
ORIGINAL PAPER

Performance of longitudinal item response theory models
in shortened or partial assessments

Leticia Arrington1,2 • Sebastian Ueckert1 • Malidi Ahamadi2 • Sreeraj Macha2 • Mats O. Karlsson1

Received: 5 March 2020 / Accepted: 18 June 2020 / Published online: 2 July 2020
� The Author(s) 2020

Abstract
This work evaluates the performance of longitudinal item response (IR) theory models in shortened assessments using an

existing model for part II and III of the MDS-UPDRS score. Based on the item information content, the assessment was

reduced by removal of items in multiple increments and the models’ ability to recover the item characteristics of the

remaining items at each level was evaluated. This evaluation was done for both simulated and real data. The metric of

comparison in both cases was the item information function. For real data, the impact of shortening on the estimated

disease progression and drug effect was also studied. In the simulated data setting, the item characteristics did not differ

between the full and the shortened assessments down to the lowest level of information remaining; indicating a consid-

erable independence between items. In contrast when reducing the assessment in a real data setting, a substantial change in

item information was observed for some of the items. Disease progression and drug effect estimates also decreased in the

reduced assessments. These changes indicate a shift in the measured construct of the shortened assessment and warrant

caution when comparing results from a partial assessment with results from the full assessment.
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Introduction

Composite scores from clinical assessments which use

rating scales are a common method for the evaluation of

ability or disability in a wide range of therapeutic areas.

Generally, they aim at capturing different aspects of a dis-

ease by combining a variety of symptoms into a single

composite score. These scores are used in clinical practice

for diagnosis and to guide treatment of patients, but are also

common endpoints in clinical trials. The statistical data

analysis of clinical trials with composite assessments as

endpoints is traditionally based on the total composite score

only. Similarly, pharmacometric models of disease

progression historically described the evolution of disease

with total score [1–3]. In recent years, however, item

response (IR) theory has gained increased interest in

application within pharmacometric frameworks [4]. IR

originated in the field of psychometrics where it is a com-

mon methodology for the evaluation of achievement test

outcomes. IR analysis is a statistical methodology used in

the interpretation of clinical assessments that seeks to

establish a relationship between the single underlying hid-

den latent variable, the concept we wish to measure (e.g.

cognitive ability or disability), and the item (i.e. questions)

responses in a measure [5]. The latent variable is not

directly observed and can be viewed as an abstract concept.

IR acknowledges the composite nature of the score by

describing the response for each item and, hence, is also

well adapted to studying shortened and reduced assess-

ments. The interest for such shortened assessments has been

increasing over the past years both in clinical practice [6]

and demonstrated by Younis et al. (Food and Drug

Administration) in their evaluation of modified positive and

negative syndrome scale (PANSS) in schizophrenia in

2018. As well as in academia with multiple publications

pointing to the possibility of decreasing assessment burden
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without significant loss of information [7, 8]. This work is

concerned with the consequences of such reductions, both

in terms of measured construct as well as in regards to the

stability of the pharmacometric model.

In its simplest form, an IR model assumes that the

probability for a response to an item can be described

through an item characteristic function (ICF) which

depends on item-specific parameter values and a subject-

specific latent variable that is shared across items. Phar-

macometric IR models use the same concepts, but in

addition try to capture how the latent variable changes over

time and under treatment. There are many examples where

the application of the IR methodology in pharmacometrics

has been utilized to better understand disease progression

characteristics of a disease using different scale types; e.g.,

ADAS-COG score in Alzheimer’s disease (AD) [7], MDS-

UPDRS (Movement Disorder Society Unified Parkinson’s

Disease Rating Scale) in Parkinson’s Disease [9, 10], and

Kurtzke Expanded Disability Status Scale (EDSS) score in

Multiple Sclerosis [8]. Longitudinal IR models have been

shown to provide higher power to detect a drug effect

compared to analyses based on the total score only (as-

suming adequate model fit) [7, 8, 10]. In these pharmaco-

metric IR models 20–40% fewer subjects were required to

achieve 80% power compared to total score [7, 11, 12].

