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Abstract

Central nervous system (CNS) tumors come with vastly heterogeneous histologic, molecular, and 

radiographic landscapes, rendering their precise characterization challenging. The rapidly growing 

fields of biophysical modeling and radiomics have shown promise in better characterizing the 

molecular, spatial, and temporal heterogeneity of tumors. Integrative analysis of CNS tumors, 

including clinically acquired multi-parametric magnetic resonance imaging (mpMRI) and the 

inverse problem of calibrating biophysical models to mpMRI data, assists in identifying 

macroscopic quantifiable tumor patterns of invasion and proliferation, potentially leading to 

improved (a) detection/segmentation of tumor subregions and (b) computer-aided diagnostic/

prognostic/predictive modeling. This article presents a summary of (a) biophysical growth 

modeling and simulation, (b) inverse problems for model calibration, (c) these models’ integration 

with imaging workflows, and (d) their application to clinically relevant studies. We anticipate that 

such quantitative integrative analysis may even be beneficial in a future revision of the World 

Health Organization (WHO) classification for CNS tumors, ultimately improving patient survival 

prospects.
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1. INTRODUCTION

Gliomas are the most common primary central nervous system (CNS) malignancies. 

Therapeutic intervention for their most aggressive manifestation—glioblastoma multiforme 

(GBM) (1, 2)—remains palliative. Gliomas exhibit highly variable clinical prognoses, and 

they usually contain various heterogeneous subregions with variable histologic and genomic 

phenotypes. This intrinsic heterogeneity is also characteristic of their radiographic 

phenotypes—subregions appear with different intensity profiles across multi-parametric 

magnetic resonance imaging (mpMRI) scans, reflecting differences in tumor biology and 

pathophysiology (see Figure 1 for an example). Our discussion is limited to clinical in vivo 

studies in humans; we do not address work in animal models, nor ex vivo or in vitro studies.

Personalized precision medicine aims at developing fine-tuned, patient-specific treatment 

strategies. In the context of neuro-oncology, these include surgery, radiotherapy, and 

chemotherapy planning. Fine-tuning complex clinical treatments necessitates an accurate 

diagnosis. The fundamental premise that underlies the work of several groups is that 

biophysical simulations in combination with sophisticated computational methods targeting 

radiographic features—so-called radiomics—can augment existing clinical tools, and 

consequently aid clinical decision making and patient management.

Current clinical practice is based on the analysis of radiographic imaging data and biopsy, 

i.e., the ex vivo analysis of tissue. Brain tumors have been classified according to the World 

Health Organization (WHO) morphologic-histopathologic classification (5), from grade I to 

IV with increasing aggressiveness. In 2016, the WHO revised its classification scheme into 

an integrated morphologic-histopathologic and molecular-cytogenetic characterization for 

CNS tumors (6) in an attempt to improve tumor stratification, potentially leading to an 

improved patient prognosis. However, even with the addition of molecular-cytogenetic data, 

CNS tumors—and particularly gliomas—remain challenging to characterize, primarily since 

their classification is still based on ex vivo postoperative tissue analysis (i.e., biopsies; see 

the sidebar titled Shortcomings of Biopsies).

In contrast to tissue analysis, imaging can noninvasively capture in vivo the spatial 

heterogeneity within the whole extent of the tumor (even in deep-seated/inoperable tumors), 

thereby minimizing potential bias due to only sampling a limited portion of the tumor; 

moreover, it can be performed repeatedly. Since glioma patients routinely undergo multiple 

mpMRI scans—before surgery and during adjuvant treatment—there are ample data 

available that could help to evaluate the status of the tumor and the surrounding tissue, 

provide quantitative features for patient assessment, and potentially positively influence 

personalized treatment and prognosis.

Despite considerable advances in medical imaging sciences, significant challenges remain. 

Clinicians face substantial dilemmas during neuroimaging evaluation of patients. For 

example, for preresection patients, a precise quantification of the infiltration of tumor cells 

into surrounding healthy tissue beyond the visible abnormalities in imaging remains 

challenging. Differentiation between tumor progression and radiation/treatment effects (a 

clinical problem termed pseudo-progression) can be difficult based on current imaging 
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criteria (7); failure to recognize pseudoprogression can lead to premature termination of an 

effective chemotherapy. On top of that, there exist sensitivities with respect to scanner-

specific settings and parameters.

In recent years, there has been mounting evidence that quantitative mpMRI analysis can 

characterize CNS tumors comprehensively and provide critical information about various 

biological processes within the tumor microenvironment as well as associations with 

underlying cancer molecular characteristics (8–27). Community efforts have created high-

quality datasets that can be used to better understand cancer (28–36). Advances in 

computational inference and machine learning (including deep learning) have dramatically 

improved our ability to process large datasets. All these advances have facilitated the 

development of computational methods for high-throughput extraction of quantitative 

features using sophisticated algorithms. These algorithms are used for image segmentation 

and can produce quantitative metrics from imaging data, which in turn can be used to 

produce critical information for patient characterization, especially when fused with other 

clinical data.

Although purely image-based correlation analysis (31) is very successful, there are still 

many challenges related to robustness (sensitivity to local minima and dataset overfitting) 

and extrapolation, since most medical datasets are limited compared to the complexity of the 

underlying processes. Many research studies have sought to extract information using 

biophysical mode priors in the brain (4, 37–44), as well as other organs, such as breast, 

kidney, pancreas, liver, prostate, and lungs (45–56). Developments in computational 

modeling of untreated gliomas, as well as models of polyclonal gliomas following 

chemotherapy and surgical resection, can help capture important information for diagnostic, 

planning, and prognostic purposes (57–70). The key benefits of these approaches are that 

they rigorously follow mathematical and physical principles and are also quantitative and 

reproducible. They can, in combination with machine learning approaches, help consolidate 

complex imaging data (see Figure 1 for an illustration). They can unveil hidden 

spatiotemporal variables (i.e., clinical markers that are not directly observable from clinical 

data). Consequently, the integration of computational models with imaging offers great 

promise of providing a more complete understanding of clinically relevant entities, thereby 

improving precision diagnostics and therapeutics. These advances would in turn further 

improve the clinical outcome and may, ultimately, become an integral part of a new form of 

WHO classification of CNS tumors. However, the development of clinically reliable tumor 

growth models and their integration with imaging data, which at its core is an inverse 

problem (71), remains a significant challenge for various reasons (see the sidebar titled 

Challenges for Integration of Mathematical Models with Imaging).

The significance of the integration of computational models of tumor growth with imaging is 

threefold: automatic segmentation of patient images using normal subject images to create 

spatial (shape) priors; mapping of functional information from atlases to patients (critical in 

neuro-surgery); and parameter calibration of biophysical models. Prior work has shown that 

biophysical models offer complementary information that relates to tumor aggressiveness 

and clinical outcome. We summarize some relevant work and its clinical applications in 

Table 1.
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In this article, we (a) review state-of-the-art approaches in tissue-level brain tumor modeling, 

(b) present mathematical strategies for model calibration, (c) discuss the integration of 

biophysics simulations with medical imaging data to aid imaging workflows and, ultimately, 

generate predictive capabilities, and (d) showcase different clinical studies that benefit from 

such an integration. We focus on forward simulation of tumor growth on a macroscopic 

scale (tissue level) and inverse problem formulations that connect sophisticated forward 

models with imaging methods (see Figure 1). We review and present formulations and 

methodology for the simulation of tumor growth in Section 2. We describe approaches for 

model calibration and biophysics inversion in Section 3. We discuss the integration of 

biophysics simulation and computational methods for radiomics in Section 4. We provide 

results from clinically relevant studies in Section 5.

