the gnomAD 
database (v2.1.1), a predicted impact on protein function 
(including nonsense, splice-site, coding indel, or missense 
variants), and consistent with a recessive (homozygous or 
compound heterozygous variants) or dominant model of 
pathogenesis (heterozygous variants with a MAF < 0.001%). 
Using this analytic pipeline, we were able to identify two 
heterozygous single nucleotide variations, c.80G > A and 
c.481C > T, in the RPL3L gene. Sanger sequencing of 
patient and parental DNA confirmed compound heterozy-
gosity of these variants in both affected individuals as well 
as heterozygous carrier status of each parent for one of the 
identified variants (Fig. 1a, right panel). The healthy sibling 
(individual III.1, Fig. 1a, right panel) was a heterozygous 
carrier for the c.80G > A variant in RPL3L.

In all five affected individuals presenting with DCM, 
we identified compound heterozygous variants in RPL3L. 
The identified variants co-segregated with the disease in 
each of the three families. On protein level, all variants are 
located within the ribosomal protein L3 domain of RPL3L 
and are predicted to lead to the substitution of phylogeneti-
cally highly conserved amino acids in RPL3L (Fig. 2a,b). 
Interestingly, two variants, c.923A > T identified in fam-
ily 1 and c.922G > A identified in family 2, affect the same 
amino acid residue p.Asp308 substituting it either by valine 
(family 1) or asparagine (family 2), which provides addi-
tional genetic evidence for the causality of both variants. All 
six variants are very rare in the general human population 
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with minor allele frequencies (MAFs) ranging from 0 to 
4.25*10–5, in line with an autosomal recessive inheritance 
pattern (Table 2). In silico prediction using different pre-
diction tools leads to consistent variant classification of all 

six variants as damaging (SIFT), probably/possibly damag-
ing (PolyPhen-2), disease causing (MutationTaster), and a 
Combined Annotation Dependent Depletion (CADD; v1.4) 
score ranging from 23.6 to 24.9, respectively, indicating 

Fig. 2   Molecular characterization of the identified RPL3L variants. a 
Schematic RPL3L protein structure and the localization of the identi-
fied variants. All missense variants are located within the conserved 
RPL3 domain of the protein. b Amino acid sequence alignment of 
RPL3L residues that are altered in the affected individuals including 
surrounding residues across different species. c Three-dimensional 
homology model of the RPL3L protein. RPL3L is shown in worm 

representation (yellow). Affected amino acid residues are labeled in 
black, shown in sphere representation and colored according to atom 
type (blue = nitrogen, white = carbon, red = oxygen). Portions of the 
60S RNA in proximity to altered residues (R343, R161 and G27) are 
shown in ball-and-stick representation and colored according to atom 
type
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deleteriousness of these variants (Table 2). Similarly, clas-
sification of these variants using the M-CAP (Mendelian 
Clinically Applicable Pathogenicity) score, the MVP2 (Mis-
sense Variant Pathogenicity2) prediction, the MPC (Mis-
sense badness, PolyPhen-2, and Constraint) score as well 
as the PrimateAI prediction score confirmed the deleterious 
effect of these missense variants (Table S1, S2).

In silico structural analysis of the identified RPL3L 
variants

RPL3L variants reported in our affected individuals with 
DCM are spread throughout the protein (Fig. 2a). To ana-
lyze the structural and functional impact of these RPL3L 
missense variants, we performed three-dimensional homol-
ogy modeling of human RPL3L. RPL3L is the paralog of 
RPL3, and both proteins share 78% identity at the amino 
acid level. RPL3 is a ubiquitously expressed 60S ribosomal 
subunit, which forms a crucial component of the ribosomal 
peptidyltransferase center and fulfills an essential coordinat-
ing function as a “gatekeeper” to the A site of ribosomes 
(Meskauskas and Dinman 2007). Its structure as part of the 
60S ribosomal subunit has been well established (Anger 
et al. 2013). As the amino acid position of all six6 missense 
variants which we identified in RPL3L were conserved in 
both paralogs, we constructed a homology-based structural 
model of RPL3L using the structure of RPL3 in the human 
ribosome to gain further insights into the pathogenic effects 
of the identified RPL3L missense variants (Altschul et al. 
1997; Petrey et al. 2003). Three mutated residues were 
located in regions directly contributing to RNA binding. 
In silico analysis showed that the basic residues p.Arg161 
and p.Arg343 of RPL3L form salt bridges with the RNA 
phosphate backbone, stabilizing RPL3L binding to the RNA. 
Mutation of these residues to tryptophan, as identified in our 
patients, leads to the loss of these basic, positively charged 