All parametric modelling approaches implicitly assume

a weighting of the data used during parameter estimation

and Fisher information quantifies this weighting. The

Cramer-Rao bound also establishes an explicit link

between Fisher information and the maximal attainable

precision of a parameter [13, 14]. Within the IR frame-

work, Fisher information can be calculated on the item

level as a function of the latent variable and reveal how

much data for each item is contributing in a particular

disability or disease severity group. This framework is

therefore well suited in comparing the information content

of different assessments. An assessment with twice the

Fisher information requires only half as many subjects to

achieve the same parameter precision, giving this seem-

ingly abstract quantity a very relatable meaning. It is

therefore not surprising, that the quantification of infor-

mation of the individual assessment components is a pop-

ular topic in the pharmacometric application of IR. Often,

authors find that the majority of the information is con-

tained in a fraction of the total number of items [7, 8]. In

addition to reducing assessment burden, subsets of an

assessment can also be of interest for other reasons, such as

clinical relevance to specific component of the disease,

reduction of noise contributed by less informative items or

anticipated target of drug effect. Provided the increased

development effort of a longitudinal IR model compared to

a total score model, utilizing only part of the assessment

might also be appealing.

The behavior of longitudinal IR models in shortened

assessments however, has not been sufficiently studied.

Few studies that evaluate the proposed shortened assess-

ments typically do so in a simulation setting only [8]. It

therefore remains largely unclear how these shorter

assessments perform in terms of estimation and in com-

parison to a model for the total assessment. The aim of this

work was to help understand these aspects.

The dimensionality (i.e., number of latent variables or

dimensions) of the data depends on both the assessment

and the subject sample [15]. Components of a well

designed assessment are considered unidimensional when a

single latent variable dominates the influence of the prob-

ability of a subjects’ response to a series of items (i.e.

motor score). When a unidimensional IR model is applied

to data from an assessment that may be capturing more

than one latent trait, which is often the case with real data,

the model estimates reflect a composite or average measure

of the multiple latent variables [16]. Simultaneously, our

work can also yield insights into the behavior of IR models

for clinical assessments with few items.

The real world clinical data for this work comes from

the observational Parkinson’s Progression Markers Initia-

tive (PPMI) study. The PPMI study evaluated the level of

disability of the participants using the MDS-UPDRS, a

revision of the UPDRS scale, designed to detect smaller

changes in disease in patients with early or milder

impairment. Our study is based on the work of Buatois

et al. [10] which developed a longitudinal IR model for

parts I to III of the MDS-UPDRS scale [17] data from the

PPMI study. Here, we utilize both the real clinical trial data

and the model component for part II and III, the motor item

subscale, only. In this work, we will focus on methodologic

questions and avoid clinical interpretations.

Our overall working scheme was to gradually reduce the

number of items from the full assessment scale and eval-

uate the impact on different model components, first the

item response component then the latent variable model.

We start our evaluation using simulated data and then

proceed to using real data. In our workflow, Fisher infor-

mation was of special importance. It was used both as

means of reducing the assessment in a directed manner as

well as a metric to evaluate the impact of the shortening.

Methods

Data

Data used for this evaluation were obtained from the

Parkinson’s Progression Markers Initiative (PPMI) data-

base (www.ppmi-info.org/data) version available as of

February 2015. PPMI is an observational study sponsored
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and partially funded by The Michael J. Fox Foundation for

Parkinson’s Research (MJFF). Only the de novo PD

patient’s data was used for analysis. The de novo PD

patients were stage I or II based on Hoehn & Yahr stage

classification and had not used PD medication for more

than 60 days prior to baseline [10]. This resulted in

N = 423 de novo PD patients where each patient con-

tributed to each item’s assessment measurement across 10

visits up to trial month 48.