2. TUMOR GROWTH MODELING AND SIMULATION

There is a long tradition in the design of mathematical models of tumor progression (100–

103). Recent advances in mathematics and computational engineering have led to a rich pool 

of computational models with unprecedented complexity. These models present us with 

significant challenges; they encompass multiscale, strongly heterogeneous, and coupled 

multiphysics behavior. Models range from simple population growth models (72) to 

complex multiphysics, multispecies, space-time models (78, 104, 105), with dynamical 

systems that describe tumor progression on various scales of observation, including 

molecular (106), cellular (107, 108), tissue (109–111), and multiscale representations (112–

114). We limit ourselves to models that can be integrated with in vivo morphological or 

functional medical imaging, such as magnetic resonance imaging (MRI), computed 

tomography (CT), and positron emission tomography (PET)—models that yield outputs on a 

tissue scale. Cancer progression is typically formulated as a dynamical system [a set of 

ordinary differential equations or partial differential equations (PDEs)] based on principles 

of conservation and constitutive laws. For tissue-level models, tumor cells are not tracked 

individually but modeled as a concentration or volume fraction (assuming constant density) 

c(x, t), where x ∈ Ω ⊂ ℝ3 and t ∈ [0, 1] (where t has been nondimensionalized to the unit 

interval). Depending on the model, c can be a scalar (single species) or a vector (multiple 

species).

The seminal works (109–111) are based on the assumption that cancerous cells originate 

from either cell division (proliferation) or cell migration. These principles can be captured 

by reaction-diffusion (RD) equations of the form

∂tc − κDc − f(c) = 0 in Ω × (0, 1], c = c0 in Ω × {0}, 1.

with zero flux boundary conditions on ∂Ω and initial condition c0 at t = 0. D is a diffusion 

operator that models the migration of cancerous cells into surrounding healthy tissue, 

parameterized by the diffusion coefficient κ ≥ 0. The functional f models the proliferation of 

tumor cells parameterized by ρ ≥ 0; the most common model is a logistic growth function 

f(c) = ρc(1 − c). Further, Dc: = ∇ ⋅ K ∇c with gradient ∇ := (∂1, … , ∂d ), divergence 

operator ∇ ⋅ : = ∑i = 1
d ∂i and K:Ω ℝd × d. The tensor field K controls the diffusion within 
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different tissue compartments. Initial models (109–111) considered distinct diffusion rates in 

white matter (WM) and gray matter (GM). These models were extended to account for a 

preferential (anisotropic) diffusion within WM by integrating diffusion tensor imaging data 

(37, 40, 115–119).

While the single-species model (Equation 1) can phenomenologically capture the overall 

dynamics of tumor growth, it does not capture the imaging phenotype of gliomas. For 

example, GBM typically presents with an enhancing rim surrounding a necrotic core, with 

significant peritumoral edematous/tumor-infiltrated tissue (ED) (see Figure 1 for an 

example). Also, the model in Equation 1 does not capture the mechanical deformation of the 

brain parenchyma, the so-called mass effect (37, 45, 47, 75, 77, 90, 98, 120–122). Models 

that attempt to capture the heterogeneous phenotype use multiple species of tumor cells with 

different underlying hypotheses that govern their evolution (see Figure 2). One class of 

models assumes that tumor cells exist in interchangeable states based on the nutritional 

condition of their environment. A popular hypothesis is “grow or go,” which stipulates that 

invading tumor cells are minimally proliferative and vice versa (123). Models that follow 

this hypothesis represent tumor progression as (a cycle of ) two phases: an initially 

exclusively proliferative phase followed by an invasion of tumor cells into surrounding 

tissues. This second phase can then possibly transition back to a proliferating phenotype, 

which encourages recurrence and growth of metastatic tumors. Other models (124) consider 

these phases to be difficult to isolate; they are modeled to occur simultaneously. As an 

example, consider a multispecies model that accounts for mass effect and in which c(x, t) := 

(cP(x, t), cI(x, t), cN(x, t)) consists of proliferating (P), invading (I), and necrotic (N) tumor 

cell phenotypes, respectively.

The associated system of PDEs (including mass effect) is given by (122, 125)

∂tc + ∇ ⋅ (c ⊗ v) − κDc − f(c) − g(c, n) = 0Ω × [0, 1] 2a.

∂tn − Dn − h(c, n, m) = 0Ω × [0, 1] 2b.

∇ ⋅ (λ∇u + μ(∇u + ∇uT)) = b(c)Ω × [0, 1] 2c.

∂tu = vΩ × [0, 1] 2d.

∂tm + ∇ ⋅ (m ⊗ v) = s(m, c)Ω × [0, 1], 2e.

with initial conditions c = c0 and m = m0; ⊗ denotes the outer product, u(x, t) is the 

displacement field, and v(x, t) is the derived velocity field.

First, notice the two-way coupling between mass effect and tumor growth due to an 

advective term in the RD equation and a forcing term in the linear elasticity term. Second, 

the mass effect is modeled using a simple linear elasticity model with a forcing proportional 

to the gradient of c. More complex models that account for large deformations, growth 
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stresses, residual stress, and tissue microstructure exist (126–128). The linear elasticity 

model is parameterized by the inhomogeneous Lamé coefficients λ:Ω ℝ and μ:Ω ℝ; 

they depend on the underlying tissue type. The function b ∝ ∇c represents a body force 

acting on the brain parenchyma (37, 86, 98, 122). Finally, Equations 2d and 2e model the 

evolution of healthy tissue volume fractions m(x, t) := (mW(x, t), mG(x, t), mF(x, t)), where 

W, G, and F designate WM, GM, and cerebrospinal fluid (CSF), and initial condition 

m0(x) := (mW,0(x), mG,0(x), mF,0(x)). The field s(m, c) models the rate of change of tissue 

due to sources and sinks. For example, it can account for CSF leakage and/or loss of healthy 

GM and/or WM cells due to tumor progression. We illustrate qualitative simulation results 

for this model in Figure 2. In addition to the spatiotemporal dynamics of tumor cells, we 

also account for nutrient supply and tumor-induced ED. These quantities are represented as a 

vector-valued function n(x, t) := (nO(x, t), nE(x, t)) consisting of two concentration maps for 

nutrients/oxygen (O) and ED (E), respectively. Changes in n are modeled via a diffusion 

operator D and a source and/or sink term h(c, n, m). The sources and sinks can, for example, 

account for the supply and consumption of oxygen and the leakage of ED into the 

extracellular matrix due to migrating tumor cells. The RD equation for the tumor phenotype 

c includes a sink and/or source term g(c, n). The precise form of g depends on the 

underlying hypotheses of the growth model. The grow-or-go hypothesis, for example, 

stipulates mutually incompatible proliferating and migrating phenotypes through different 

reaction and diffusion operators. The transition between phenotypes depends on the local 

oxygen concentration. The mass effect is modeled using a linear elasticity equation. We 

illustrate qualitative simulation results for this model in Figure 2.

Despite their phenomenological character, these types of models (in particular the single-

species model coupled with mass effect) can successfully capture the overall appearance of 

tumors in mpMRI (37, 40, 74, 79, 115, 118, 129). They have been used to (a) study tumor 

growth patterns in individual patients (37, 79, 109, 115, 118), (b) extrapolate the 

physiological boundary of tumors (40, 81), and (c) study the effects of clinical intervention 

(41, 51, 83, 85, 89, 90, 130). Applications for these types of models beyond brain tumor 

imaging include breast (90) and pancreatic cancer (129) imaging. Continuum models of the 

form of Equation 1 have also been extended to account for the evolution of cancer 

progression on the cellular scale (e.g., accounting for healthy, proliferative, quiescent, and 

necrotic cellular phenotypes), the subcellular scale, and the molecular scale (for example, 

accounting for signaling pathways) (78).

3. INVERSE PROBLEMS FOR PARAMETER CALIBRATION

Next, we discuss the inverse problem of estimating biophysical model parameters, p, for a 

given tumor growth model, F, with the ultimate goal to provide a framework for patient-

specific tumor growth simulations and model predictions. A natural approach to estimate p 
is to formulate a PDE-constrained optimization problem.

Remark 1.

We discuss only the problem of estimating tumor-specific parameters. The integration of 

tumor modeling with mpMRI is described in Section 4. In practice, imaging is used to derive 
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information for calibrating the model. For example, cOBS, which we define in the next 

paragraph, is implicitly derived from mpMRI data.

