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Abstract

Sonographic features associated with margins, shape, size, and volume of thyroid nodules are used 

to assess their risk of malignancy. Automatically segmenting nodules from normal thyroid gland 

would enable an automated estimation of these features. A novel multi-output convolutional neural 

network algorithm with dilated convolutional layers is presented to segment thyroid nodules, 

cystic components inside the nodules, and normal thyroid gland from clinical ultrasound B-mode 

scans. A prospective study was conducted, collecting data from 234 patients undergoing a thyroid 

ultrasound exam before biopsy. The training and validation sets encompassed 188 patients total; 

the testing set consisted of 48 patients. The algorithm effectively segmented thyroid anatomy into 

nodules, normal gland, and cystic components. The algorithm achieved a mean Dice coefficient of 

0.76, a mean true positive fraction of 0.90, and a mean false positive fraction of 1.61×10−6. The 

values are on par with a conventional seeded algorithm. The proposed algorithm eliminates the 

need for a seed in the segmentation process, thus automatically detecting and segmenting the 

thyroid nodules and cystic components. The detection rate for thyroid nodules and cystic 

components was 82% and 44%, respectively. The inference time per image, per fold was 107ms. 

The mean error in volume estimation of thyroid nodules for five select cases was 7.47%. The 

algorithm can be used for detection, segmentation, size estimation, volume estimation, and 

generating thyroid maps for thyroid nodules. The algorithm has applications in point of care, 

mobile health monitoring, improving workflow, reducing localization time, and assisting 

sonographers with limited expertise.
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I. INTRODUCTION

The increase in incidence of thyroid cancer is faster than any other cancer at 4.5% per year 

over the last 10 years [1]. In 2018, an estimated 53,990 new thyroid cancer cases were 

diagnosed in the United States alone, and an estimated 2,060 people died due to thyroid 

cancer [2]. Thyroid nodules are mostly benign with a malignancy rate of 4.5–6% [3]. The 

United States Preventive Services Task Force recommends against screening, including neck 

palpation and ultrasound (US), for thyroid cancer in asymptomatic adults [1]. Due to the 

lack of a screening process, thyroid nodules are found incidentally by palpation or 

diagnostic imaging modalities like ultrasonography, computed tomography, magnetic 

resonance imaging, or positron emission tomography. Ultrasonography is the commonly 

used diagnostic tool for thyroid cancer as it is inexpensive and readily available. Besides 

differentiating between solid nodules and those consisting of cystic components, 

ultrasonography features are related to the pathology of the nodule. The sonographic 

features that indicate an increased risk of malignancy include hypoechoic solid nodules, 

taller-than-wide nodules, irregular margins, extra-thyroidal extension, and presence of 

micro-calcifications. Contrarily, presence of peripheral vascularity, round shape, hyper-or 

isoechogenicity, spongiform appearance, smooth margins, and cystic composition are 

associated with benign disease [4–6]. Sub-centimeter nodules identified by US are not 

recommended for fine needle aspiration (FNA) [7], as they lack the potential to be clinically 

significant thyroid cancers. Thus, estimating the size, volume, and shape of nodules plays a 

crucial role in the decision making process of FNA biopsy. Segmenting the thyroid nodules 

from normal thyroid gland using US images can help in estimating the above-mentioned 

parameters.

Segmenting US images is challenging due to the poor contrast between different anatomies 

and the presence of a granular speckle pattern. Different segmentation techniques for thyroid 

nodules have been proposed using US images, including radial basis function neural network 

[8], variable background active contour [9], genetically-optimized variable background 

active contour [10], localization-based active contour [11], local region-based active contour 

[12], geodesic active contour level set [13], active contour bilateral filtering ()[14], hybrid 

multi-scale model [15], identifying thin hyper-echoic lines associated with the lobes of 

thyroid glands [16], extreme learning machine [17], normalized cut [18], random forest and 

U-net convolutional neural network (CNN)[19], and manually segmenting the 

boundaries[20]. Most of the algorithms mentioned above use a manually drawn boundary, 

referred to as a seed, to initiate the segmentation algorithm. A seeded boundary is a rough 

estimate of the nodule boundary drawn by a user on the B-mode image. Drawing a seed 

impedes the algorithms from operating in real-time, limiting the use of seeded algorithms for 

retrospective analysis only. A seedless approach to segmenting thyroid nodules can enable 

real-time applications of segmentation algorithms in clinical workflow.

Thyroid nodules can be solid, cystic, predominantly solid, or predominantly cystic. 

Segmenting the cystic components inside a thyroid nodule can help to identify the nodule’s 

composition. Cystic components appear as hypoechoic regions under US imaging. However, 

hypoechoic regions inside the thyroid gland could be cystic components and should not be 
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mistaken for arteries or veins present outside the thyroid gland, which are also hypoechoic 

structures. The segmentation algorithm needs to learn where the thyroid gland is on the 

ultrasound image and then look for cystic components inside the nodules.

