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Abstract
Asthma is defined as a heterogeneous disease, usually characterized by chronic airway inflammation. Long noncoding RNAs
(lncRNAs) play important roles in various biological processes. To know more about the relationships between lncRNAs and
asthma, gene microarray analysis was performed to screen differentially expressed lncRNAs between the lung tissue of ovalbu-
min (OVA) mice and control mice. Further studies showed that downregulating differentially expressed lncRNA-AK149641 by
adeno-associated virus 6 (AAV6) in OVAmice inhibited airway inflammation, with improved airway compliance and resistance,
diminished infiltration of inflammatory cells, as well as less secretions of mucus, tumor necrosis factor alpha (TNF-α) and
interleukin-6 (IL-6). Moreover, the activity of nuclear factor-kappa B (NF-κB) in the lung tissue was reduced after downregu-
lating lncRNA-AK149641. In conclusion, we proposed that downregulation of lncRNA-AK149641 attenuated the airway
inflammatory response in an OVA-induced asthma mouse model, probably in association with modulation of the NF-κB
signaling pathway.
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Introduction

Bronchial asthma are a heterogeneous group of respiratory
diseases, which is common among children and whose inci-
dence is increasing in developed nations (Wilson et al. 2006).
It is characterized by airway inflammation and airway
hyperresponsiveness (AHR) with symptoms including recur-
rent wheeze, cough, and shortness of breath, together with
variable expiratory airflow limitation (Kim et al. 2010). It
has been widely accepted that inflammatory cells, such as

eosinophils and mast cells (Doherty and Croft 2011; Galli
et al. 2011; Kim et al. 2010), as well as various cytokines,
including TNF-α and IL-6, take part in the airway inflamma-
tory response of asthma (Doganci et al. 2005; Rameshwar
et al. 2014; Rincon and Irvin 2012).

LncRNAs are RNAs with more than 200 nucleotides with-
out a protein-coding capability (Yang et al. 2014). Due to a
lack of reading frames, lncRNAs were initially considered
non-functional. However, accumulating evidence has sug-
gested that they participate in a variety of biological and path-
ological processes, such as cancer (Zhou et al. 2015c), self-
renewal of embryonic stem cells (Tu et al. 2018), metabolism
(Yin et al. 2015), and immune responses (Houtman et al.
2018). Moreover, an increasing number of studies have re-
ported that lncRNAs take part in asthmatic airway inflamma-
tion. For example, the lncRNA BCYRN1 promotes the pro-
liferation and migration of asthmatic rat airway smooth mus-
cle cells (ASMCs) by upregulating the expression of transient
receptor potential (TRPC1) (Zhang et al. 2016).

TNF-α and IL-6, highly expressed in the asthmatic subjects
(Doganci et al. 2005; Russo and Polosa 2005), are important
pro-inflammatory cytokines in regulating asthma pathophysi-
ology. Studies show that single nucleotide polymorphisms
(SNPs) of them may be risk factors for asthma susceptibility
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(Chiang et al. 2013; Daneshmandi et al. 2011; Li et al. 2006).
IL-6, an inhibitor of T helper 1 (Th1) differentiation, is a
significant modulator of effector CD4+ T cell differentiation
and IL-4 production during the process of Th2 differentiation.
The ability of regulating Th1 and Th2 differentiation makes
IL-6 become a crucial factor in the onset of asthma (Dienz and
Rincon 2009; Lee et al. 2017; Neveu et al. 2010).

In our previous unpublished study, we screened differen-
tially expressed lncRNAs in LPS-stimulated P815 mast cells
and control P815 mast cells. Subsequent study in vitro indi-
cated that after downregulating the differentially expressed
lncRNA-AK149641 in P815 mast cells, the concentrations
of TNF-α and IL-6 were significantly reduced in supernatants,
suggesting roles of lncRNA-AK149641 in inflammatory re-
sponse. In this study, microarray analysis also showed that
lncRNA-AK149641 expression was twofold higher in OVA
mice compared to control mice.