arginine residues, destabilizing the binding to the RNA and 
thereby weakening the binding of RPL3L to the 60S subunit 
(Fig. 2c; Fig. S1). Also, the p.Gly27 residue is located in 
proximity to the ribosomal RNA, and introduction of a nega-
tively charged aspartate at this position, as identified in fam-
ily 3, generates a negative charge in proximity to the RNA 
phosphate backbone leading to an electrostatic repulsion 
that, again, potentially weakens the binding of RPL3L to the 
ribosomal RNA (Fig. 2c; Fig. S1). Thus, these three RPL3L 
variants are highly likely to weaken binding of RPL3L to 
the ribosome either by removing a favorable charge–charge 
interaction between the arginines and the phosphate back-
bone of the RNA [p.(Arg161Trp), p.(Arg343Trp)] or by 
introducing a charge–charge repulsion with the negatively 
charged phosphates [p.(Gly27Asp); Fig. 2c, Fig. S1].

Three variants, p.Thr189Met, p.Asp308Asn and 
p.Asp308Val, are not located in the tentacle-like structure of 
RPL3L that interacts with the RNA, but in the large globular 
domain on the cytoplasmic face of the complex (Fig. 2c). 
The Asp308Asn and p.Asp308Val substitutions remove an 
anionic residue, and both are predicted to cause structural 
perturbation of the region, potentially impairing interac-
tions between RPL3L and other proteins components of the 
60S ribosomal subunit. Interestingly, the threonine residue 
at position 189 of RPL3 has been determined as a phos-
phorylation site in a large-scale phosphoproteome analysis 
(Olsen et al. 2010). The exchange of this threonine residue to 
methionine in RPL3L, as observed in patient IV.3 of family 
2, abrogates this potential phosphorylation site and might 
thereby interfere with RPL3L function. Still, it is unknown 
whether this phosphorylation also takes place in RPL3L, 
and additional functional analyses are needed to determine 
the functional consequences that are associated with the dis-
ruption of this potential phosphorylation site. Overall, all 
reported RLP3L amino acid substitutions affect highly con-
served positions and are predicted to perturb the structure 

Table 2   In silico prediction and population allele frequencies of RPL3L variants reported in this study

a Accessed in April 2020, gnomAD v2.1.1
b Score 1–0, D deleterious
c HumVar prediction, Score 0–1, PD probably damaging, PoD possibly damaging
d Only in heterozygous state

Family Genomic location 
(hg19)

HGVS cDNA 
(NM_005061.3)

HGVS protein 
(NP_005052.1)

Allele frequency 
in the gnomAD 
databasea

Prediction scores

SIFTb PolyPhen-2c MutationTaster CADD

1 Chr16:1,996,654 c.923A > T p.(Asp308Val) 0 D (0) PD (0.998) Disease causing 23.7
Chr16:1,995,856 c.1027C > T p.(Arg343Trp) 1 in 251,232 D (0) PD (0.997) Disease causing 23.6

2 Chr16:1,997,317 c.566C > T p.(Thr189Met) 6 in 248642d D (0) PD (0.912) Disease causing 24.0
Chr16:1,996,655 c.922G > A p.(Asp308Asn) 0 D (0) PD (0.993) Disease causing 24.1

3 Chr16:2,000,865 c.481C > T p.(Arg161Trp) 12 in 282644d D (0) PoD (0.905) Disease causing 24.9
Chr16:2,004,073 c.80G > A p.(Gly27Asp) 2 in 229842d D (0) PD (0.997) Disease causing 24.4



1451Human Genetics (2020) 139:1443–1454	

1 3

of the RPL3L subunit and its binding to other components 
of the 60S ribosomal subunit; however, further functional 
studies are needed to address the functional consequences 
of the identified variants in RPL3L.

