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A B S T R A C T   

COVID-19 is a novel virus that causes infection in both the upper respiratory tract and the lungs. The numbers of 
cases and deaths have increased on a daily basis on the scale of a global pandemic. Chest X-ray images have 
proven useful for monitoring various lung diseases and have recently been used to monitor the COVID-19 dis-
ease. In this paper, deep-learning-based approaches, namely deep feature extraction, fine-tuning of pretrained 
convolutional neural networks (CNN), and end-to-end training of a developed CNN model, have been used in 
order to classify COVID-19 and normal (healthy) chest X-ray images. For deep feature extraction, pretrained deep 
CNN models (ResNet18, ResNet50, ResNet101, VGG16, and VGG19) were used. For classification of the deep 
features, the Support Vector Machines (SVM) classifier was used with various kernel functions, namely Linear, 
Quadratic, Cubic, and Gaussian. The aforementioned pretrained deep CNN models were also used for the fine- 
tuning procedure. A new CNN model is proposed in this study with end-to-end training. A dataset containing 
180 COVID-19 and 200 normal (healthy) chest X-ray images was used in the study’s experimentation. Classi-
fication accuracy was used as the performance measurement of the study. The experimental works reveal that 
deep learning shows potential in the detection of COVID-19 based on chest X-ray images. The deep features 
extracted from the ResNet50 model and SVM classifier with the Linear kernel function produced a 94.7% ac-
curacy score, which was the highest among all the obtained results. The achievement of the fine-tuned ResNet50 
model was found to be 92.6%, whilst end-to-end training of the developed CNN model produced a 91.6% result. 
Various local texture descriptors and SVM classifications were also used for performance comparison with 
alternative deep approaches; the results of which showed the deep approaches to be quite efficient when 
compared to the local texture descriptors in the detection of COVID-19 based on chest X-ray images.   

1. Introduction 

Chest X-ray images are known to have potential in the monitoring 
and examination of various lung diseases such as tuberculosis, infiltra-
tion, atelectasis, pneumonia, and hernia. COVID-19, which manifests as 
an upper respiratory tract and lung infection, was first investigated in 
the Wuhan province of China in late 2019, and is mostly seen to affect 
the airway and consequently the lungs of those infected. The virus has 
since spread rapidly to become a global pandemic (World Health Or-
ganization, 2020), with numbers of cases and associated deaths still 
increasing on a daily basis (Worldmeter, 2020). Chest X-ray images have 
been shown to be useful in following-up on the effects that COVID-19 
causes to lung tissue (Radiology Assistant, 2020). Consequently, chest 
X-ray images may also be used in the detection of COVID-19. 

In the literature, there have been various deep-learning-based ap-
proaches that employ chest X-ray images for disease detection. Kesim, 
Dokur, and Olmez (2019) proposed a new Convolutional Neural 
Network (CNN) model for chest X-ray image classification. The authors 
developed a small-sized CNN architecture due to pretrained CNN models 
being known to present difficulties in practical applications. A 12-class 
chest X-ray image dataset was used by the authors, with an 86% accu-
racy score reported in their testing. Liu et al. (2017) proposed a deep- 
learning-based approach for the detection of tuberculosis. In their 
approach, the authors developed a novel CNN model that used chest X- 
ray images as input, and transfer learning. The authors mentioned that 
shuffle sampling was used to handle the unbalanced dataset problem, 
and that an 85.68% accuracy score was obtained using the shuffle 
sampling method. Dong, Pan, Zhang, and Xu (2017) constructed a vast 
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dataset containing chest X-ray images to which they applied deep CNN 
models for binary and multilevel classifications. Transfer learning with 
pretrained AlexNet, ResNet, and VGG16 models were used with the 
constructed dataset. While an 82.2% accuracy score was reported for the 
binary classification, over 90% accuracy scores were reported for the 
other classification tasks. Xu, Wu, and Bie (2018) developed an 
approach for abnormality detection using chest X-ray images. The au-
thors proposed a hierarchical-CNN model named CXNet-m1 to over-
come the over-fitting problem associated with transfer learning. The 
developed CNN models were shallower than the pretrained CNN models. 
A novel loss function and optimization of the CNN kernels were also 
proposed in their work, with a 67.6% accuracy score reported by the 
authors. Chouhan et al. (2020) detected pneumonia in chest X-ray im-
ages using five new deep-transfer-learning-based models applied as an 
ensemble. The authors reported a 96.4% accuracy score using their 
developed ensemble deep model. Rajpurkar et al. (2018) developed a 
121-layered CNN architecture named CheXNeXt for the classification of 
14 different pathologies based on chest X-ray images. The authors 
trained a developed CNN model using the ChestX-ray8 dataset. Using the 
area-under-curve (AUC) measure for performance measurements, the 
authors reported that the proposed model produced AUC values be-
tween 0.704 and 0.944. Li et al. (2019) used Multi-Resolution CNN (MR- 
CNN) for lung nodule detection, with a patch-based MR-CNN employed 
to extract features, and then various fusion methods were used in the 
process of classification. The authors used FAUC and R-CPM metrics for 
performance evaluation, and reported values of 0.982 and 0.987, 
respectively. Bhandary et al. (2020) modified the AlexNet model for the 
detection of lung abnormalities based on chest X-ray images. More 
specifically, the authors used a deep learning approach for the detection 
of pneumonia. A new “threshold filter” was introduced and a feature 
ensemble strategy was also defined which produced a 96% classification 