Based on the previous study, in order to further investigate
the function and possible mechanism of lncRNA-AK149641
in mediating the airway inflammatory response in vivo, an
OVA-induced asthma mouse model was established and
studied.

Materials and methods

Mice

Specific pathogen-free (SPF) female BALB/c mice, 6–8-
week-old, were purchased from the animal core facility of
Nanjing Medical University (Nanjing, China), and housed in
pathogen-free conditions. All mice were fed with OVA-free
food and water for approximately one week before the exper-
iments were started. The study reported here complies with
ethical requirements and is permitted by the Animal Ethical
and Welfare Committee (AEWC) of Nanjing Medical
University (Approval No. IACUC-1703005).

Establishment of OVA-induced asthma mouse model

Mice were sensitized and challenged as described previously
(Li et al. 2015; Suh et al. 2016) with slight modification. That
is, BALB/c mice were sensitized at day 0 and day 14 by
intraperitoneal (i.p.) injections of the model allergen OVA
(V grade) (Sigma-Aldrich, St. Louis, MO, USA) (20 μg
OVA, 2 mg Al(OH)3 plus phosphate buffered solution
(PBS) with a total volume of 0.2 ml). By using an ultrasonic
nebulizer (PARI GmbH, Starnberg, Germany), mice were
challenged for 20–25 min via the airway by an aerosol
consisting of 1% OVA on four successive days (day 27 to
day 30). Non-OVA mice received the same schedule for sen-
sitization and challenge with PBS instead of OVA.

LncRNA microarray assay

Triplicate RNA samples extracted from OVA mice and normal
mice were used for lncRNA microarray assays. It was per-
formed by Kangchen Bio-tech Co., Ltd. (Shanghai, China).
The thresholds set to identify upregulated or downregulated
genes were fold changes of ≥2.0 or ≤ 0.5, respectively.

AAV6

Recombinant AAV6, with strong affinity for lung tissue and
expressed permanently, acted as a vector. It was constructed
and packaged by Hanbio Biotechnology Co., Ltd. (Shanghai,
China), with a titer over 1 × 1012 vg/ml, containing green
fluorescent protein (GFP) expression sequence label and se-
quence of interest. The interest sequence referred to invalid
sequence (shRNA-NC) or interference sequence of lncRNA-
AK149641 (shRNA-AK149641). ShRNA-AK149641 was
used to downregulate the expression of lncRNA-AK149641,
while shRNA-NC, without biological significance, was used
as control. The sequences of shRNA-NC and shRNA-
AK149641 are summarized in Table 1.

Infection of AAV6

Two days before the first sensitization (day −2), mice were
infected with AAV6 to express the interest sequences. After
the mice were fully anesthetized (4% chloral hydrate, 0.1 mg/
10 g) by i.p. injections, with the help of endotracheal intuba-
tion, 50 μl liquid containing AAV6 was infused to the lung.

Groups

Mice were randomly divided into four groups for different
interferences: (1) the control mice (NC): infected by AAV6
containing the sequence of shRNA-NC (AAV6-shRNA-NC),

Table 1 The sequences of shRNA-NC and shRNA-AK149641

Sequence

shRNA-NC Top strand: gatccGTTCTCCGAACGTGTCACGT
AATTCAAGAGATTACGTGACACGT
TCGGAGAATTTTTTc

Bottom strand: aattcAAAAAATTCTCCGA
ACGTGTCACGTAATCTCTTGAATT
ACGTGACACGTTCGGAGAACg

shRNA-AK149641 Top strand: GatccGGTTTGACAGTAGC
TAGTTTTCAAGAGAAACTAGCTAC
TGTCAAACCTTTTTTc