3.1. Deterministic Formulations—The input to our problem is a series of observations 

of tumor cell densities cOBS (partially observed tumor data) at specified time instances 

{tj}j = 1, …, nt within a given time interval [0, T] with final time T > 0. In the inverse 

problem, we seek parameters p such that the model output c(x, t) (i.e., the simulated cell 

density or tumor cell probability maps) matches these observations. In a general format, we 

can represent this calibration of tumor models as a PDE-constrained optimization problem 

of the form

minimize
p

1
2 ∑

j = 1

nt ∫
0

T∫
Ω

δ(t − tj) c(x, t) − cOBS
j (x) 2x

˙
t
˙

+ ℛ(p) subject to ℱ(p, c)

= 0.
3.

This formulation balances the data fidelity with regularity assumptions on the model 

parameters p (the inversion variable of our problem). We consider a squared L2 distance to 

measure the discrepancy between cOBS
j (x) and the model output c(x, t). The operator ℱ is the 

forward tumor model (see Section 2 for examples). The inversion variable p (e.g., the growth 

rate ρ ≥ 0) and the state variable c (e.g., the density of tumor cells) are the unknowns of our 

problem. δ is a Dirac delta function to pick the time points tj in [0, T] to which the data cOBS
j

are associated. The functional ℛ in Equation 3 is introduced to alleviate the ill-posedness of 

the inverse problem of recovering p from cOBS. The basic idea is to stably compute a locally 

unique solution to a nearby problem by imposing prior knowledge based on an adequate 

regularization scheme (in our case, represented by ℛ).

Remark 2.: In Equation 3, we assume that we are given a time series cOBS
j , j = 1, …, nt. In a 

typical clinical setting, we are usually given a single snapshot for cOBS. Indeed, when a 

patient presents with symptoms, the tumor is usually large, and treatment (surgery, 

chemotherapy, or radiation) starts immediately. Consequently, it is not practical to assume a 

time series of data; any treatment that takes place needs to be incorporated into the models, 

which poses additional difficulties. This is not the case in animal studies (which we do not 

consider here). We discuss strategies to resolve this issue of limited data in Section 4.

The standard approach for solving Equation 3 is to introduce an additional unknown—the 

Lagrange multiplier λ—and derive the stationarity conditions for the Lagrangian 

ℒ(c, p, λ): = J(p) + ℱ(c, p), λ L2(Ω) (J denotes the objective functional in Equation 3). 

Derivative-free optimization (45–47, 51, 98, 115, 118, 119, 121, 131), automatic 

differentiation, and finite-difference approximation of the gradient (74) are other options. 

Derivative-free strategies are easy to implement (they only require routines to evaluate ℱ
and J for trial parameters p). However, they lead to suboptimal algorithms with slow 

convergence, typically resulting in an excessive number of iterations and high computational 

costs (perhaps run times of days on medium-size clusters). This renders these methods 
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impractical, especially for problems parameterized by a large number of unknowns p. 

References 98, 116, 129, and 131–135 use adjoint information, i.e., methods that exploit 

analytical derivatives. These methods are preferable to derivative-free approaches as they 

offer better convergence guarantees, are founded on rigorous mathematical principles, can 

reveal structure (sensitivities) that can be rigorously analyzed, and can be exploited for 

further integration with imaging (e.g., construction of priors for Bayesian inference).

Various approaches and formulations have been considered. In Reference 134, the tumor is 

modeled as a radially symmetric spheroid. More complex tumor models are described 

elsewhere (77, 98, 129). Hogea et al. (98) derive adjoint equations in one dimension; 

derivative-free optimization is used for three dimensions (3D). Liu et al. (129) extend this 

work, providing results for an adjoint-based method for 3D problems. Wong et al. (77) 

follow up on References 98 and 129; the key difference is that they use a hyperelastic mass-

effect model as opposed to linear elasticity. Complex multispecies models are considered in 

References 132 and 135. Other works describe an inversion framework to determine the 

initial distribution of tumor concentration of a nonlinear RD PDE using adjoint-based 

methods (91, 116, 136).

All works discussed above calibrate only for a subset of unknown parameters p. For 

example, Scheufele et al. (91) assume a known reaction coefficient ρ and invert for the 

tumor initial condition c0(x) and a scalar diffusion coefficient κ > 0. Indeed, it is not possible 

to reliably invert for all parameters—even for simple RD PDEs—due to the ill-posedness of 

the inverse problem (119, 137). Additional modeling assumptions can alleviate some of 

these issues. Rekik et al. (79) estimate a localized initial condition along with the tumor 

diffusion coefficient for a traveling wave approximation. This localization enables the 

estimation of more biophysically meaningful diffusion rates. Jaroudi et al. (138) attempt to 

reconstruct sparse tumor initial conditions while fixing the other parameters of a 3D 

nonlinear RD model. Subramanian et al. (137) describe a framework to estimate all 

unknown parameters of a 3D nonlinear RD growth model, i.e., the reaction coefficient, the 

diffusion coefficient, and the tumor initial distribution. Sparsity constraints on the tumor 

initial condition and constraints on its maximum norm are introduced. This work extends 

that of Reference 91 with a greedy pursuit algorithm for imposing sparsity constraints.

3.2. Probabilistic Formulations—While the deterministic approach described above is 

adequate for identifying optimal parameters p★ such that model predictions match some 

observed data cOBS, its practical value remains limited. Indeed, solving Equation 3 only 

provides us with point estimates p★. In practice, we are interested in predicting some future 

quantity of interest q(p), say, the probability of tumor recurrence after surgery. Due to 

uncertainties in the data cOBS, the inversion variable p, and the mathematical model ℱ, as 

well as the nonconvexity of the inverse problem, we require confidence intervals for q(p) and 

not just point estimates p★. These can be achieved through a probabilistic formulation of the 

inverse problem, the result of which is a probability density function that characterizes our 

confidence in q(p). The appropriate framework for dealing with such problems is Bayesian 

inference (71).
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Bayesian inference yields a systematic framework that rigorously follows mathematical and 

physical principles and enables us to address key questions underlying predictive 

computational modeling. We can quantify uncertainties as they propagate through all steps 

of our system, and we can assess model validity and adequacy. While these features are 

appealing, a serious drawback is the significant increase in computational burden. 

Approaches that consider a probabilistic framework are described elsewhere (73, 76, 83, 88, 

130, 139–142). Some are based on RD-type systems (130, 140, 143). Others present 

methodology for statistical model calibration and, in addition, provide methodology and 

results for model selection and validation (76, 88, 139, 141). They, like Reference 144, 

consider phase-field models. Reference 88 describes an extension of the work of Oden and 

colleagues (76, 139, 141), considering a set of eight RD-type models and five variants of 

phase-field models of varying complexity. References 73, 142, and 145 are restricted to 

simplistic models of spheroid tumor growth. The focus is on developing effective stochastic 

computational methods. The works mentioned so far focus mostly on algorithmic 

developments. Kahle et al. (146) discuss theoretical considerations instead, in an extension 

of Reference 144 to the probabilistic setting. They, like Oden and colleagues (76, 139, 141), 

consider a phase-field model. Well-posedness results of the posterior measure for general 

prior measures are provided.

We note that several modeling and computational challenges in this area remain open (see 

the sidebar titled Challenges and Open Questions in Biophysical Inversion).

4. INTEGRATION WITH MAGNETIC RESONANCE IMAGING

The integration of biophysical tumor growth models with mpMRI can be considered as a 

two-way coupled problem, where imaging provides the data required to drive the calibration 

of a biophysical model through the solution of an inverse problem, and biophysical models 

can define priors for image analysis and introduce additional biomarkers. Imaging data for 

calibration include the geometry of the brain and the implicit characterization of the 

underlying tissue, via intensity information from mpMRI modalities. Biophysical models 

provide probabilistic information about tumor infiltration in specific tissues to, e.g., enable 

or guide common imaging workflows, such as image segmentation (4, 25, 91, 96, 147) or 

image registration (92, 98, 148, 149). Biophysical model parameters can also play the role of 

biomarkers, for example, the reaction and diffusion coefficients, and parameters of the initial 

condition such as focality and location.

4.1. Imaging Workflows: Image Segmentation and Registration

In image segmentation, we seek a classification of the medical imaging data into different 

subregions, each of which corresponds to tissue with distinct pathophysiological properties. 