accuracy rate. Uçar and Uçar (2019) used Laplacian of Gaussian filters to 
increase the classification performance of a CNN using chest X-ray im-
ages, with a reported 82.43% classification accuracy from their new 
approach. 

Woźniak et al. (2018) proposed a new approach, based on using 
chest X-ray images for the detection of lung carcinomas. In their pro-
posed method, momentum and probabilistic neural networks (PNN) 
were used. The nodules in the chest X-ray images were initially 
segmented and the momentum of the contours of segmented nodules 
then used as features. PNN was used in the classification of the nodules, 
and a 92% classification accuracy was reported by the authors. Ho and 
Gwak (2019) opted to use feature concatenation for the efficient clas-
sification of 14 thoracic diseases that used deep features and four local 
texture descriptors (SIFT, GIST, LBP, and HOG). In the classification 
stage, GDA, k-NN, Naïve Bayes, SVM, Adaboost, Random forests, and 
ELM were used, and an 84.62% accuracy score was reported. Souza et al. 
(2019) developed an automatic approach for lung segmentation in chest 
X-ray images. The main aim of the work was to determine tuberculosis 
regions in lungs based on chest X-ray images. For segmentation, two 
deep CNN-based approaches were employed, with a 94% segmentation 
accuracy reported by the authors. 

In the current study, and unlike the methods proposed in the liter-
ature, deep learning approaches are proposed for the detection of 
COVID-19 based on chest X-ray images. Whilst various lung diseases (e. 
g., tuberculosis, pneumonia, and lung carcinomas) have been detected 
from chest X-ray images, the current study is limited to the detection of 
COVID-19 versus normal (healthy) cases using chest X-ray images. In the 
first deep learning approach, a new CNN model was proposed that was 
trained end-to-end. In a second approach, pretrained CNN models were 
used for deep feature extraction using SVM classifiers with various 
kernel functions (i.e., Linear, Quadratic, Cubic, and Gaussian) used for 

Fig. 1. Illustration of Proposed Methodology for COVID-19 Detection.  
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the purposes of COVID-19 classification. In a third approach, different 
pretrained CNN models were further trained (or “fine-tuned”) using 
chest X-ray images for the detection of COVID-19. A chest X-ray image 
dataset composed of 180 COVID-19 samples and 200 healthy (normal) 
samples was first constructed (GitHub, 2020; Kaggle, 2020; Radiology 
Assistant, 2020). The ethical issues pertaining to the collection and 
usage of the images were reported to have been addressed according to 
the websites from where the images were retrieved. 

Classification accuracy was used for the performance evaluation of 
the proposed methods. The pretrained deep CNN models used in the 
current study were ResNet18, ResNet50, ResNet101, VGG16, and 
VGG19. From the study’s experimentation, the deep features model 
(ResNet50) and SVM with Linear kernel function produced a 94.7% 
accuracy score, which was the highest among all the results obtained. 
Test achievements for the fine-tuning of the ResNet50 model and end-to- 
end training of the developed CNN model were found to be 92.6% and 
91.6%, respectively. For comparative purposes, various local texture 
descriptors were considered; namely, Local Binary Patterns (LBP) 
(Ahonen, Hadid, & Pietikainen, 2006), Frequency Decoded LBP (FDLBP) 
(Dubey, 2019), Quaternionic Local Ranking Binary Pattern (QLRBP) 
(Lan, Zhou, & Tang, 2015), Binary Gabor Pattern (BGP) (Zhang, Zhou, & 
Li, 2012), Local Phase Quantization (LPQ) (Ojansivu & Heikkilä, 2008), 
Binarized Statistical Image Features (BSIF) (Kannala & Rahtu, 2012), 
CENsus TRansform hISTogram (CENTRIST) (Wu & Rehg, 2010), and 
Pyramid Histogram of Oriented Gradients (PHOG) (Bosch, Zisserman, & 
Munoz, 2007). From the local texture descriptors, the BSIF with SVM 
classifier produced a 90.5% accuracy score. 