Only the motor sub-scale was used for analysis, thus

reducing the number of items for evaluation from 65 to 34.

Many aspects regarding data handling were retained from

the previously published analysis; Item 3.11 freezing gait

was excluded during analysis because greater than 98% of

the responses were zero, items with repeat measurement

assessments were included in the analysis and data for

response categories were consolidated when less than 2.5%

of the subjects had responses in the highest or more severe

categories for specific items [10]. Items were renumbered

from their MDS-UPDRS item classification numbers to

1–65 starting from Part I.

Longitudinal IR model

The motor subcomponent of the MDS-UPDRS unidimen-

sional (i.e., using a single latent variable) IR model

developed by Buatois et al. was used in this work [10]. This

model described the PPMI data well as demonstrated by

simulation based diagnostics [10]. The IR model was

developed using assessments prior to subjects beginning

treatment or at time points when the assessment was

completed pre-dose. For subject i and item j, the graded

response model describes the probability of achieving a

response of at least s at time point tk as

P Yijk � sjDi tkð Þ
� �

¼ eaj Di tkð Þ�bj;sð Þ

1 þ eaj Di tkð Þ�bj;sð Þ ð1Þ

and, consequentially, to achieve a score of exactly s as

P Yijk ¼ sjDi tkð Þ
� �

¼ P Yijk � sjDi tkð Þ
� �

� P Yijk � sþ 1jDi tkð Þ
� �

ð2Þ

where DiðtkÞ is the subject’s time-dependent latent variable

value, aj is the item-specific discrimination parameter and

bj;s is the threshold parameter for that specific item and

score. The evolution of the latent variable over time was

evaluated with models with and without treatment effect;

Di tkð Þ ¼ D0
i þ aitk ð3Þ

Di tkð Þ ¼ D0
i þ aitk þ E0

i ð4Þ

where D0
i is the baseline latent variable value, ai is the

disease progression rate and E0
i is the latent variable offset

for the symptomatic drug effect (assumed 0 when subjects

were not treated). All three parameters were assumed to

follow a normal distribution in the population on the logit

scale.

Representative diagnostic plots for ICC and model

visual predictive checks (VPC) to demonstrate adequacy of

model fit are presented in Supplementary Online Resource

2.

Item information

For each item j the item information function was calcu-

lated as minus the expectation of the second derivative of

the log-likelihood [18], i.e.,

Ij Dið Þ ¼ �
Xsj

s¼0

P Yij ¼ sjDi

� � o2 logP Yij ¼ sjDi

� �

oD2
i

ð5Þ

where P Yij ¼ sjDi

� �
is the response (s) probability for the

disability Di as defined above. Furthermore, the population

information,Ij was defined as the item information inte-

grated over the entire disability range, i.e.,

Ij ¼
Z1

�1

p Dið ÞIj Dið ÞdDi ð6Þ

where p Dið Þ is the probability density of the latent variable

distribution in the population.

Workflow

All model parameters in the longitudinal IR model,

described above, were simultaneously estimated from the

data. This setting, with all items present, will be referred to

as the ‘‘100%’’ scenario moving forward. Items were then

ranked in order of calculated population Fisher information

content from most informative to least (Table 1). In the

subsequent steps, subsets of the data with fewer items were

analyzed using the same model. The item reduction pro-

ceeded in approximately 10% information content decre-

ments, removed from the lower end and as a sensitivity

analysis the upper end of the item information ranking.

The behavior of the reduced-item analyses were evalu-

ated for both the item response model and the latent vari-

able model. The former was judged by graphically

comparing the item level efficiency calculated as the ratio

of the item information function for the reduced and the

100% scenario. For the latent variable model, stability was

assessed by comparing the parameter estimates for the

mean slope and drug effect of the reduced-item analyses

and the 100% scenario.

The evaluation was done for real data as well as using

data simulated from the 100% scenario model.