In our application, we are interested in differentiating healthy and diseased brain tissue and 

possibly subdividing further the healthy and nonhealthy regions. In neuro-oncology for high-

grade gliomas, one typically differentiates the anatomical brain regions of WM, GM, and 

CSF from the abnormalities visible in the vicinity of the primary tumor site—the 

peritumoral ED and the tumor core (TU) region, which can be further differentiated into the 

enhancing tumor (ET) region and the union of the necrotic and nonenhancing parts (NE). An 
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accurate segmentation of tumor subregions is relevant for diagnosis and treatment planning. 

However, tumor segmentation is quite challenging because the tumor regions are defined 

through intensity changes relative to the surrounding normal tissue, as well as varying 

intensity distributions disseminated across multiple modalities, that are often subtle. 

Additional factors are imaging artifacts such as noise, motion, or magnetic field 

inhomogeneities. The manual annotation of region boundaries is time consuming and prone 

to misinterpretation, human error, and observer bias (150, 151). To remove these biases, it is 

desirable to design automatic approaches. To date, the best results are achieved by machine 

learning techniques (31, 152). These methods can be augmented with biophysical 

simulations (94, 95). For example, one can use simulations as a data augmentation strategy 

for training neural networks (153).

In image registration, we are interested in computing a spatial transformation y that maps 

points in one image to corresponding points in another image. Image registration has 

evolved into an indispensable tool in medical image analysis (154). In the context of 

monitoring disease progression or treatment response, images of a brain tumor will be 

acquired at different points in time with changes in morphological appearance, texture, 

structure, shape, and field of view (95, 155). These changes make an accurate registration a 

delicate matter. While changes in pose can be compensated for in a stable way (155), it is 

challenging to compensate for nonlinear deformations y (156). Especially challenging is 

registration between pre- and postresection imaging scans (149, 157), where parts of the 

tumor are missing due to resection. Aside from monitoring a single patient, we might be 

interested in gathering statistical information across a population of patients (16, 158). This 

necessitates the registration of patient individual scans to a common anatomical atlas image, 

which—even in the absence of a tumor—is challenging due to interpatient anatomical 

variability. In the presence of a tumor, this registration requires finding correspondences 

between two topologically different images—one with and one without a tumor. Similarly, 

we can use image registration to solve the segmentation problem by transferring labels for 

anatomical regions defined in the atlas space to unseen patient data (4, 91, 92, 159). A 

simple strategy is to mask the tumor area (known as cost-function masking) (93, 160, 161) 

or to relax the registration in the area affected by the tumor (162). This yields poor 

registration quality for tumors with severe mass effect. Another strategy is to simultaneously 

invert for the deformation map and a drift in intensity representing the imaging abnormality 

(163). While this may produce acceptable results for the purpose of atlas-based 

segmentation and registration, it cannot be used for model prediction and tumor 

characterization (16, 27)—our ultimate goal. One remedy is the integration of image 

registration with biophysical modeling.

4.2. Integration of Biophysical Modeling with Imaging

In aggressive tumors, time series of images of patients who have not undergone treatment 

are in general unavailable [this is not true of animal studies (74, 88, 133)]. The fact that we 

do not have access to longitudinal data without treatment makes the integration of 

biophysical modeling with imaging even more challenging. We need to calibrate complex 

PDE models (see Section 2) based on a single snapshot in time. Since the model is typically 

a dynamical system, it is impossible (without regularization) to calibrate model parameters 
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using a single-time dataset. Moreover, we do not have data for the initial state, i.e., an image 

of the patient’s brain without a tumor, or any other information about time history. A 

common strategy is to simulate the progression of the tumor in a healthy (tumor-free) image 

(see Figure 3).

This is suboptimal because anatomical differences introduce significant errors (115, 118). 

One approach for resolving these anatomical differences is to simultaneously invert for a 

model-based deformation (spatial transformation) y that maps the atlas to the patient 

anatomy (or vice versa) (4, 91, 92, 98, 99, 148, 159, 164, 165). The models described by 

References 92, 148, 159, and 165 are oversimplified (e.g., purely mechanical); they do not 

allow for recovering growth patterns of tumors with complex shapes, nor do they provide 

information about progression or infiltration of tumor cells into healthy tissue. We discuss 

two frameworks developed by our group that do not have these limitations. They integrate 

complex biophysical simulations with image registration in an attempt to aid imaging 

workflows and provide predictive capabilities. The first is the Glioma Image Segmentation 

and Registration (GLISTR) framework (4, 96); the second is the Scalable Integrated 

Biophysics-based Image Analysis (SIBIA) framework (91, 136, 164, 166). Variants of these 

frameworks are already used in clinically relevant studies (4, 25, 32, 39, 140, 167) (see 

Section 5).

4.2.1. Glioma Image Segmentation and Registration (GLISTR and 
GLISTRboost).—GLISTR (4) is a generative approach for simultaneously registering a 

probabilistic atlas of a healthy population to brain tumor mpMRI scans and segmenting the 

apparent brain in various subregions. The output of GLISTR is a posterior probability map 

πi: Ω → [0, 1], i ∈ Θ and a label map ξ: Ω → Θ, Θ := {W, G, TU, F, ED}. GLISTR 

incorporates the glioma growth model described elsewhere (98, 121, 168; see also Section 

2). We define the probability maps πi as conditional probabilities πi(x| p) on the unknown 

tumor parameters p.

The joint registration and segmentation problem solved in GLISTR is as follows: We are 

given a vector q(x): = (q1(x), …, qk(x)) ∈ ℝk of observations (imaging intensities) that 

correspond to k MRI modalities (input to our problem; see Figure 3). We seek a deformation 

map y, model parameters p, and the intensity distributions ϕ (mean and covariance of a 

Gaussian distribution; see below) for the labels Θ. The deformation map y defines the 

registration between the patient-specific image and the atlas space. The model parameters 

inverted for are given by p := {x0, γ , κW , T} with predefined initial condition 

πTU(x, 0) ∝ exp( ∥ x − x0 ∥2
2 ), initial seed location x0 ∈ Ω, diffusion coefficient κW > 0 for 

WM, and final time T > 0; γ > 0 determines the strength of the tumor mass effect (see 

Figure 2 for an illustration). Under the assumption that the conditional probability 

distribution function of each q(x) can be modeled as a weighted mixture of Gaussians, we 

can solve for ϕ, y, p as follows:

maximize
ϕ, y, p

∏
x ∈ Ω

∑
i ∈ Θ

log πi(y(x) ∣ p)gi(q(x) ∣ ϕ) , 4.
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where gi(q(x)|ϕ) is a multivariate Gaussian distribution with mean μi and covariance matrix 

Σi, and ϕ := {μi, Σi}i∈Θ. To compute the maximum a posteriori (MAP) estimate of Equation 

4, an expectation-maximization approach is considered. The optimization problem is solved 

using a derivative-free algorithm. We showcase results obtained with GLISTR in Figure 3.

GLISTRboost (96), an extension of GLISTR, is a hybrid generative-discriminative model. 

The generative model is GLISTR; the discriminative part is based on a voxel-level multi-

class classification through a gradient-boosting ensemble model of decision trees (169, 170). 

It refines the tumor labels obtained from solving Equation 4 based on information from 

multiple patients. The classifier is trained using the glioma data of the brain tumor 

segmentation (BraTS) challenge (31–35). Decision trees of maximum depth three are trained 

in a subset of the data to introduce randomness. A cross-validation framework is used to 

avoid overfitting. Additional randomness is introduced by sampling stochastically a subset 

of imaging features at each node. Five features are used for training the discriminative part 

of GLISTRboost: (a) image intensities from individual mpMRI and their differences across 

all of the datasets, (b) first- and second-order image derivative information, (c) the geodesic 

distance transform (171) from an initialized seed-point x0 of the tumor, (d) the posterior 

probability maps πi, and (e) first- and second-order texture statistics computed from a gray-

level co-occurrence matrix. In a last step, each segmentation is refined by assessing the local 

intensity distribution of the current segmentation labels across each patient’s mpMRI scans 

and updating their spatial configuration based on a Bayesian probabilistic framework (172). 