The contribution of this paper is therefore as follows:  

• A novel application of a deep learning model is used for the detection 
of COVID-19 based on chest X-ray images. 

The remainder of this paper is arranged as follows. Section 2 details 
the materials and methods used in the study, including CNN, transfer 
learning, end-to-end training and SVM theories, as well as a brief 
introduction to the methodology used. Section 3 describes the experi-
mental works and their results, and Section 4 provides the conclusions of 
the study. 

2. Materials and methods 

The proposed method is illustrated as shown in Fig. 1, in which chest 
X-ray images are used as input to the proposed COVID-19 detection 
method. The input chest X-ray images are initially resized to 224 × 224 
pixels for compatibility with the CNN models. As previously mentioned, 
three deep learning approaches were considered, namely deep feature 
extraction from pretrained deep networks, fine-tuning of a pretrained 
CNN model, and end-to-end training of a CNN model. 

For both deep feature extraction and fine-tuning procedures, the 
ResNet18, ResNet50, ResNet101, VGG16, and VGG19 models were 
used. For the training of the deep features, SVM classifier was used with 
various kernel functions, namely Linear, Quadratic, Cubic, and 
Gaussian. A 21-layered new CNN model was also proposed and trained 
end-to-end. The proposed network model starts with an input layer, then 
there are five convolutions layers, five ReLU layers, and five batch 
normalization layers, respectively. Two pooling layers are used after the 
first and second ReLU layers, respectively. A fully-connected layer, 
softmax layer, and classification layer are also used at the end of the 
model. 

2.1. Deep transfer learning 

The procedure of deep feature extraction and fine-tuning of pre-
trained CNN models is defined as deep transfer learning (DTL). With a 
limited number of training images, DTL helps in the deep learning 
process for the image classification task of this proposed method (Pan & 

Yang, 2009). The DTL concept transfers knowledge from a source 
domain where there are many training samples, to a target domain 
where there are comparatively much fewer samples. Thus, efficient 
image classification can be achieved with the support of the larger 
dataset from the source domain. In terms of the deep learning 
perspective, especially in the case of a CNN, DTL is defined as trans-
ferring certain layers of a pretrained CNN model previously trained with 
millions of images. More specifically, the task-dependent layers of the 
CNN model such as the fully-connected layers and the classification 
output layer are removed from the network architecture and the 
remaining layers saved for application to the new classification task 
(Deniz et al., 2018). 

2.2. Convolution neural networks (CNNs) 

A sequence of convolution, normalization, and pooling layers are 
used to construct the main building blocks of a CNN architecture (Omar, 
Sengur, & Al-Ali, 2020). While the convolution layers are responsible for 
the extraction of the local features, the normalization and pooling layers 
are responsible for the normalization of the local features and for the 
down-sampling of the local features, respectively. 

The output feature map is obtained in Eq. (1), where Xl− 1
i shows the 

local features obtained from the previous layers, and kl
ij andbl

j denote the 
adjustable kernels and training bias, respectively. Bias is used to prevent 
overfitting during the training of the CNN (Başaran, Cömert, & Çelik, 
2020); 

Xl
j = f

(
∑

i∈Mj

Xl− 1
i *kl

ij + bl
j

)

(1)  

where, Mjand f() denotes the input map selection and activation func-
tion, respectively. As previously mentioned, the pooling layer is 
employed for the down-sampling of the feature maps. There are various 
pooling techniques applied, namely average and maximum. Pooling 
layers are responsible for decreasing the computational nodes and for 
preventing the issue of overfitting within the CNN architecture (Xu et al., 
2019). The pooling process is defined as shown in Equation (2); 

Xl
j = down

(
Xl− 1

j

)
(2)  

where, the down-sampling is shown by the down(.) function. It is worth 
noting here that down-sampling provides an abstract of the local fea-
tures for the next layer. The fully-connected (FC) layers have full con-
nections to all of the activations in the previous layer. The FC layer 
provides discriminative features for the classification of the input image 
into its various classes. 

Similar to the traditional machine learning techniques, the training 
of the CNN was carried out using an optimization process. Stochastic 
Gradient Descent with Momentum (SGDM), and Adaptive Moment 
Estimation (ADAM) are two well-known training methods utilized for 
neural networks. 