Journal of Pharmacokinetics and Pharmacodynamics (2020) 47:461–471 463

123



Implementation and parameter estimation of the above-

described model was performed using Nonlinear mixed

effect model software (NONMEM) version 7.4.2. All

parameters were jointly estimated using the Laplacian

(second order conditional) estimation method.

Results

Item information

The item information curves as a function of disability as

estimated under the 100% scenario are represented in

Fig. 1. In general, an item information curve visualizes the

importance of observations from a subject with a particular

disability level for the estimation of the latent variable

Table 1 Item level ranking of MDS-UPDRS components by information content and total cumulative % information content for items on motor

subscale (34 Items)

Cumulative % of total information remaining

Item Test name Information at baseline

for latent variable

Removal from most

informative direction

Removal from least

informative direction

49 Global Spont. of movement 0.58 100

35 Finger Tap-left hand 0.57

37 Hand Move-left hand 0.50 81

18 Dressing 0.42 19

39 Pronation-supine-left hand 0.42 71

31 Rigidity_LUE 0.41 29

28 Facial expression 0.37

29 Rigidity_Neck 0.33 59

36 Hand move-right hand 0.32 41

34 Finger Tap-right hand 0.32 51

41 Toe tap-left foot 0.32 49

24 Getting out of bed 0.30

33 Rigidity_LLE 0.29 41

43 Leg agility-Left leg 0.29 59

42 Leg agility-Right leg 0.27

40 Toe tap-right foot 0.24

48 Posture 0.21 29

27 Speech 3.1 0.21 71

32 Rigidity_RLE 0.21

17 Eating tasks 0.20

25 Walking and balancing 0.20 20

38 Pronation-supine-right hand 0.19 80

30 Rigidity_RUE 0.19

21 Doing hobbies and other activities 0.19

22 Turning in bed 0.16

19 Hygiene 0.16 10

14 Speech 0.15 90

45 Gait 0.14

15 Saliva and drooling 0.14

44 Arising from chair 0.13

20 Handwriting 0.10

26 Freezing 0.09

16 Chewing and swallowing 0.08

47 Postural stability 0.04 100

Items on row with percentage are also included in the information content decrement step
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parameters. The overall importance of an item can be

gauged from the amplitude of the item information curve,

whereas the importance of the item in different disability

populations is reflected in the location of maxima and

minima within an item information curve. There are some

items that are more informative for the center of the pop-

ulation (i.e. item 49 ‘‘Global Spontaneity of Movement’’)

and others that are more informative in the lower or higher

disability populations or the tails of the disability

continuum.

The ranking of items by their population information

content is presented in Table 1. Item 49 ‘‘Global Spon-

taneity of Movement’’ was found to be the most informa-

tive item and item 47 ‘‘Postural Stability’’ the least

informative. The ratio in information content between the

most and least informative item is[ 10. Furthermore, the

top 10 most informative items were found to contain more

than 50% of the total information. There is a generous

distribution of information across the 34 items; however, it

appears that in each 10% subset there are several items

with equal levels of information.

Table 1 also presents the cumulative information in the

reduced-item scenarios as well as the inclusion of the items

in the different scenarios. The minimum number of items

remaining was 3 items (approximately 20% information

remaining) when removed from the least informative item

direction and 8 items (approximately 10% information

remaining) when removed from the most informative item

direction.

Performance for simulated data

The estimation of the item parameters under the reduced

information scenarios showed only minor differences when

using simulated data. The efficiency, i.e., the ratio of the

Fisher information for the reduced and full scenario, was

found to be close to 100% for all items (Online Resource

3). Even for the most extreme scenario with only 10%

percent of the initial information content, differences in
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efficiency were less than 10% (for the disability range

between - 2 and 2).

This result indicates that the estimation of the item

parameters for a particular item was largely unaffected by

the presence or absence of other items in the assessment.

Figure 2 reaffirms this finding. The figure shows the

decrease in efficiency when removing items from the

assessment for both real and simulated data. For simulated

data, the line closely aligns with the line of identity, i.e., a

reduction in the information content yields a drop in effi-

ciency of approximately the same value.