Bottom strand: aattgAAAAAAGGTTTGAC
AGTAGCTAGTTTCTCTTGAAAACT
AGCTACTGTCAAACCg
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sensitized and challenged by PBS; (2) the mice with lncRNA-
AK149641 downregulated (shRNA-AK149641): infected by
AAV6 containing the interference sequence of shRNA-
AK149641 (AAV6-shRNA-AK149641), sensitized and chal-
lenged by PBS; (3) the OVAmice (OVA): infected by AAV6-
shRNA-NC, sensitized and challenged by OVA; (4) the OVA
mice with lncRNA-AK149641 downregulated (OVA+
shRNA-AK149641): infected by AAV6-shRNA-
AK149641, sensitized and challenged by OVA. Mice were
sacrificed 24 h after the last challenge.

Total RNA extraction and qRT-PCR analysis

Total RNA was extracted from the lung and other organs by
using TRIzol reagent (Invitrogen, Carlsbad, CA, USA), accord-
ing to the manufacturer’s instructions. One thousand nanograms
of total RNA was reverse transcribed in a final volume of 20 μl
using a RevertAid First Strand cDNA Synthesis Kit (Thermo
Fisher Scientific, Waltham, MA, USA). Quantitative real-time
polymerase chain reaction (qRT-PCR) was performed using the
FastStart Universal SYBR Green Master (Roche, Switzerland)
on an ABI 7500 system (Applied Biosystems, Carlsbad, CA,
USA) according to the manufacturer’s instructions. The expres-
sion level of lncRNA-AK149641 was normalized to that of
GAPDH and calculated using the 2-ΔΔCT method. The se-
quences of the primers used for lncRNA amplification are sum-
marized in Table 2.

Measurement of AHR to methacholine

Mice were anesthetized with 1.0% pentobarbital sodium by
i.p. injection 24 h after the last challenge, and then AHR was
measured by the AniRes2005 Lung Function System
(Bestlab, Beijing, China), according to the manufacturer’s in-
structions and previous study (Li et al. 2013). Airway respon-
siveness was examined by airway compliance (Cydn) and
expiratory airway resistance (Re).

Collection and analysis of bronchoalveolar lavage
fluid (BALF)

Airway inflammation was assessed 24 h after the last chal-
lenge. BALF was collected by delivering 0.8 ml cold PBS

through endotracheal intubation and gently aspirating the flu-
id. The lavage was repeated three times. The recovery rate was
about 80%.

Histopathological analysis

The lung tissues were obtained to evaluate pathological
changes in the lung parenchyma. Samples were fixed in 4%
neutral buffered formalin, processed, paraffin embedded, and
sectioned at 4-μm thickness. Three different stainingmethods,
that is, hematoxylin and eosin (H&E) staining, periodic acid--
schiff (PAS) staining, and immunohistochemical staining of
TNF-α and IL-6 were used for light microscopic evaluation,
as described in previous studies (Ford et al. 2001; Myou et al.
2003). All sample slides for comparison were assessed under
the same magnification.

Western blot analysis

Total protein was separated and transferred onto nitrocellulose
membranes (Millipore, MA, USA). Membranes were blocked
with 5.0% non-fat milk for two hours at room temperature and
incubated overnight at 4°Cwith specific antibodies. After
washing with TBST, membranes were incubated with a horse-
radish peroxidase-conjugated anti-rabbit antibody at room
temperature for two hours. Signals were detected on a gel
imaging system using an ECL western blotting substrate
(Thermo Fisher Scientific, Waltham, MA, USA).

Statistical analysis

Statistical analysis was performed by using SPSS 20.0 soft-
ware (SPSS Inc., Chicago, IL, USA). Comparisons of groups
were made using Student’s t test and multiple comparisons
were made using one-way analysis of variance (ANOVA).
A difference was considered statistically significant if the P
value was <0.05.