2.3. Support Vector Machines (SVMs) 

Support Vector Machines were developed by Vapnik (Widodo & 
Yang, 2007), and are well-known as classifiers based on the structural 
risk reduction principle categorized in the supervised statistical learning 
theorem. The main idea of the SVM classifier is to determine an optimum 
hyperplane between positive and negative samples (Qi, Tian, & Shi, 
2013). The linear separation of the positive and negative samples can be 
handled using Equation (3) (Adaminejad & Farjah, 2013); 

f (x) = wT x+ b = 0 (3)  

where w indicates the weight vector and b is bias value used to deter-
mine the position of the hyperplane. A kernel trick is employed to 
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transfer the input data to another hyperplane where the data is more 
convenient for linear separation. The best hyperplane can be determined 
by using Eq. (4) (Cheng & Bao, 2014); 
⎧
⎪⎨

⎪⎩

min
‖w‖2

2
yi
(
wT xi + b

)
≥ 1i = 1, 2,⋯,M

(4)  

3. Experimental works and results 

All coding were carried out with MATLAB software on a workstation 

equipped with the NVIDIA Quadro M4000 GPU with 8 GB RAM. The 
chest X-ray images were collected from three different sources (GitHub, 
2020; Kaggle, 2020b; Radiology Assistant, 2020), with the labelling of 
the chest X-ray images conducted by specialist doctors. A total of 180 
COVID-19 and 200 normal (healthy) chest X-ray images were collected. 
In the study’s experiments, a random 75% selection of the dataset was 
used for the purposes of training, and the remaining 25% was used for 
testing the proposed method. Fig. 2 shows some sample COVID-19 and 
normal (healthy) chest X-ray images. 

The chest X-ray images were initially resized to 224 × 224 pixels for 
compatibility requirements as input to the CNN models. Some of the 
collected images were in grayscale and these images were converted to 
color format by copying the grayscale image to all R, G, and B channels. 
No other preprocessing methods were applied to the chest X-ray images. 
The hyperparameters of the proposed methods were selected heuristi-
cally during the experimentation. 

3.1. Deep features and SVM 

Five pretrained CNN models, namely VGG16, VGG19, ResNet18, 
ResNet50, and ResNet101 were used in the study’s experiments. More-
over, SVM method was used for the purposes of classification with four 
kernel functions, namely Linear, Quadratic, Cubic, and Gaussian. The 
epsilon value of the SVMs with the Linear and Quadratic kernel func-
tions were set to 0.04 and 0.02, respectively, whilst both the Cubic 
kernel and Gaussian functions’ epsilon value was set as 0.01. The clas-
sification accuracy score was used in the performance evaluation of the 
study’s testing, and Table 1 presents the obtained accuracy scores. While 
the rows of Table 1 show the SVM kernel types, the columns show the 
pretrained CNN models. The last row and column show the average 
accuracy scores. 

From Table 1, it can be seen that the ResNet50 model produced the 
highest average accuracy score, with an average accuracy score of 

Fig. 2. Various Chest X-ray Images from COVID-19 and Normal Cases.  

Table 1 
Achievements of pretrained deep CNN models and SVM classifiers on COVID-19 detection.   

Accuracy (%) 

Method: SVM ResNet18 ResNet50 ResNet101 VGG16 VGG19 Average 

Linear Kernel  86.3  94.7  88.4  89.5  88.4  89.5 
Quadratic Kernel  87.4  91.6  89.5  89.5  87.4  89.1 
Cubic Kernel  89.5  90.5  91.6  90.5  89.5  90.3 
Gaussian Kernel  86.3  93.7  88.4  89.5  87.4  89.1 
Average  87.4  92.6  89.5  89.8  88.1   

Fig. 3. Confusion Matrix Obtained for ResNet50 and Linear SVM Classifier.  
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92.6%, whilst the VGG16 model produced an average accuracy score of 
89.8% as the second best score. The ResNet101 model produced an 
average accuracy score of 89.5%, whilst the VGG19 and ResNet18 
models produced average accuracy scores of 88.1% and 87.4%, 
respectively. 

When the results are examined in terms of the kernel functions, it can 
be seen that the best average accuracy score was 90.3%, produced by the 
Cubic kernel function. A second-best average accuracy score of 89.5% 
was produced by the Linear-kernel-based SVM classifier. The SVM 
classifiers based on the Quadratic kernel and the Gaussian kernel pro-
duced identical 89.1% accuracy scores. 

From Table 1, it can also be observed that the ResNet50 features and 
Linear kernel SVM classifier produced a 94.7% accuracy score, which 
was the highest individual accuracy score overall. The second-best in-
dividual accuracy score was 93.7%, which was also produced by the 
ResNet50 model, but with the Gaussian-kernel-based SVM classifier. It is 
worth mentioning here that the lowest accuracy score was 86.3%, and 
was produced by the ResNet18 model both with the Linear kernel and 
Gaussian kernel functions. 