Performance for real data

For real data, the impact of removing items from the

assessment on the information content of the remaining

items is shown in Fig. 3, for the removal of items from the

lower end of the ranking, and Fig. 4, for the removal from

the upper end. Both figures display efficiency, an item with

the same information profile under the reduced and the

100% scenario will, therefore, show as a straight line at

100%. It is evident in both figures that the information

profile for some of the items is changing. In general, dif-

ferences seem to be larger when removing the most

informative items first (Fig. 4). It also appears that items

with considerable information for the higher disability

populations (disability[ 2) are more affected by a reduc-

tion in the total information than items that are most

informative for the center of the population (- 2\ dis-

ability\ 2). An example for the latter can be seen by

comparing item 49 ‘‘Global Spontaneity of Movement’’

and item 35 ‘‘Finger Tap-left hand’’ which shows an

increase in efficiency upwards to 300% at the lowest total

information level remaining in Fig. 3.

A general trend for items that do exhibit change is the

increase in efficiency when the total information is

reduced. This can be seen from the increasing amplitude of

the information efficiency curves with decreasing infor-

mation content of the analysis dataset. However, what is

seen in many cases is that when there is an increase in

information efficiency for a portion of the population there

is a decrease observed in the opposite extreme end of the

disability population. The effect is generally small when

the percentage of removed information content is small;

however below approximately 60% information content

remaining the increase in relative importance of an item

can be substantial. An example is item 35 ‘‘Finger Tap-left

hand’’ in Fig. 3. The efficiency increases with every

reduction in overall information content, up to a value of

larger than 200% relative to the 100% scenario.

In terms of efficiency it is also worth noting that in cases

where an item is not initially informative in a portion of the

Fig. 2 Efficiency on the population level for Real and Simulated data at each level of Reduced Information Content scenarios
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population (Fig. 1) large changes observed in efficiency are

based on the small magnitude of information contributed.

Within an item, the relative importance of specific dis-

ability populations of subjects is rather stable with the

reduction of information content. As an example, one can

consider again item 35 ‘‘Finger Tap-left hand’’ in Fig. 3.

Most of the information comes from subjects within the

disability range of 0 to 2 independent of the overall

information content of the assessment. Some notable ex-

ceptions are item 37 ‘‘Hand Move-left hand’’ in Fig. 3 and

item 14 ‘‘Speech’’ in Fig. 4. When the total information is

large, item 37 efficiency is between 120 and 200% even

from subjects with disability values around 4. However, for

scenarios with 40% information and less, the contributed

information from item 37 at a disability value of 4 is

reduced as observed by the efficiency dropping below

100% approaching 20% when items are removed from the

least informative direction. Item 14 ‘‘Speech’’ shows the

opposite effect when items are removed from the most

informative direction, with an increasing contribution for

high disability populations when the total information

content decreases.

The increase in information content for the majority of

the items under the reduced information scenarios is also

clearly visible in Fig. 2 when comparing the real data

setting with the simulation setting. While for the simulated

setting, the drop in efficiency corresponds to the expected

loss in information due to the removal of items, for the real

data efficiency is always higher than expected. When

removing items from the least informative direction, the

divergence between the simulated and the real data setting

occurs already at the 90% scenario. For the removal from

the most informative direction, simulated and real data

remain in agreement until the 70% information scenario.

This difference is most likely due to the difference in the

number of removed items, 8 in the first case (to achieve a

drop of 10% when removing from the bottom) and 5 in the

second (to achieve a drop of 30% when removing from the

top).
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The results for the real data highlight that for a particular

item the estimation of item parameters is not independent

of the presence or absence of other items in the assessment.

This behavior is in contrast to the simulation setting. The

information content for real data and hence the relative

weighting of the data, will readjust when dropping items

from an assessment.