Results

Differentially expressed lncRNAs between the lung
tissue of OVA mice and normal control mice

To identify lncRNAs that may be involved in the inflam-
matory response of asthma, triplicate RNA samples extract-
ed from the lung tissue of OVA mice and control mice
were used for lncRNA microarray assays. The heat map
of significantly differentially expressed lncRNAs was pre-
sented in Fig. 1A. Differentially expressed lncRNAs were
classified into five categories: intergenic, exon sense-over-
lapping, intronic antisense, natural antisense, and bidirec-
tional lncRNAs. Bioinformatics analysis such as gene

Table 2 The sequences of the primers used for lncRNA amplification

Sequence

AK149641 Forward:5’-GATGCTCTGGAACTGGAGGT-3′

Reverse: 5’-GCGATGTCTCTGCTGGAAG-3′

GAPDH Forward:5’-GGTTGTCTCCTGCGACTTCA-3′

Reverse: 5’-TGGTCCAGGGTTTCTTACTCC-3′
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ontology (GO) was performed (Fig. 1B). The bar plot
showed the top ten of the fold enrichment value of the
significant enrichment terms. LncRNA microarray analysis
showed that lncRNA-AK149641 expressed differentially in
OVA mice (fold change: 4.52), consistent with our previ-
ous unpublished study in vitro. To further investigate the
distribution of lncRNA-AK149641 in vivo, different organs

from female BALB/c mice were obtained. QRT-PCR re-
vealed that expression of lncRNA-AK149641 in the lung
tissue was four to five times higher than that in other or-
gans, as shown in Fig.1C. Moreover, we also found that in
OVA mice, lncRNA-AK149641 upregulated significantly
(Fig.1D). Therefore, we focused on lncRNA-AK149641 in
the subsequent study.
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Fig. 1 Result of lncRNA microarray assays and distribution of
lncRNA-AK149641 in female BALB/c mice. (A) The heat map of sig-
nificantly differentially expressed lncRNAs between OVAmice and con-
trol mice. (Mice used for microarray assays were not infected with
AAV6; CON1, CON2, and CON3 stood for control mice; OVA1,
OVA2 and OVA3 stood for OVA mice). (B) The GO analysis, mainly

referred to biological process (BP). (C) Distribution of lncRNA-
AK149641 in different organs, qRT-PCR showed that lncRNA-
AK149641 expressed the most in the lung tissue. (n = 6). (D) LncRNA-
AK149641 expressed higher in OVA mice, as determined by qRT-PCR.
(*P < 0.05, n = 5)
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Establishment of mouse model

Protocol of establishment of OVA-induced asthma mouse
model was showed in Fig. 2A. Twenty-four hours after last
challenge, lung tissues and BALF were obtained, and AHR
was measured.

Infection of AAV6-shRNA-AK149641 decreased the
expression of lncRNA-AK149641 in the lung tissue

Analysis of frozen lung tissue slices showed that AAV6 suc-
cessfully infected the lung tissue, as GFP was observed by
using fluorescence microscopy (Fig. 2B). As shown in Fig.
2C, lncRNA-AK149641 expressed higher in OVAmice com-
pared with non-OVA mice. On the other hand, when infected
with AAV6-shRNA-AK149641, expression of lncRNA-
AK149641 was reduced, with statistical significance, suggest-
ing that AAV6-shRNA-AK149641 significantly downregu-
lated lncRNA-AK149641 expression in the lung tissue.

Downregulation of lncRNA-AK149641 attenuated
AHR in OVA mice

Twenty-four hours after the last challenge, AHR was mea-
sured following methacholine (Mch) challenge. As shown in
Fig. 3A, B, increasing concentrations of Mch significantly
decreased airway compliance (Cydn) and increased asthmatic
expiratory airway resistance (Re) in OVA mice. However,
when lncRNA-AK149641 was downregulated in OVA mice,
these changes were inhibited. Of note, downregulation of
lncRNA-AK149641 had no effect on non-OVA mice in as-
pect of AHR. Taken together, downregulation of lncRNA-
AK149641 showed a benefit on AHR in OVA mice.