Fig. 3 presents the confusion matrix for the ResNet50 features with 
the Linear SVM classifier. The labels “C” and “N” represent the COVID- 
19 and normal (healthy) cases, respectively. From Fig. 3, it can also be 
observed that while 41 COVID-19 and 49 normal (healthy) samples were 
correctly classified, four COVID-19 samples and one normal (healthy) 
sample were misclassified. Therefore, the rate of correct classification of 
COVID-19 samples was 91.11%, whilst it was 98.0% for the normal 
(healthy) samples. 

3.2. Fine-tuning 

Fig. 4 illustrates the training process applied to fine-tune the 
ResNet50 model. Data augmentation was conducted both for fine-tuning 
and for end-to-end training, and was carried out by randomly rotating, 
shifting, and flipping the training images. The upper graph in Fig. 4 
shows the training and average training accuracies (with light-blue =
training [smoothed], and blue = testing), whilst the lower graph in 
Fig. 4 shows the loss value for the training samples (orange = training 

[smoothed], and light-orange = training). Table 2 details the achieve-
ments of the fine-tuned pretrained deep CNN models on COVID-19 
classification. 

As can be seen in Table 2, all of the fine-tuned deep CNN models 

Fig. 4. Fine-tuning of ResNet50 Model for COVID-19 Classification.  

Table 2 
Achievements of Fine-Tuning Of Pretrained Deep 
CNN models on COVID-19 classification.  

Fine-tuning Accuracy (%) 

VGG16  85.26 
ResNet18  88.42 
ResNet50  92.63 
ResNet101  87.37 
VGG19  89.47  

Fig. 5. Confusion Matrix Obtained by Fine-tuning ResNet50 Model.  
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achieved classification accuracy scores above 85%. The highest accu-
racy score was 92.63%, produced by the ResNet50 model, whilst the 
second-best accuracy score of 89.47% was obtained from the VGG19 
model. In addition, 88.42%, 87.37%, and 85.26% accuracy scores were 
obtained from the ResNet18, ResNet101, and VGG16 models, 
respectively. 

Fig. 5 presents the confusion matrix for the fine-tuned ResNet50 
model. As can be seen from Fig. 5, while 43 COVID-19 samples and 45 
normal (healthy) samples were classified correctly, two COVID-19 and 
five normal (healthy) samples were misclassified. The rate of correct 
classification of COVID-19 samples was therefore 95.56%, whilst it was 
90.0% for the normal (healthy) samples. 

3.3. End-to-end training 

In the final experiments of the current study, a novel CNN model was 
constructed and end-to-end trained for the purposes of COVID-19 clas-
sification. The developed CNN model is illustrated as shown in Fig. 6, 

and was composed of 21 layers. The network started with an input layer, 
followed by five convolutions layers, namely conv_1, conv_2, conv_3, 
conv_4, and conv_5, with batch normalization and ReLU layers following 
each convolution layer. There were also two pooling layers, pool_1 and 
pool_2, which followed after the ReLu_1 and ReLu_2 layers, respectively. 
A fully-connected layer, softmax layer, and classification layer were also 
used for the purposes of classification. The conv_1, conv_2, and conv_3 
layers contained 64, 32, 16, 8, and 4 filters that were size 3 × 3 pixels. 
The max operator function was used in the pooling layers. 

Details of the end-to-end CNN architecture covering descriptions of 
the layers, activations, and learnable weights are presented in Table 3. 
The training of the end-to-end CNN model was conducted using the 
“SGDM” optimizer, with an initial learning rate of 0.001, and the 
network was trained over 300 iterations. 

The end-to-end training procedure of the proposed CNN model is 
shown in Fig. 7. The upper graph in Fig. 7 shows the training and testing 
accuracies (blue = training, and black = testing), whilst the lower graph 
in Fig. 7 shows the loss values for both training and test samples (orange 
= training, and black = testing). The obtained accuracy score was 
91.58%, and the training procedure was completed in 11,400 iterations. 

Fig. 8 presents the confusion matrix obtained for the end-to-end 
trained CNN model. While 40 COVID-19 samples and 47 normal 
(healthy) samples were classified correctly, five COVID-19 and three 
normal (healthy) samples were misclassified. Therefore, the rate of 
correct classification of COVID-19 samples was 88.89%, whilst it was 
94.0% for the normal (healthy) cases. 

Additional shallow CNN models were then used to investigate their 
potential in terms of COVID-19 classification accuracy. The shallow 
networks were also end-to-end trained, and the obtained results are 
presented in Table 4. 