Discussion

In this report, we provide evidence that bi-allelic mutations 
in RPL3L cause a severe dilated cardiomyopathy during the 
neonatal period. In five affected individuals from three inde-
pendent families, we identified compound heterozygous mis-
sense variants in RPL3L and showed by three-dimensional 
homology modeling that these missense variants destabilize 
RPL3L binding to the 60S ribosomal subunit.

RPL3L is a paralog to RPL3, a highly conserved, ubiq-
uitously expressed ribosomal protein that is a component 
of the 60S ribosomal subunit (Brodersen and Nissen 2005). 
In contrast to RPL3, RPL3L is specifically expressed in 
skeletal muscle and heart tissue (Van Raay et al. 1996; 
Gupta and Warner 2014). Expression analysis in these tis-
sues revealed that RPL3L mRNA levels are not static, but 
regulated dynamically in response to external stimuli (Chail-
lou et al. 2016). In response to hypertrophic stimuli, Rpl3l 
mRNA is dramatically downregulated suggesting a role of 
Rpl3l as a negative regulator of muscle growth (Chaillou 
et al. 2016). Additionally, exogenous expression of RPL3L 
in C2C12 myogenic cells during differentiation leads to its 
incorporation in ribosomes and impairs myotube growth and 
fusion (Chaillou et al. 2016). Interestingly, expression of 
RPL3L and RPL3 are conversely regulated. Downregulation 
of RPL3L in response to hypertrophic stimulus induces con-
current upregulation of RPL3 mRNA. This observation is in 
line with the concept of the “ribosomal code”, which postu-
lates that ribosomal function and specificity can be regulated 
based on ribosomal protein composition, post-translational 
modification of ribosomal components, and alternate rRNA 
forms, which in turn has an influence on subsets of mRNA 
that are preferentially translated (Mauro and Edelman 2002; 
Xue and Barna 2012; Sauert et al. 2015). Currently, we can 
only speculate about the specific mRNAs that are prefer-
entially translated by ribosomes containing RPL3L instead 
of RPL3, and further experimental studies are needed to 
determine how expression levels of RPL3L and RPL3 are 
regulated in skeletal muscle and heart tissue.

To date, no Mendelian disorder has been associated with 
mutations in RPL3L. Overall, RPL3L homozygous loss-
of-function variants are not commonly seen in the gno-
mAD (access date 03/04/2020) and TOPMed (access date 
03/04/2020) databases except for one homozygous variant, 
c.1167 + 1G > A, in intron 9 of RPL3L. This RPL3L vari-
ant has been detected in 347 of 275,594 alleles within the 
gnomAD database (MAF = 0.001259). Of note, this variant 

was recently associated with increased risk of atrial fibrilla-
tion (Thorolfsdottir et al. 2018). It induces alternative splic-
ing of RLP3L pre-mRNA, leading to skipping of coding 
exon 9 which results in an in-frame deletion of 40 amino 
acids, p.(Ser350_Met389del), in RPL3L. Analyzing RPL3L 
expression in cardiac RA tissue of two heterozygous carriers 
of the c.1167 + 1G > A variant, Thorolfsdottir et al. showed 
that the alternatively spliced RPL3L transcript is stable and 
expressed in approximately equal abundance compared to 
the full-length RPL3L transcript (Thorolfsdottir et al. 2018). 
They suggested that deletion of these 40 amino acid might 
disrupt the interaction of RPL3L-containing ribosomes with 
the endoplasmic reticulum, thereby leading to reduced ribo-
somal function (Thorolfsdottir et al. 2018).

This is, to the best of our knowledge, the first study 
to provide evidence of a cytoplasmic ribosomal protein 
involvement in the pathogenesis of non-syndromic cardio-
myopathy. The presented data, along with the common phe-
notype of severe neonatal DCM with rapid decompensation 
in all three families, strongly support pathogenicity of the 
described RPL3L variants; still, additional functional studies 
are needed to analyze the detailed pathomechanisms under-
lying RPL3L-associacted DCM. Furthermore, confirming 
the involvement of ribosomal factors in the pathogenesis of 
DCM possibly reveals a novel disease-associated mecha-
nism, which might lead to the identification of additional 
genetic factors involved in the pathogenesis of DCM, and, 
additionally, pave the way for novel therapeutic options and 
treatment strategies for patients with DCM.
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