Downregulation of lncRNA-AK149641 significantly
reduced total cell counts and eosinophil counts in
BALF of OVA mice

To identify whether lncRNA-AK149641 could affect the
infiltration of inflammatory cells in OVA mice, BALF

Fig. 2 AAV6 infected the lung
tissue and AAV6-shRNA-
AK149641 downregulated the
expression of lncRNA-
AK149641 successfully. (A)
Brief protocol for the establish-
ment of OVA-induced asthma
mouse model. (B) GFP was ob-
served in the lung tissue of mice
which infected with AAV6 (b),
while it was negative in the mice
without AAV6 infection (a), sug-
gesting that AAV6 infected the
lung tissue successfully. (C)
Different expressions of lncRNA-
AK149641 in the lung tissue with
different interventions, as deter-
mined by qRT-PCR. The expres-
sion of lncRNA-AK149641
expressed higher in the OVA
mice. Infected with AAV6-
shRNA-AK149641 showed low-
er expression, with statistical dif-
ference, suggesting that AAV6-
shRNA-AK149641 could suc-
cessfully down-regulate the ex-
pression of lncRNA-AK149641.
(*P < 0.05, **P < 0.01,
***P < 0.001, n = 6)
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samples were obtained and examined. As shown in Fig.
3C, OVA mice exhibited robust increases in total cell
counts and eosinophil counts, while downregulating
lncRNA-AK149641 significantly decreased the infiltration
of inflammatory cells. In contrast, non-OVA mice exhibit-
ed minimal inflammatory cell numbers in BALF and low-
er expression of lncRNA-AK149641 had no effect on eo-
sinophil counts. Thus, downregulation of lncRNA-
AK149641 attenuated asthmatic airway inflammation by
reducing infiltration of inflammatory cells.

Downregulation of lncRNA-AK149641 reduced infil-
tration of inflammatory cells and production ofmucus
in the lung tissue of OVA mice

Microscopically, exposure to OVA markedly increased
peribronchial infiltration of inflammatory cells compared with
non-OVA mice, and downregulation of lncRNA-AK149641
mitigated the infiltration, as shown by H&E staining (Fig.
3D), which was consistent with the result obtained in the
BALF analysis. With low expression of lncRNA-AK149641

Fig. 3 Downregulation of lncRNA-AK149641 attenuated the airway
inflammatory response in OVA mice. (A) Airway compliance (Cydn)
decreased and (B) airway resistance (Re) increased in the OVA mice,
while downregulating lncRNA-AK149641 weakened the changes, when
the concentration of methacholine was over 0.0125 mg/ml. (**P < 0.05,
n = 4). (C) Total inflammatory cells and eosinophils infiltrated higher in
BALF of OVAmice, while downregulating lncRNA-AK149641 reduced
the infiltrations. All the differences were statistically significant.
(*P < 0.05, **P < 0.01, ***P < 0.001; n = 6). (D) H&E staining of the

lung tissue. Downregulation of lncRNA-AK149641 mitigated the
peribronchial infiltration of inflammatory cells in OVA mice. (E) PAS
staining of the lung tissue. Downregulation of lncRNA-AK149641 mit-
igated the production of mucus in OVA mice. (F) Immunohistochemical
staining of TNF-α and (G) IL-6 in lung tissue. Downregulation of
lncRNA-AK149641 decreased expression of TNF-α and IL-6 in OVA
mice. (a. NC, b. shRNA-AK149641, c. OVA, d. OVA+shRNA-
AK149641). (n = 6)
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in OVA mice, PAS staining of the lung tissue showed that
mucus production was also dramatically decreased (Fig. 3E).
Based on histological evaluation, we concluded that downreg-
ulation of lncRNA-AK149641 mitigated the peribronchial in-
filtration of inflammatory cells and production of mucus.