As can be seen in Table 4, the first model contains 21 layers, with one 
input layer, five convolution layers, five batch normalization layers, five 
ReLU layers, two pooling layers, one fully-connected layer, one softmax 
layer, and one classification layer. The second model contains 17 layers, 
with one input layer, four convolution layers, four batch normalization 
layers, four ReLU layers, one pooling layer, one fully-connected layer, 
one softmax layer, and one classification layer. Finally, the third model 
contains 15 layers, with an input layer, three convolution layers, three 
batch normalization layers, three ReLU layers, two pooling layers, one 
fully-connected layer, one softmax layer, and one classification layer. As 
previously mentioned, the first model produced an accuracy score of 
91.58%, which was the best amongst all the shallow CNN model’s 
achievements. The second and third models produced 88.42% and 
86.32% accuracy scores, respectively. From these results, it can be seen 
that the deep CNN model (model one, with 21 layers) produced the 
highest accuracy score. 

As can be seen from these results, the deep feature extraction and 
deep transfer learning approach produced better accuracy scores than 
the end-to-end training of the proposed CNN models. This result was 
considered reasonable as pretrained deep CNN models were used for 
both deep feature extraction and deep transfer learning. These models 
were trained with 25 million images that made the filters of the 
convolution layers more efficient on new applications. In addition, the 
depth of these CNN models were quite extensive, which shows that the 
depth of the CNN model significantly affects the accuracy of the 
application. 

Fig. 9 presents images generated from the fully-connected layer of 
the further trained ResNet50 model. The first image (Fig. 9a) corre-
sponds to the COVID-19 class, whilst the second image (Fig. 9b) corre-
sponds to the normal (healthy) class. 

In addition, Fig. 10 presents output images of the fully-connected 
layer of the proposed CNN model. As a comparison, the images from 
the fully-connected layer of the further trained ResNet50 model (see 
Fig. 9) were found to be more regular and meaningful than those from 
the proposed CNN model (see Fig. 10). 

Fig. 6. Developed CNN Model for COVID-19 Detection.  

Table 3 
Analysis of proposed CNN model for COVID-19 detection.  

1 “input” 224 × 224 × 3 images 
2 “conv_1” 64 3 × 3 × 3 convolutions with stride [11] and padding 

“same” 
3 “BN_1” Batch normalization 
4 “relu_1” ReLU 
5 “pool_1” 2 × 2 max pooling with stride [22] and padding [0 0 0 0] 
6 “conv_2” 32 3 × 3 × 8 convolutions with stride [11] and padding 

“same” 
7 “BN_2” Batch normalization 
8 “relu_2” ReLU 
9 “pool_2” 2 × 2 max pooling with stride [22] and padding [0 0 0 0] 
10 “conv_3” 16 3 × 3 × 16 convolutions with stride [11] and padding 

“same” 
11 “BN_3” Batch normalization 
12 “relu_3” ReLU 
13 “conv_4” Eight 3 × 3 × 16 convolutions with stride [11] and padding 

“same” 
14 “BN_4” Batch normalization 
15 “relu_4” ReLU 
16 “conv_5” Four 3 × 3 × 16 convolutions with stride [11] and padding 

“same” 
17 “BN_5” Batch normalization 
18 “relu_5” ReLU 
19 “fc” Five fully-connected layers 
20 “softmax” Softmax 
21 “Classification” crossentropyex with “0” and nine other classes  
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3.4. Local texture descriptors 

For comparative purposes, various local descriptors were also used to 
extract features from the chest X-ray images for the purposes of COVID- 
19 detection. In total, eight well-known local texture descriptors were 
considered, namely LBP (Ahonen et al., 2006), FDLBP (Dubey, 2019), 
QLRBP (Lan et al., 2015), BGP (Zhang et al., 2012), LPQ (Ojansivu & 
Heikkilä, 2008), BSIF (Kannala & Rahtu, 2012), CENTRIST (Wu & Rehg, 
2010), and PHOG (Bosch et al., 2007). 

LBP summarizes local structures of images efficiently by comparing 
each pixel with its neighboring pixels. FDLBP improves the LBP by 
applying the decoder concept of multi-channel decoded local binary 
pattern over the multi-frequency patterns. QLRBP works on the 

quaternionic representation (QR) of the color image that encodes a color 
pixel using a quaternion. BGP was developed in order to amalgamate the 
advantages of both Gabor filters and LBP. LPQ was designed by quan-
tizing the Fourier transform phase in the local neighborhoods of a given 
pixel. Thus, a robust structure was obtained to add distinction to blurred 
and low-resolution images. BSIF was produced by the binarization of the 
responses to linear filters learned from natural images and independent 
component analysis. CENTRIST was designed similar to the LBP. After 
coding the pixel values, histogram was used as CENTRIST features. 
PHOG was developed to encode an image utilizing its local shape at 
various scales with the help of distributing the direction of intensity and 
edges. 

In the classification phase, the SVM classifier with Linear, Quadratic, 
Cubic, and Gaussian kernel functions was applied. The obtained results 
with the local descriptors and SVM classifier are as presented in Table 5. 