Consequences for the latent variable model

Estimates for the mean disease progression rate and the

mean symptomatic drug effect under the 100% information

scenario and when items have been eliminated from the

analysis either starting with least informative items (left

panels) or with the most informative items (right panels)

are represented in Fig. 5. Under both conditions, the

overall trend is a decrease of the estimated disease pro-

gression rate as well as for the estimated symptomatic drug

effect (baseline offset) when total information content is

reduced.

Figure 5 also depicts the 95% confidence interval based

on the standard error of the estimates. Considering this

uncertainty, one could state that when removing the least

informative items first, there is no significant difference in

mean population parameters until about 60% information

content remaining. When removing the most informative

items first, one can even go down to 40% remaining

information without any significant change.

Tables for the disease progression and drug effect

parameter estimates, IIV and relative standard errors (RSE)

of each of the models with/without drug effect are pre-

sented in the Supplementary Online Resource 1.

The impact of item reduction was also evaluated on

individual parameter estimates (results not shown). The

empirical Bayes estimates indicate small imprecision

around individual estimates for slope as information was

reduced compared to the 100% scenario; however, at an

item parameter level the model appears to still be robust,

with ETA shrinkage of less than 20% at the 100% and 50%

information levels and 40% ETA shrinkage at the lowest
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level of information remaining for both item information

removal directions.

Discussion

In this work, we set out to study the performance of IR

models in shortened assessments. We aimed at answering

whether with reduced assessments, models can still be

reliably estimated and how a reduced assessment model

compares to the one developed for the full assessment. The

answer to the first questions is a clear ‘‘yes’’, the answer to

the second one is more complex.

Regarding the stability of the model, it is very clear from

the results obtained with the simulated data that the

removal of items from the assessment has very little impact

on the estimation of the ICCs for the remaining items. Our

results show that when going from a large 34 item

assessment to an assessment with only 4 items (20%

information remaining when removing from the lower

end), the characteristics of the 4 most informative items

can still be reliably estimated. These are encouraging

findings for the applicability of IR modeling to small

assessments.

Our results also show that for real data it is more

complicated, with a few notable consequences of

shortening assessments: (i) the increase in item information

content for some of the remaining items compared to

others, (ii) the increase or decrease in information content

for a specific level of disability, and (iii) the observed

change in mean values for the latent variable parameters.

These outcomes are caused by two non-trivial IR phe-

nomena that are important to be aware of when considering

analyzing a subset of an assessment.

First, dropping items that provide a considerable amount

of information in the tails of the disability distribution

makes it harder to estimate the latent variable value of

subjects that are located at these tails. This is most likely

why item 37 ‘‘Hand Move-left hand’’ is not informative

any longer for subject with a disability value of 4 after the

total information content decreases below 50% (Fig. 3).

Above 50%, a sufficient number of items in the assessment

provide information for high disability values to pinpoint

subjects even around a value of 4. Once most of these items

are removed from the assessment, however, these extreme

subjects shrink toward the center of the distribution and the

threshold (i.e. location) parameters larger than 2 cannot be

estimated precisely any longer. It might also explain why

the disease progression rate estimates decrease with an

increasing number of dropped items. When all items are

present in the assessment, subjects can be tracked
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Fig. 5 Estimated population mean disease progression rate (latent

variable/year) and Symptomatic drug effect estimates and 95% CI

(shaded area) for observed motor subscale data at each level of

reduced information content with least informative(left panel), Most

Informative(right panel) removed first
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accurately while progressing along the disability contin-

uum. However, this is not true any longer when items with

sensitivity at higher disabilities are removed. Once subjects

reach a certain disability it appears as if they do not pro-

gress any longer but in reality they just cannot be located

beyond that disability. This apparent lack of progression is

then reflected in a decreased progression rate and a

reduction in drug effect. As items are removed the ability

to identify a drug effect continues to diminish. Naturally, it

is also possible that some items may have been more

sensitive to drug effect.