Here, the intensity distributions of the WM, ED, NE, and ET are populated, considering the 

corresponding voxels of tissue probability equal to one. The histograms of the three pair-

wise distributions considered [i.e., ED versus WM in T2-FLAIR (T2–fluid-attenuated 

inversion recovery), ET versus ED in T1-CE (T1–contrast-enhanced), and ET versus NE in 

T1-CE] are then normalized. The maximum likelihood estimation is then used to model the 

class-conditional probability densities [Pr(I(vi)|class)] of each class by a distinct Gaussian 

function for each class. The voxels of each class in close proximity (offset = 4) to the voxels 

of the paired class are then iteratively evaluated by assessing their intensity I(vi) and 

comparing the Pr(I(vi)|class1) with Pr(I(vi)|class2). The voxel vi is then classified into the 

class with the larger conditional probability, which is equivalent to a classification based on 

Bayes’ theorem with equal priors for the two classes, i.e., Pr(class1) = Pr(class2) = 0.5. 

GLISTRboost has been evaluated on the testing datasets (n = 186) of the BraTS 2015 

challenge and ranked as the top-performing method (33, 96).

4.2.2. Scalable Integrated Biophysics-based Image Analysis (SIBIA).—SIBIA 

(91, 136, 164, 166) is a novel framework for integrating biophysical simulations with 

mpMRI and optimization. It is a continuation of our efforts described in References 4, 92, 

96, 98, and 159. It addresses several limitations of GLISTR/GLISTRboost, the main one 

being the need to manually select the tumor seed x0. SIBIA is fully automatic and does not 

require user intervention. Like GLISTR/GLISTRboost, SIBIA uses (a) biophysical models 

for the tumor-modeling part (116, 122; see also Section 2) and (b) the Constrained Large 

Deformation Diffeomorphic Image Registration (CLAIRE) package (173–175) as a module 

for diffeomorphic registration. The formulation is in spirit similar to that in Reference 98. 

We invert for a velocity field v that parameterizes the deformation map y from the patient to 
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the atlas space and tumor model parameters p using a PDE-constrained formulation of the 

form (91)

minimize
p, v, m, c

1
2∫Ω

cA(x, 1) − cP(x, 1) 2ẋ + 1
2∫Ω

mA(x, 1) − mP(x, 1) 2
2ẋ + ℛ(p, v) 5a.

subject to ℱT(c, m, v, p) = 0, ℱR(c, m, v) = 0. 5b.

This model is a direct extension of the formulations in Section 3. The functions cA(x, 1), 

cP(x, 1), mA(x, 1), and mP(x, 1) are tumor and tissue probability maps defined in the patient 

(P) and atlas (A) space. The data input to the inverse problem are estimates for (a) patient-

specific tumor probabilities cOBS: Ω → [0, 1]; (b) patient-specific material properties mOBS : 

Ω → [0, 1]3, mOBS(x) := (πOBS,W(x), πOBS,G(x), πOBS,F(x)) (patient geometry); and (c) the 

tumor-free patient geometry (the atlas image) mATL : Ω → [0, 1]3, mATL(x) := (πATL,W(x), 

πATL,G(x), πATL,F(x)) (atlas geometry). The operator ℱT  is the forward tumor model (see 

Equation 2 for an example); ℱT  is used to predict a tumor in the atlas space that best 

matches the patient’s tumor. The operator ℱR is the forward registration model (a 

hyperbolic transport equation); it is used to map the patient data to the atlas space. The 

inputs to the forward registration operator ℱR are the patient-specific tumor and tissue 

probabilities cOBS(x) and mOBS(x), respectively.

Formally, our scheme proceeds as follows: Given some trial tumor parameter p, the forward 

tumor model ℱT  produces the predicted tumor probabilities cA(x, 1) and tissue probability 

maps mA(x, 1) = (π1,W(x), π1,G(x), π1,F(x)) at time t = 1 in the atlas space, where 

π1,j(x) :=πATL, j (x)(1 − cA(x, 1)), j ∈ {W, G, F} are the updated probability maps for WM, 

GM, and CSF (healthy brain anatomy). Given some trial velocity field v(x), the forward 

registration model ℱR generates a spatially transformed representation cP(x, 1) and mP(x, 1) 

at pseudotime t = 1 of the patient-specific data cOBS(x) and mOBS(x). In the inverse problem 

shown in Equation 5, we seek control variables p and v such that the tumor and tissue 

probability maps cA(x, 1), cP(x, 1), mA(x, 1), and mP(x, 1) defined in the atlas and patient 

space are as close as possible. We measure the proximity between these data using a squared 

L2 distance in Equation 5. The functional ℛ in Equation 5 is a regularization model for the 

control variables p and v.

Computing the minimizer of Equation 5 is conceptually equivalent to computing the MAP 

point for Equation 4. In SIBIA, we invert for the growth rate ρ > 0, the diffusivity κ > 0 

and/or the initial condition c0(x), where c0(x): = ∑k = 1
r wkϕk(x) is modeled as an r-

dimensional space spanned by Gaussian basis functions ϕk:Ω ℝ. This parameterization 

allows us to model multi-focal and multi-centric tumors. SIBIA (91, 136, 164, 166) uses a 

globalized, adjoint-based method (i.e., derivatives of the Lagrangian). We do not iterate on 

both control variables v and p simultaneously. We perform a block elimination instead, and 

iterate, resulting in an interleaved optimization on the controls exploiting dedicated solvers 
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for the individual subblocks (116, 136, 173, 175). SIBIA has been deployed in parallel 

computing platforms to further amortize computational costs (136, 174, 175).

We have applied SIBIA to hundreds of real 3D datasets and achieved encouraging results for 

atlas-based segmentation (91, 166). However, our initial scheme (91) does not allow reliable 

inversion for meaningful model parameter p; its predictive capabilities are limited. One key 

issue is that we map the patient geometry to the atlas space. In our most recent work (164), 

we have changed the formulation to map the atlas geometry to the patient space, excluding 

tumor probabilities. We hypothesize [and have demonstrated experimentally through 

synthetic test problems (164)] that this improved scheme—in combination with a sparsity 

soft constraint for the parameterization of the initial condition (137)—allows us to more 

reliably invert for patient-specific tumor parameters.

5. CLINICALLY RELEVANT STUDIES

Numerous clinically relevant studies revolve around precision diagnostics (176) leveraging 

rich information from biophysical models of tumor growth (177). Considering the 

complexity of routinely acquired advanced mpMRI of GBM patients (178), there is an 

apparent need for advanced computational algorithms for automated image analyses. Such 

analyses include automated brain tumor segmentation algorithms coupled with biophysical 

growth models (4, 91, 96, 149, 164, 167, 179–181; see also Section 4) leading to an accurate 

quantitative assessment of the distinct histologically heterogeneous tumor subregions, 

potentially benefiting the clinical workflow in radiology and radiation oncology settings, as 

well as providing platforms for radio(geno)mic research. Numerous examples in the 

literature indicate the benefit of biophysical tumor growth modeling for robust patient-

specific tumor characterization (i.e., personalized medicine), especially by virtue of accurate 

population-based spatial distribution atlases of GBM (158).

We appreciate the potential benefit of incorporating biophysical modeling in clinical 

research studies. To facilitate the widespread use of biophysical modeling, we have already 

integrated GLISTR and GLISTRboost into the extended suite of the Cancer Imaging 
Phenomics Toolkit (CaPTk) (182, 183) and made them available for public use through the 

online Image Processing Portal (IPP; see https://ipp.cbica.upenn.edu) of the Center for 

Biomedical Image Computing and Analytics (CBICA; see https://www.cbica.upenn.edu). 

CBICA’s IPP allows users to perform their analyses without any software installation 

through CBICA’s computing resources. The integration of CLAIRE and SIBIA with CaPTk 

is an ongoing project. The sections below summarize a few example studies relating 

radiographic analyses to specific endpoints (e.g., clinical outcome, molecular characteristics) 

and do not intend to be a complete literature review.