The rightmost column of Table 5 shows the average accuracy scores 
for each of the local descriptors, whilst the last row of Table 5 shows the 
average accuracy scores of each kernel function of the SVM classifier. 
According to the results shown in Table 5, various observations are 
notable. For example, the BSIF local feature descriptor obtained the 
highest average classification accuracy score of 90.0%, showing that the 
BSIF method outperformed all other applied local feature descriptors. 
Similarly, the Linear SVM technique outperformed all other kernel 
functions with an average accuracy score of 85.0%. The LBP approach 
produced a 77.7% average accuracy score, which was the lowest of the 
accuracy scores. Both the Linear and Gaussian kernel functions pro-
duced an 81.1% accuracy score with LBP features, which was the highest 
of the accuracy scores obtained using LBP features. The BGP local de-
scriptors produced an 82.7% average accuracy score, whilst the best 
BGP accuracy score of 84.2% was produced by the Linear kernel 
function. 

The best accuracy score overall was 90.5%, and was produced by 
BSIF with the Linear, Quadratic, and Cubic kernel functions. The 
CENTRIST technique produced accuracy scores of 84.2% for Linear, 
Quadratic, and Gaussian kernel functions, and 81.1% for the Cubic 
kernel function. PHOG features produced the fourth-best average 

Fig. 7. End-to-end Training of Developed CNN Model for COVID-19 Classification.  

Fig. 8. Confusion Matrix Obtained by End-to-end Training of Developed 
CNN Model. 
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accuracy score with 84.0%, with the LPQ technique slightly ahead with 
an 84.2% average accuracy score as the third-best. The FDLBP tech-
niques’ achievement was 87.4%, which was the second-best average 
accuracy score with identical 87.4% accuracy scores across all kernel 
functions. The QLRBP method produced an average accuracy score of 
82.1% which was similar to the FDLBP technique, and the QLRBP 
method also produced identical accuracy scores across all kernel 
functions. 

A final performance comparison of the used methods is presented in 
Table 6, which clearly shows that the deep learning approach out-
performed the local descriptors. 

Additional experiments were then conducted with newly released 
COVID-19 chest X-ray images (Kaggle, 2020a). However, it should be 
noted that only the COVID-19 chest X-ray images were selected from this 
dataset for use in these additional experiments. The obtained results are 
presented in Table 7. As can be seen from Table 7, the ResNet50 Fea-
tures + SVM, Fine-tuning ResNet50, and BSIF + SVM methods each 

yielded small improvements, whereas the end-to-end training of the 
CNN method produced a slightly lower accuracy score compared to the 
main results (see Table 6). However, an overall general improvement 
can be seen. In order to realize further improvement, normal (healthy) 
chest X-ray images are also needed in addition to the COVID-19 samples. 

Table 8 presents the results obtained from the randomly selected half 
of the dataset that was used for training purposes, with the remainder 
used for testing (50% training and 50% test). When compared to 
Table 7, it can be seen that when the number of samples in the training 
set became reduced, the results were also seen to reduce. 

Further comparisons of the proposed method were then made to 
other studies recently published on COVID-19 detection. Toğacar, 
Ergen, and Cömert (2020) used deep feature extraction and feature se-
lection for COVID-19 detection based on chest X-ray images, with a 
reported accuracy level of 99.27%. Ozturk et al. (2020) used darknet 
and yolo for the detection of COVID-19, and reported classification ac-
curacy of 98.08%. Ucar and Korkmaz (2020) used deep Bayes- 

Table 4 
Shallow CNN models and their achievements.  

Fig. 9. Output Images of Fully-connected Layer of Further Trained ResNet50 Model.  
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SqueezeNet for COVID-19 detection based on chest X-ray images, and 
reported accuracy as being 76.37% for the multiclass case. Das, Kumar, 
Kaur, Kumar, and Singh (2020) used a fine-tuned pretrained deep model 
for the detection of COVID-19, with a reported accuracy score of 
97.04%. Hemdan, Shouman, and Karar (2020) developed COVIDX-Net 
for the automated detection of COVID-19 using chest X-ray images, 
obtaining a COVID-19 classification accuracy of 91%. Asnaoui, Chawki, 
and Idri (2020) presented a comparative study of eight transfer learning 
techniques for the classification of COVID-19 pneumonia, with the 
MobileNet-V2 and Inception-V3 models providing a 96% successful rate 
of classification accuracy. As can be seen, the proposed deep methods on 
chest X-ray-based COVID-19 detection produced accuracy scores 
ranging from 90% to 100%. 