The second phenomenon explains the increase in

information content for some items when other items are

removed. For clinical assessments of complex conditions,

assessments will generally measure a combination of fac-

tors or measure along multiple dimensions of a hypothet-

ical symptom space. Each item will measure a slightly

different combination of symptoms. When an IR model

with one latent variable is used to describe the data (i.e., a

unidimensional IR model), the meaning of the latent vari-

able, i.e., what it represents, will be a weighted average of

what all items measure. Item information in this situation

represents how well each item measures along this average

construct. The dominant dimension is measured by all

items, but the secondary dimensions may only be influ-

enced by a subset of items [19]. Changing the assessment

might change the direction of the average construct and,

hence, the information content of the items. In the 100%

scenario above, the average construct is a compromise of

all items. When few items are left in the assessment, there

is less need for compromise and the average construct can

align better with some of the remaining items. In conse-

quence, the information content of these items increases.

From a practical perspective, however, one should note that

the reduced assessment actually measures a slightly dif-

ferent construct than under the 100% scenario. Therefore

one needs to be cautious when comparing analysis results

utilizing different item subsets.

Our results were obtained for a specific dataset of a

subset of the MDS-UPDRS assessment in Parkinson’s

disease. The phenomena identified, however, are general.

Dropping items informative in the tails of the distribution

will reduce the ability to locate subjects in these tails and

will hamper the possibility to track subjects progressing

over time. Removing items will also change the measured

construct, rendering some items more and others less

influential. In summary, there is more to take into account

than the information content, even from a purely quanti-

tative perspective, when considering shortening an assess-

ment or analyzing only parts. This is also true if a

composite score is used for the analysis. A composite score

based analysis does not use the same implicit weighting of

the item-level data, but items that are insensitive to the

latent variable (i.e., uninformative) will also not mean-

ingfully contribute when their scores are added together.

In addition to the quantitative arguments considered in

this work, other critical aspects such as concordance to full

scale, dimensionality, and patient population differences

need to be taken into account when reducing scales. In

order to determine the utility of shortening an assessment,

input from clinicians and disease area experts is essential.

Also it is necessary to evaluate a large dataset consisting of

multiple trials to more effectively identify which items

could be considered for removal in future analysis [20].

From the perspective of drug development it is also

important to have trials with positive results to assure no

loss in detecting known drug effect when specific items are

removed. Noting that in some therapeutic areas for exam-

ple neurological diseases (i.e. schizophrenia, Alzheimer’s);

drug effect may be small and only a few positive trials may

exist. The full clinical endpoint scale has been held as the

gold standard by which marketed drugs have been

approved therefore utilizing shortened assessments for new

therapeutics as a primary or secondary endpoint would

require much discussion and buy in from regulators. Lastly

the shortened assessment should not be viewed as a

replacement for the original scale, and the clinical impli-

cations of identifying a positive result with the shortened

assessment and negative result from the full clinical scale

should be well understood. It is important to take into

account the IR concepts described above along with these

additional considerations to understand the impact of

removal of items when interpreting the results.

Our findings could serve as a message of caution against

a too simplistic approach when considering shortening an

assessment. On the other hand, one could also imagine

exploiting the multidimensionality issues described above

to increase the sensitivity of the assessment with respect to

a particular symptom dimension. If a novel treatment is

expected to affect mostly the symptom dimensions mea-

sured by ‘‘Finger Tap-left hand’’ and ‘‘Hand Move-left

hand’’ then only including items that align well with these

items could increase the power of the analysis. A deeper

exploration of circumstances when dropping items could

be beneficial is a possible extension of this work.

Conclusion

The IR model was able to successfully estimate parameters

using the reduced information and item scenarios. How-

ever, interpreting the results and comparing them to the

results obtained for the full assessment is more challenging

and requires careful consideration of the phenomena

described in this work. An understanding of the trade-off

between information gained through re-alignment of the
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average disease disability dimension and information loss

due to removal of items is required.
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