5.1. Prediction of Patient Overall Survival

Patient overall survival (OS) is the ultimate clinical outcome; accurate predictions could 

affect clinical decision making and treatment planning. Numerous studies have been 

focusing on GBM prognostic evaluation and stratification. These studies support the benefit 

of incorporating biophysical growth models (67, 68, 70, 80, 85, 184); show the 

generalization across multi-institutional data (185, 186), even when the models are 
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compared with the prognostic value of current clinical and genomic markers; and 

demonstrate that an integration of models with imaging offers additive prognostic value even 

beyond the current WHO classification (69, 70, 187) (see Figure 4). Furthermore, integration 

of biophysical growth modeling with advanced radio-phenotypical features derived from 

basic structural mpMRI (i.e., T1, T1-CE, T2, T2-FLAIR) can compensate for the lack of 

advanced mpMRI scans (e.g., dynamic susceptibility contrast MRI, diffusion tensor 

imaging) and still offer comparable prognostic predictions (59).

5.2. Treatment Planning

Although more than 90% of tumor recurrence occurs within ED (188), there is limited 

research focused on its assessment and its microenvironment (189). ED appears to develop 

in response to angiogenic and vascular permeability factors associated with infiltrating 

tumor (190). As tumors outgrow the native blood supply, the resultant ischemia triggers 

further secretion of angiogenic factors that promote vascular proliferation (191, 192). 

Advanced computational analyses, incorporating biophysical tumor growth modeling, have 

been conducted to evaluate the amount of heterogeneous tumor infiltration in the ED and 

thus assess the risk of recurrence (61, 64, 66). The value of these studies has been 

retrospectively validated in independent discovery and replication cohorts with significant 

results (odds ratio >13). Furthermore, these assessments were recognized for their usefulness 

as potential therapeutic tools and are currently in a clinical trial for targeted personalized 

dose escalation planning.

Along the same lines, various other studies have attempted to shed light on the quantification 

of microscopic tumor invasion and cell proliferation (193, 194), and also tumor growth rates 

in relation to diffusion (195), while incorporating growth modeling.

5.3. Radiogenomics: Noninvasive Tumor Molecular Characterization

Current tumor molecular characterization is based on ex vivo tissue analysis that cannot 

capture the tumor’s spatial heterogeneity. Since radiographic imaging is routinely acquired 

and can capture the whole tumor extent, multiple studies have focused on noninvasive 

prediction of molecular characteristics of GBM from radiographic tumor patterns (19) while 

incorporating biophysical growth modeling; examples of these studies include (a) genome-

wide association analysis with tumor spatial distribution patterns (15), (b) prediction of 

individual molecular characteristics (20, 21, 23, 24, 27), and (c) prediction of transcriptomic 

GBM subtypes (67, 196). Below, we discuss a few example studies focusing on noninvasive 

prediction of some of the most important GBM molecular characteristics: the isocitrate 

dehydrogenase-1 (IDH1), the O6-methylguanine DNA methyltransferase (MGMT), and the 

epidermal growth factor receptor variant III (EGFRvIII).

According to the 2016 WHO classification (6), determination of the IDH1 mutational status 

is essential for the clinical diagnosis and treatment planning of glioma. The ability to 

identify IDH1 at initial patient presentation can influence decision making and appropriate 

treatment planning. Furthermore, as IDH1 mutant (IDH1-mut) enzyme inhibitors and 

immunotherapeutic options are developed, noninvasive determination at preoperative and 

follow-up time points can be influential. With that in mind, a preoperative noninvasive 
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signature of IDH1 was constructed on the basis of quantitative radiographic phenotypical 

features from a retrospective cohort of 86 high-grade glioma mpMRI scans (IDH1-mut:15) 

(24). The features integrated volumetric and morphological measurements, texture 

descriptors, location characteristics, and biophysical growth model parameters (96). 

Following multivariate cross-validated forward-sequential feature selection, 61 of these 

features were identified as the most discriminative, primarily including texture descriptors 

and a distinct spatial location of the IDH1-mut tumors with more prominence in the frontal/

occipital lobe. Quantitative evaluation of this signature yielded an accuracy of 88.4% 

[sensitivity = 66.7%, specificity = 92.9%, area under the curve (AUC) = 0.81] on classifying 

IDH1 mutational status.

MGMT promoter methylation is another well-accepted prognostic indicator in GBM that 

directly influences the effectiveness of chemotherapy, where specifically methylated tumors 

(MGMT+) are more responsive. A noninvasive signature for the status of the MGMT 

promoter methylation could contribute in addressing limitations of the current 

determination, which can be limited by inadequate tissue specimen or assay failures. 

Rathore et al. (20, 21) identified a retrospective cohort of 122 patients diagnosed with 

pathology-proven de novo GBM (MGMT+: 46) and available preoperative mpMRI scans. 

They extracted 330 radiographic phenotypical features per patient, including measurements 

of volume, morphology, texture, and voxel-wise location characteristics obtained after 

incorporating a biophysical model (96).

Multivariate cross-validated forward sequential feature selection identified 46 features as the 

ones to create the noninvasive signature, which revealed that MGMT+ tumors have lower 

neo-vascularization and cell density than MGMT-unmethylated tumors. Assessment of the 

location characteristics yielded a distinctive spatial pattern, with the MGMT+ tumors being 

lateralized to the left hemisphere compared with MGMT-unmethylated tumors. The cross-

validated accuracy of this signature in correctly classifying MGMT+ tumors was 84.43% 

(sensitivity = 80.43%, specificity = 86.84%, AUC = 0.85).

Another GBM driver mutation is EGFRvIII, which has been considered in multiple GBM 

clinical trials. It was recently discovered that glioblastomas harboring the mutation have a 

distinct spatial distribution pattern when compared to tumors without the mutation, which 

could distinguish a mutant tumor with 75% accuracy (27). Figure 5 shows the voxel-wise 

location prominence of GBM, in spatial distribution atlases relating to the presence/absence 

of the EGFRvIII mutation, after incorporating biophysical modeling (96). A preexisting 

study, which evaluated the location prominence of GBM stratified by EGFRvIII status 

without incorporating biophysical modeling parameters in the image analysis, obtained 

different results (16). Notably, the studies that incorporated biophysical modeling (23, 27) 

evaluated a three-times-larger sample, which is expected to potentially provide more robust 

statistics of spatial patterns.

5.4. Generating Hypotheses for Further Investigation

Integrated analysis of advanced mpMRI scans and biophysical modeling (96) has 

contributed to the discovery of a potential molecular target, presenting an opportunity for 

potential therapeutic development (22, 25). Radiographic signatures of EGFR extracellular 
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domain missense mutants (i.e., A289V) were identified, suggestive of an invasive and 

proliferative phenotype (25) associated with shorter survival in patients. These findings were 

corroborated by experiments in vitro and in vivo (animal models). Kaplan-Meier survival 

curves comparing mice implanted with modified cell lines in vivo (i.e., U87 and HK281 

tumor cell lines expressing either wild-type EGFR or the EGFR A289V mutant—n = 6 per 

group, p < 0.01) demonstrated decreased OS, increased proliferation, and increased invasion. 

Further, mechanistic exploration revealed increased MMP1 expression (driven by ERK 

activation) leading to both increased proliferation and invasion. Finally, the tumor driver 

status of EGFR A289V was demonstrated by in vivo targeting via an EGFR monoclonal 

antibody (mAb806), increasing animal survival and inhibiting tumor growth. These results 

serve to highlight the complexity of the EGFR signaling cascade and pathway nuances of 

extracellular domain mutations in the context of cancer (25). Figure 6 summarizes the results 

of this study (25).

6. CONCLUSIONS

We have reviewed existing approaches toward integration of computational models and 

image analysis for characterization of neuroimaging data of brain tumor patients. We have 

described state-of-the-art technology for biophysical tumor growth modeling, as well as the 

inverse problem of estimating adequate parameters to fit the model output to available 

observations. We have discussed the integration of biophysical models with image analysis 

algorithms and showcased clinically relevant results that demonstrate the benefit of such an 

integration.

Despite these encouraging results, we note that a successful integration of biophysical 

models with image analysis poses significant mathematical and computational challenges. 