Downregulation of lncRNA-AK149641 decreased
TNF-α and IL-6 in OVA mice

Concentrations of TNF-α and IL-6 in the lung tissue were
assessed by immunohistochemistry to determine whether
lncRNA-AK149641 affected their expressions. Both inflamma-
tory factors were highly expressed in OVA mice. However,

infection of AAV6-shRNA-AK149641 resulted in significantly
lower expression levels of TNF-α and IL-6 (Fig. 3F, G).

Activity of NF-κB signaling pathway decreased in
lncRNA-AK149641 downregulated mice

As shown in Fig. 4A, B, compared to non-OVAmice, expres-
sions of phosphorylated NF-κB p65 (p-NF-κB p65) and
MyD88, as determined by western blot, were increased in
OVA mice, whereas downregulation of lncRNA-AK149641
significantly decreased their expression levels. In summary,
we determined that lncRNA-AK149641 participated in the
asthma-associated inflammatory response via the NF-κB

Fig. 3 (continued)

361J Bioenerg Biomembr (2020) 52:355–365



signaling pathway probably by regulating expressions of p-
NF-κB p65 and MyD88.

Discussion

Microarray analysis revealed that there were differentially
expressed lncRNAs between the lung tissue of OVA mice
and control mice. Another study (Zhu et al. 2018) found 41
dysregulated lncRNAs (difference ≥ 2-fold) in blood samples
from patients with eosinophilic asthma, compared to the
healthy individuals’, supporting that lncRNAs were related
to asthma. Deeper researches focused on the mechanism on
how lncRNAs regulated asthma. Lin et al. proposed that
lncRNATUG1 promoted ASMCs proliferation and migration
via sponging miR-590-5p/FGF1 in asthma (Lin et al. 2019a).
LncRNATCF7was found to be contributed to the growth and
migration of ASMCs in asthma through targeting TIMMDC1/
Akt axis (Fan et al. 2019).

TNF-α and IL-6 are major pro-inflammatory cytokines in-
volved in asthma. In asthma mouse model, anti-TNF-α treat-
ment attenuated airway inflammation (Kim et al. 2006).
Moreover, anti-TNF therapy resulted in clinical improvement

of AHR, lung function and quality-of-life of patients with
asthma, together with a reduction in exacerbation frequency
(Berry et al. 2007). IL-6 is related to asthma severity. Sputum
IL-6 level was inversely related to FEV1 (% predicted) and
positively correlated with the Asthma Control Questionnaire
(ACQ) score (Morjaria et al. 2010).

LncRNAs and pro-inflammatory cytokines are closely as-
sociated with inflammation. Our results revealed that expres-
sions of TNF-α and IL-6 were lower in OVA mice upon
downregulating lncRNA-AK149641, suggesting that
lncRNAs and cytokines may cooperate to modulate inflam-
mation. In human abdominal aortic aneurysm, IL-6 induced
the activity of NOX2 in the aortic endothelial cells via the
induction of the lncRNA MALAT1 by an ERK-dependent
mechanism (Wang et al. 2016). The lincRNA THRIL, whose
expression levels correlated with the severity of Kawasaki
disease, induced expression of TNF-α by forming a ribonu-
cleoprotein (RNP) complex with hnRNPL (Li et al. 2014).

PAS staining showed that secretion of mucus decreased in
lncRNA-AK149641 downregulated OVA mice, suggesting
that lncRNA-AK149641 maybe a regulator of mucus produc-
tion. A recent study also revealed that linc00632 inhibited IL-
13-induced muac5ac production in nasal epithelial cells (Yue
et al. 2020).

