Skip to main content
. 2020 May;21(4):253–270. doi: 10.2174/1389202921999200525155711

Table 2.

Diversity of microbes associated with plastic degradation in different ecological niche.

Plastic Type Enzyme Produced Microbes in Different Ecology References
Terrestrial Marine -
Polyethylene (PE) Unknown Aspergillus niger Aspergillus sp. [124-127]
Unknown Bacillus cereus - [128]
Unknown Brevibacillus borstelensis - [85, 129]
Lipase Penicillium simplicissimum - [130]
Manganese
peroxidase
Phanerochaete
chrysosporium
- [24, 131, 132]
Laccase - Rhodococcus ruber [133, 134]
Unknown - Phormidium sp., Zalerion maritimum [50, 121]
Polyethylene terephthalate (PET) Cutinase, Lipase Thermobifida fusca
(Thermomonospora fusca)
- [135]
MHETase, PETase Ideonella sakaiensis - [38]
Lipase - Pseudomonas sp. [39, 47, 85]
Unknown - Flavobacteriaceae, Cryomorphaceae, Saprospiraceae, Phormidium sp. [47, 50]
Cutinase Fusarium sp., - [39, 136]
Cutinase Humicola sp. - [39, 137]
Unknown - Diatoms (e.g. Coscinodiscophytina, Bacillariophytina). [50]
Polypropylene (PP) - - Pseudophormidium sp. [124]
- Alcaligenes, Pseudomonas, Vibrio - [138]
- Bacillus subtilis, B. flexus, Pseudomonas stutzeri - [139]
Polystyrene (PS) Alkane hydroxylase - Pseudomonas putida AJ, P. putida CA-3 [140, 141]
Styrene monooxygenase, Styrene oxide isomerase, Phenylacetaldehyde dehydrogenase - Mixed microbial communities (Bacillus, Micrococcus, Nocordia, Pseudomonas,
Rhodococcus)
[39, 47]
Polyurethane/Polyester (PUR) Serine hydrolase Pestalotiopsis microspora - [142]
Esterase Pseudomonas aeruginosa - [143]
Polyurethanase Pseudomonas chlororaphis - [144]
Protease Pseudomonas fluorescen - [145]
Lipase Pseudomonas chlororaphis,
P. protegens BC212
- [39, 146]
Aryl acylamidase Rhodococcus equi - [147]
Unknown Actinetobacter gerneri P7 - [148]
Unknown Actinetobacter calcoaceticus - [149]
Plastic Type Enzyme Produced Microbes in Different Ecology References
Terrestrial Marine
PolyVinyl Chloride (PVC) Unknown Poliporus versicolor, Pleurotus sajor caju,
Thermomonospora fusca
- [147, 150]
Unknown - Alteromonadaceae(Alteromonas),
Cellvibrionaceae
Oceanospirillaceae
Aestuariicela
[39, 47]
Others
(Nylon,Polycaprolactone (PCL),
Polyhudroxybutyrate/acetate (PHB/PHA))
Nylon hydrolase Agromyces sp. - [151]
Laccase Tremetes versicolor - [152]
Manganese peroxidase White-rot fungus IZU-154, Amycolaptosis sp. - [153, 154]
Polycaprolactone depolymerase Alcaligenes faecalis - [47]
Lipase - Alcanivorax sp.,
Pseudomonas sp.,
Rhizopus delemar, R. arrhizus, Achromobactr sp., Candida cylindracea
[155, 156]
Unknown - Bacillus cereus, Bacillus sphaericus, Vibrio furnissii, Brevundimonas vesicularis [157]
Lipase Rhodococcus arrizus - [47]
Serine hydrolase Acremonium sp., Cephalosporium sp., Pseudomonas stutzeri - [158-160]

for in situ microbiome engineering [87, 88]. But very little efforts have been paid for manipulating any ‘plastisphere’. Although a wealth of information is available on the microbial community composition, their useful and strategic engineering is still lagging behind. Further, the plenty of knowledge gained from the metagenomic analysis of the plastisphere also provides valuable information about enzymology and biosynthetic pathways; it opens up the scope of biocatalytic engineering for specific processes. Thus it is necessary to address the technological gaps that exist in these steps. The paramount importance is the complexity and spatiotemporal dynamics of the microbial community of the plastisphere in which individual groups have assigned separate functions [80]. They perform enzymatic biodegradation of plastics through an array of metabolic pathways [80, 81]. This biodegradative process is largely influenced by some biotic and abiotic factors. Both of these factors can be targeted to operate the microbiome composition and their function in a desirable manner. Therefore, manipulation of microbial community composition and engineering microbial genetic constitution are the two possible strategies that could be adopted for the microbiome engineering of ‘plastisphere’ (Table 3).