First and foremost, biological systems involve complex, multifaceted, heterogeneous 

biological, physical, and chemical behavior at different spatial and temporal scales of 

observation (78). This makes the development of predictive models a difficult endeavor. 

Complex models result in a vast number of parameters (78, 104), which makes them difficult 

to calibrate to medical imaging data, especially since clinical data provide only scarce 

information (e.g., single time point; imaging noise; low resolution; only indirect phenotypic 

measurements reflecting coarse aspects of these complex underlying biological processes). 

Aside from computational issues, additional mathematical and modeling issues make such 

an integration even more difficult; these include (a) uncertainties in the data and model, (b) 

modeling errors and inadequate mathematical models, (c) ill-posedness of the inverse 

problems (nonuniqueness of the solution), (d) decisions about appropriate regularization 

models and data misfit terms, and/or (e) influences of the numerical discretization on the 

inversion. Consequently, other sources of information or, equivalently, strong modeling 

priors need to be integrated to make these approaches practical. One possibility to alleviate 

some of these challenges, and to define, test, analyze, and design appropriate priors, is 

through animal models or in vitro studies, although this approach is known to be limited, as 

well, in its ability to generalize to in vivo cancer growth in humans.

Ample and diverse data are expected to contribute toward addressing these challenges and 

expedite further developments in biophysical modeling of the growth, invasion, and 
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proliferation of untreated gliomas, as well as models of polyclonal gliomas following 

chemotherapy and surgical resection. Such data exist only across institutions, and the current 

paradigm for multi-institutional collaborations (i.e., pooling data in a centralized location) 

suffers from various privacy, technical, and ownership concerns. However, existing efforts 

on alternative collaboration paradigms based on distributed learning approaches (197, 198) 

could be investigated further to address the need for large datasets, while overcoming data-

ownership concerns.

Integrated diagnostics increasingly demonstrate their clinical importance, with the most 

recent clinical example of the revised 2016 WHO classification for CNS tumors 

incorporating molecular characterization to histologic patterns (6). However, several 

intrinsic and extrinsic factors hinder this molecular characterization, which currently 

requires ex vivo invasive tissue analysis. Such analysis is limited in assessing the tumor’s 

spatial heterogeneity and not amenable to relatively regularly repeated evaluations during 

treatment. In contrast, mpMRI can noninvasively provide a macroscopic radiographic 

phenotype capturing the whole extent of a tumor. Since mpMRI scans of GBM patients are 

part of clinical routine (preoperatively and longitudinally during adjuvant treatment), there is 

an opportunity for ample data to be utilized for developing dynamic noninvasive biomarkers. 

Our working hypothesis is that the integration of these data with sophisticated computational 

tools is beneficial for assessing the spatial and temporal heterogeneity of GBM and has the 

potential to influence treatment, improving the health of GBM patients.

There is a notable growth of literature related to integrated radio-phenotypical diagnostics 

revolving around precision diagnostics, i.e., the precise molecular characterization of 

tumors, by looking for patterns and targets identified from a population of patients. 

However, such noninvasive macroscopic integration, instead of revolving solely around 

precision medicine, could also contribute to personalized/adaptive approaches that may 

expand on precision medicine by characterizing within-patient heterogeneity, spatially and 

temporally. Personalized/adaptive medicine may have the potential to further customize 

treatment options using patient-specific factors. As tumor growth and invasion models 

become more elaborate, they might play a role in allowing clinicians to estimate patient-

specific growth parameters that contribute to a more precise characterization of tumor 

properties.

Recent computational studies have provided evidence of noninvasive comprehensive multi-

scale characterization of a tumor’s phenotype, behavior, and microenvironment before, 

during, and after treatment, thereby offering important information for diagnostic, 

prognostic, and predictive purposes, while capturing the whole extent and heterogeneity of 

the tumor. Integrated radio-phenotypical biomarkers may enable opportunities for 

noninvasive patient selection for targeted therapy, stratification into clinical trials, prognosis, 

and repeatable monitoring of molecular characteristics during the treatment course, leading 

to quantitative noninvasive evaluation of treatment response. Such advancements in 

integrated diagnostics, describing a composite multiscale index through synergistic analyses 

of radiographic, histopathologic, genetic, clinical, and biophysical data, may speed up 

scientific discovery and improve both precision medicine and personalized/adaptive 

medicine.
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Based on current results, we are convinced that the integration of advanced computational, 

mathematical, and biophysical methods offers great promise to become an indispensable and 

influential tool for patient management. However, we acknowledge that a significant amount 

of multidisciplinary work lies ahead. Pending further clinical validation, we anticipate the 

integration of these tools into a future iteration of the WHO classification scheme for CNS 

tumors, thus providing a more complete understanding of the mechanisms of disease, 

leading to more effective treatment and beneficial patient prospects.
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Glossary

CNS
central nervous system

GBM
glioblastoma multiforme

mpMRI
multi-parametric magnetic resonance imaging

WHO
World Health Organization

Radiography
imaging technique using radiation to expose the internal structure of an object

Pathophysiology
the disordering of physiological processes in an organism due to disease or injury

Radiomics
extraction of features from radiographic medical images

Morphologichistopathologic characterization
characterization of a disease based on the morphology of tissue cells assessed in microscopic 

examination of histopathology slides

Molecularcytogenetic characterization
characterization of a disease based on the assessment of its molecular profiling

Pseudoprogression
growth of tumor size in response to treatment rather than disease progression
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Polyclonal tumor
tumor arising from the division of multiple mutated cells, as opposed to a single mutation

WM
white matter

GM
gray matter

ED
edematous/tumor-infiltrated tissue

CSF
cerebrospinal fluid

TU region
tumor core region

ET region
enhancing tumor region

NE region
necrotic and nonenhancing tumor region

OS
overall survival
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SHORTCOMINGS OF BIOPSIES

A biopsy (a) is localized and cannot capture the spatially heterogeneous molecular 

landscape (sampling error); (b) is typically not performed longitudinally (i.e., during and 

after treatment) due to its invasive nature and the potential of neurological deficit 

(monitoring limitation); (c) is not feasible for inaccessible, inoperable, and deep-seated 

tumors (anatomical constraints); and (d) might be unavailable in many clinical settings 

due to cost and equipment availability (economic challenge). Despite these shortcomings, 

tissue analysis provides ground truth and direct cancer molecular information.
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CHALLENGES FOR INTEGRATION OF MATHEMATICAL MODELS WITH 
IMAGING

• Tumor dynamics remain mostly unknown; tumor growth is a complex 

multiscale process that is not entirely understood and is challenging to capture 

mathematically. Tumor dynamics vary significantly across patients, and 

across space and time in a single patient due to differences in the local 

microenvironment and molecular alterations.

• It is not possible to conduct controlled experiments that allow for model 

refinement in humans. Animal models and in vitro cultures can help probe 

different mechanisms, but the genome, time scale, and overall environment 

are quite different in humans. As a result, assessment and validation remain 

challenging. This issue is further complicated by therapeutic intervention and 

resection, which are extremely hard to integrate or account for in a 

simulation-based framework.

• Mathematical models are typically parameterized by many unknown 

parameters. Calibrating such models requires patient-specific clinical data that 

are, in general, not available. For example, for GBM patients, most 

information regarding a tumor’s state must be inferred from a single set of 

mpMRI scans (treatment is typically administered immediately after 

diagnosis).

• Even if the data were available, the ability to estimate unknown parameters is 

limited due to fundamental mathematical issues (e.g., nonconvexity and ill-

posedness of the inverse problem; modeling the observation operator; 

selecting an appropriate regularization; differentiation and implementation of 

adjoint equations; noise and uncertainties in the data and model; modeling 

errors).