LncRNAs and different cell types were involved in the path-
ophysiology of asthma. Studies showed that increased lncRNA
H19 inhibited the function of goblet cells, thus potentially con-
tributing to barrier dysfunction in intestinal pathologies (Yu
et al. 2020). H19 was found differentially expressed in OVA
mice in our microarray analysis, thus, H19 could also potential-
ly regulate inflammation of asthma by targeting goblet cells.
LncRNA-AK085865 depletion can ameliorate the inflamma-
tion of dermatophagoides farinae protein 1-induced allergic
asthma by modulation macrophage polarization (Pei et al.
2020). In human patients with asthma, lncRNA-MEG3 regu-
lated Treg/Th17 balance (Qiu et al. 2019). Many reports re-
vealed that lncRNAs regulated asthmatic inflammation through
ASMCs. Upregulation of MALAT1 took part in platelet-
derived growth factor (PDGF)-BB-induced ASMC prolifera-
tion and migration (Lin et al. 2019b). LINC00882 contributes
to PDGF-induced proliferation of human fetal ASMCs by en-
hancing Wnt/β-catenin signaling via miR-3619-5p.
Glucocorticoid is an important treatment for asthma, while
lncRNA GAS5 is a decoy for glucocorticoid receptor. In asth-
matic rats, GAS5 promotes ASMC proliferation by miR-10a/
BDNF signaling pathway (Zhang et al. 2018). Christine et.al.
found that proinflammatory mediators up-regulate GAS5 levels
in both airway epithelial and smooth muscle cell, and that de-
creasing GAS5 levels can enhance glucocorticoid action in air-
way epithelial cells.

The transcription factor NF-κB is an essential regulator in
inflammation, immunity, differentiation, and cell proliferation
(Ruland 2011). The NF-κB family consists of five subunits:

Fig. 4 Changes in protein expression of NF-κB signaling pathway
components in response to different lncRNA-AK149641 levels. (A)
p-NF-κB p65 and (B) MyD88 protein levels in lung tissue, as determined
by western blot. (repeated three times)
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p50, p52, p65 (RelA), c-Rel, and RelB. Among which, p65
(RelA), c-Rel, and RelB obtain transcription activation domain
and usually activate gene transcription. Recent studies have
shown that lncRNAs take part in pathophysiological process
by regulating NF-κB signaling pathway. Wang et al. reported
that lncRNA BANCR regulated NF-κB1 (P50/105) via miR-9
to influence cell growth and apoptosis in gastric cancer (Zhang
et al. 2015). LPS induced lncRNA, Mirt2, specifically inhibited
the K63-ubiquitination of TRAF6, and thus, inhibiting the acti-
vation of NF-κB and MAPK pathways to limit production of
proinflammatory cytokines (Du et al. 2017). LncRNA NKILA
inhibited IKK-induced IκB phosphorylation and NF-κB activa-
tion by forming a stable complex with NF-κB/IκB, thus
preventing over-activation of NF-κB pathway to suppress breast
cancer metastasis (Liu et al. 2015).

Downregulation of lncRNA-AK149641 in OVA mice re-
sulted in significant decrease in the protein levels of p-NF-κB
p65, providing a potential possibility that lncRNA-AK149641
regulates NF-κB, probably through p65 subunit. In endothe-
lial cells, TNF-α induced the expression of lncRNA ANRIL
through NF-κB/p65. When bound to the transcriptional factor
YY1, ANRIL regulated expressions of IL-6 and IL-8, down-
stream of NF-κB signaling pathway (Zhou et al. 2015b). In
mouse tubular epithelial cells, lncRNA Arid2-IR played the
promoter role in NF-κ B-dependent renal inflammation by
infecting IL-1β-induced phosphorylation and DNA binding
activity of NFκB/p65 (Zhou et al. 2015a). As for our study,
to better understand how lncRNA-AK149641 regulates
NF-κB signaling pathway, electrophoretic mobility shift as-
says (EMSA) and RNA binding protein immunoprecipitaiton
(RIP) will be done in the future.

In summary, downregulation of lncRNA-AK149641 in
OVA mice attenuated AHR, decreased infiltrations of inflam-
matory cells in BALF and peribronchia, reduced secretions of
TNF-α, IL-6 and glycogen, in association with decreased ex-
pression of MyD88, and p-NF-κB p65. We propose that
lncRNA-AK149641 regulates the asthma-associated airway
inflammatory response by targeting the NF-κB signaling
pathway.
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