Table 9 shows the computational efforts of each model. As can be 
seen in Table 9, the deep features and SVM accomplished its run in 48.9 
s, which was the shortest runtime of the models tested. The second best 
runtime was 61.76 s, and was achieved for the local texture descriptors 

Fig. 10. Output Images of Fully-connected Layer of Proposed CNN Model.  

Table 5 
Results of first experiment using local feature descriptors and SVM classifiers.  

Local 
descriptors 

Accuracy scores (%)  

Linear 
SVM 

Quadratic 
SVM 

Cubic 
SVM 

Gaussian 
SVM 

Average 
Accuracy 
(%) 

LBP  81.1  77.9  70.5  81.1  77.7 
BGP  84.2  83.2  80.0  83.2  82.7 
BSIF  90.5  90.5  90.5  88.4  90.0 
CENTRIST  84.2  84.2  81.1  84.2  83.4 
PHOG  85.3  83.2  83.2  84.2  84.0 
LPQ  85.0  84.2  82.6  85.0  84.2 
FDLBP  87.4  87.4  87.4  87.4  87.4 
QLRBP  82.1  82.1  82.1  82.1  82.1 
Average 

Accuracy 
(%)  

85.0  84.1  82.2  84.5   

Table 6 
Performance comparison of the applied methods.  

Method Accuracy (%) 

ResNet50 Features + SVM  94.7 
Fine-tuning of ResNet50  92.6 
End-to-end training of CNN  91.6 
BSIF + SVM  90.5  

Table 7 
Results using additional COVID-19 chest X-ray images.  

Method Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

F1 
score 
(%) 

AUC 

ResNet50 
Features +
SVM  

95.79  94.00  97.78  95.92  0.9987 

Fine-tuning of 
ResNet50  

92.63  88.00  97.78  92.63  0.9973 

End-to-end 
training of 
CNN  

90.53  88.00  93.33  90.72  0.9920 

BSIF + SVM  91.58  90.00  93.33  91.84  0.9933  

Table 8 
Results Using Additional Samples in Test Set (50% training/50% test).  

Method Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

F1 
score 
(%) 

AUC 

ResNet50 
Features +
SVM  

94.74  91.00  98.89  94.79  0.9990 

Fine-tuning of 
ResNet50  

89.47  90.00  88.89  90.00  0.9889 

End-to-end 
training of 
CNN  

86.84  87.00  86.67  87.44  0.9827 

BSIF + SVM  85.79  87.00  84.44  86.57  0.9798  

Table 9 
Computational efforts of the examined methods.  

Method Computational Time (s) 

ResNet50 Features + SVM  48.9 
Fine-tuning of ResNet50  126.4 
End-to-end training of CNN  1407.2 
BSIF + SVM  61.76  
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and SVM classifier. The longest runtime was 1407.2 s, which was for the 
End-to-end training of the CNN model. 

The ROC curves for deep CNN approaches are shown in Fig. 11. The 
blue, red, and green colors show the “deep feature extraction and SVM 
classifier,” “fine-tuning of the pretrained model,” and “end-to-end 
training of the CNN model,” respectively. From the ROC curves, it can be 
seen that the “deep feature extraction and SVM classifier” model per-
formed better than the other deep approaches. 

We also compared the achievement of the proposed method with a 
recently published method proposed by Toğacar et al. (2020). This 
comparison utilized by the codes shared by the authors. Table 10 pre-
sents the comparison according to the accuracy scores, and shows that 
the proposed method performed almost 2% better. 

4. Conclusions 

The current study applied three deep CNN approaches in the detec-
tion of COVID-19 based on chest X-ray images. More specifically, two 
transfer learning approaches, namely deep feature extraction and fine- 
tuning, as well as an end-to-end trained new CNN model were experi-
mented. The deep features were classified with SVM classifier, accom-
panied with different kernel functions. Eight well-known local 
descriptors are then considered, and the obtained results revealed the 
following conclusions;  

1. The deep learning approaches outperformed the local descriptors. 
Especially, deep features and SVM classifier performed better than 
the other approaches.  

2. Fine-tuning and end-to-end training requires much more time than 
deep feature extraction and local feature descriptor extraction.  

3. The Cubic kernel function generally outperformed all other kernels 
in deep feature classification. The ResNet50 model generally pro-
duced better results than the other pretrained CNN models.  

4. For end-to-end training, deep CNN models produced better results 
than shallow networks. 

In future works, additional COVID-19 chest X-ray images will be 
collected and deeper CNN models investigated for the detection of 
COVID-19. Additionally, other lung diseases will also be included in the 
researchers’ future studies. With the COVID-19 disease presenting 
different stages of evolution and with different imagistic patterns, this 
feature will aim to be addressed in future studies, as well as the devel-
opment of a GUI to help radiologists detect COVID-19. 
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