• The inverse problem poses computational challenges. If complex models are 

implemented naively, run times for calibrating them are prohibitive for 

clinical use. Indeed, even if the forward problem is linear, the inverse problem 

can be highly nonlinear. As a result, a single calibration can require hundreds 

of forward problem evaluations. If we consider uncertainty, the costs become 

even higher.
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CHALLENGES AND OPEN QUESTIONS IN BIOPHYSICAL INVERSION

Inverse problems pose not only computational challenges but also additional modeling 

challenges that have not been addressed thoroughly in existing work. Key questions are: 

(a) What is an appropriate mismatch function to quantify the discrepancy between model 

prediction and imaging data? (b) What are appropriate regularization models for p? (c) 

How do numerical schemes affect the computed solutions? (d) How can we efficiently 

deal with the ill-posedness of the inverse problem? (e) How can we deal with sparse/

scarce data? Although general frameworks from other disciplines do exist, specializing 

these techniques to the specific problem is critical for the clinical success of inverse 

modeling. Developing adequate methods for inverse modeling remains an open problem 

for biophysical models of tumor growth.
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Figure 1. 
Radiomics in neuro-oncology. We seek to extract quantitative imaging indicators that predict 

clinical outcome. The main inputs to our framework are multi-parametric magnetic 

resonance imaging (mpMRI) data (top left) and (possibly) clinical features such as 

molecular profiling and/or histopathological data (bottom left). One possible way to identify 

clinical markers in imaging data is to apply feature extraction methods from image analysis 

(top center). These methods do not, in general, incorporate any prior knowledge about the 

underlying pathology. Computer simulations of biophysical models can establish such a 

powerful tool to integrate such information. To be clinically useful, biophysical models must 

be calibrated using the mpMRI information (medical images in our case; bottom left). Once 

calibrated, these models can be used to generate patient-specific simulations (bottom center). 
In a final step, these quantitative parameters are integrated with machine learning algorithms 

to generate tools that can assist clinical decision making (right block). Images modified from 

Reference 3 with permission from Springer Nature, Optimization and Engineering, 

copyright 2018 Springer, and from Reference 4 with permission from IEEE, IEEE 
Transactions on Medical Imaging, copyright 2012 IEEE.
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Figure 2. 
Qualitative simulation results for different biophysical models. (a) Two single-species 

models, one without (left) and one with (right) mass effect. The three images on the right 

show results (axial slices through the brain) for different realizations of a mass effect model; 

we show different degrees of deformation of the healthy tissue due to tumor growth (98). (b) 

Simulation results for a multispecies model of tumor growth with mass effect (122). We 

show two time points (initial condition and final time) per tumor species (left to right: 

proliferating, infiltrating, and necrotic tumor cells). (c) This multispecies model allows us to 

account for imaging abnormalities seen in multi-parametric magnetic resonance imaging 

(mpMRI): (top row) patient-specific mpMRI data for a glioblastoma and (bottom row) 

synthetically generated mpMRI dataset using the model described in Reference 122. The 

model parameters were identified by manual trial and error; no inversion was performed. 

This figure has been modified from References 3, 98, and 122. Panel a (left) reprinted by 

permission from Springer Nature, Optimization and Engineering, copyright 2018 Springer. 

Panel a (right) reprinted by permission from the Society for Industrial and Applied 

Mathematics; copyright 2008, all rights reserved. Panels b and c reprinted by permission 

from Springer Nature, Journal of Mathematical Biology, copyright 2019 Springer.
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Figure 3. 
(a) Illustration of the inverse problem of estimating patient-specific model parameters p. We 

seek parameters p such that the predicted state c(x, 1) (solution of the forward problem) 

matches some observed data cOBS. The input data to our problem are multi-parametric 

magnetic resonance imaging (mpMRI) data, shown at left. The image labeled “patient 

geometry” illustrates data we present to our solver. The image on the right shows the model 

output for the computed parameters. The simulations are performed in a tumor-free atlas 

image labeled “atlas geometry.” To compensate for anatomical differences in patient and 

atlas geometry, we additionally invert for a deformation map y. (b, c) Exemplary results for 

Glioma Image Segmentation and Registration (GLISTR) (4). We show segmentation results 

(b, coronal planes) and tumor probability maps (c, axial planes). (b) Each row corresponds 

to a different patient (bottom to top: patient 1 through patient 4). mpMRI (input data): The 

first three columns in panel b show the mpMRI data (input to our problem). The last three 

columns show the computed tumor labels ξ [enhancing tumor region (ET), light yellow; 

necrotic and nonenhancing tumor region (NE), dark yellow; edematous/tumor-infiltrated 

tissue (ED), purple; cerebrospinal fluid (CSF), red; gray matter (GM), gray; white matter 

(WM), white], the probability map for the tumor πTU, and the probability map of GM πG. 

(c) The average of the computed tumor posteriors over 122 glioma cases. The color map is 

the same as the one used for πTU. It can be seen that within the considered patient 

population, the region with the highest tumor probability is placed in the left temporal lobe 

of the brain. Other abbreviations: CE, contrast-enhanced; FLAIR, fluid-attenuated inversion 

recovery. Figure modified from References 3 and 4. Panel a reprinted by permission from 

Springer Nature, Optimization and Engineering, copyright 2018 Springer. Panels b and c 
reprinted by permission from IEEE, IEEE Transactions on Medical Imaging, copyright 2012 

IEEE.
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Figure 4. 
Example studies on predicting patient overall survival (OS). (Top) Distributions of features 

most predictive of OS across long-survivor (blue) and short-survivor (red) groups. The black 

arrows point to larger differences between the groups, per feature. The diffusion time 

obtained via biophysical models of tumor growth is one of the most distinctive features. 

Panel modified with permission from Reference 67. (Bottom) Distinction of radiographic 

subtypes in relation to patient OS. The shortest survival of the isocitrate dehydrogenase-1 

mutant (IDH1-mut) occurred in the irregular subtype, which overall had lower OS, 

indicating that the radiographic subtype can potentially add predictive value within IDH1-

mut patients. Panel modified with permission from Reference 70. Abbreviations: BS, brain 

size; CD, cell density; ED, edematous/tumor-infiltrated tissue; ET, enhancing tumor; non-
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ET, nonenhancing core of tumor; NV, neovascularization; PH, peak height of perfusion 

signal; TR, trace.
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Figure 5. 
Spatial descriptive characteristics of EGFRvIII glioblastoma, following advanced 

computational analysis incorporating biophysical tumor growth modeling. Abbreviations: 

ADC, apparent diffusion coefficient; ET, enhancing tumor; rCBV, relative cerebral blood 

volume. Figure modified with permission from Reference 27.
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Figure 6. 
Summary of computational radiographic analysis incorporating biophysical growth 

modeling (a–e) (96) leading to the discovery of a potential molecular target, presenting an 

opportunity for potential therapeutic development (22, 25). The findings of the radiographic 

analysis were corroborated in mice implanted with tumors (f,h), the histological analysis of 

which (g) shows increased invasion. (i) The implanted tumor growth rate was shown to be 

much decreased after targeting via mAb806. Abbreviations: CSF, cerebrospinal fluid; CTE, 

complete tumor extent; ED, edematous/tumor-infiltrated tissue; EGFR, epidermal growth 

factor receptor; ET, enhancing tumor; GLISTR, Glioma Image Segmentation and 

Registration; GM, gray matter; MRI, magnetic resonance imaging; NE, necrotic and 

nonenhancing; PBS, phosphate-buffered saline; PH, peak height of perfusion signal; rCBV, 

relative cerebral blood volume; rCE, relative contrast enhancement; WM, white matter; WT, 

whole tumor. Figure modified with permission from Binder ZA, Thorne AH, Bakas S, 

Wileyto EP, Bilello M, et al. 2018. Epidermal growth factor receptor extracellular domain 

mutations in glioblastoma present opportunities for clinical imaging and therapeutic 

development. Cancer Cell 34:163–77.
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Table 1

Clinical problems addressed through integration of mathematical modeling with medical imaging data

Clinical problem References

Tumor grading and profiling 67, 69, 70

Molecular characterization 15, 19–22, 24, 25, 27

Growth prediction 45–47, 52, 72–78

Infiltration margins (surgical planning) 79–81

Planning of radiotherapy 41, 44, 82–84

Prognosis and survival prediction 48, 59, 67, 68, 85, 86

Tumor recurrence prediction 61, 64, 66

Prediction and modeling of treatment response 39, 41, 50, 51, 80, 87–90

Improvement of imaging workflows 4, 31, 32, 91–99
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