Deep learning algorithms leverage the improvements in graphics processing units’ 

computing power to develop larger and more complex neural networks capable of 

segmenting ultrasound images for various anatomies [21–25]. Deep learning algorithms do 

not require a seed and are fully automated with an inference time in the range of 

milliseconds, enabling real-time implementation. In this paper, we propose a novel multi-

prong CNN to semantically segment normal thyroid gland, thyroid nodules, and cystic 

components inside nodules from B-mode images. The algorithm can help the user detect and 

segment thyroid anatomy in real-time. The application of the algorithm includes detection, 

segmentation, size estimation, volume estimation, and generation of thyroid maps of thyroid 

nodules. The performance of the algorithm is validated against a manually segmented mask 

and compared against a conventional seeded algorithm.

II. MATERIALS AND METHODS

A. PATIENT POOL

A prospective study was conducted from April 2015 to September 2018. The study was 

approved by the Institutional Review Board and was Health Insurance Portability and 

Accountability Act compliant. Written consent was obtained from each patient. A total of 

234 patients (177 female, 57 male; age 57±15 yrs.) underwent a clinical thyroid US exam 

using a GE LOGIQ E9 (GE Healthcare; Wauwatosa, Wisconsin USA) US scanner. The 

imaging protocol consisted of gathering B-mode images of all thyroid nodules for both 

longitudinal and transverse cross-sections by a board certified sonographer. Probe type, 

center frequency, time gain compensation, and imaging technique were optimized by the 

sonographer. A total of 914 thyroid US images were obtained from 234 patients. Images not 

showing the thyroid gland and images from patients that previously had a thyroidectomy 

were excluded. The dataset was divided into training, validation, and testing sets. The 

training and validation sets were comprised of 766 images corresponding to 186 patients. 

The testing set was comprised of 148 images corresponding to 48 patients. A 10-fold cross-

validation technique was used for the training and validation set resulting in 10 unique 

models with different training and validation sets. The validation set was prepared by 

secluding 10% of data from the training set.

B. PRE-PROCESSING

The clinical US images were reshaped into a square sized 320 by 320 pixels with zero 

padding to preserve the image aspect ratio. Pixels in the images were normalized to a range 

between 0 and 1.

C. ARCHITECTURE

Fig. 1 illustrates the proposed architecture of a prong CNN algorithm. The prong refers to 

the shape of the network due to splitting of the architecture to create multiple outputs. The 

proposed architecture was inspired from multi-scale context aggregation by dilated 
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convolutions technique [26]. A 10-fold cross-validation technique was adopted to improve 

the performance and reduce variance in prediction. Ten different prong CNN algorithms 

were trained by changing the training and validation sets using the 10-fold cross-validation 

technique. Throughout this manuscript the 10-fold cross-validated prong CNN algorithm is 

referred to as the multi-prong CNN (MPCNN). The output of the ten prong CNNs was 

postprocessed to obtain the segmentation mask as described later in the post-processing 

section. The MPCNN model was adapted from the Fully Convolutional Network[27], which 

in turn is based on the VGG-16 [28] classification network. The MPCNN consists of 6 

convolutional blocks. The first four collect features at both the local and global levels. The 

last two blocks used dilated convolutions to expand the receptive field. The MPCNN was 

modified to have two separate outputs in order to simultaneously segment various thyroid 

anatomies. The first sigmoid output predicted the location of normal thyroid; the second 

softmax output predicted the position of the nodule, cystic component inside the nodule, and 

background. The two output approach allowed the network to predict overlaps in the normal 

thyroid gland, thyroid nodule, and cystic components. The parameters used in the MPCNN 

algorithm are summarized in Table I. The model weights and filters were initialized using 

random numbers from a random uniform distribution scaled by the number of inputs. The 

negative Sørensen-Dice coefficient has been commonly used as a loss function to assess the 

accuracy of segmentation [21]. A weighted negative Dice coefficient of different anatomies 

was used as a loss function. Due to the complexity associated with training VGG-16 

networks, a three stage approach was adapted for training the model: the first stage 

comprised of the first four convolution blocks, the second added the fifth block, and the third 

stage added the sixth block. There are a total of 184,638,040 trainable parameters and a 

training time of ten hours per model. Attempts were made to utilize a VGG-16 model 

pretrained on the ImageNet [29] benchmark dataset. One channel ultrasound images was 

converted to a three channel image by copying the input. Attempts were made to retrain the 

model using the ultrasound dataset by retraining the whole model, retraining the last three 

blocks and retraining the last block. Retraining was attempted using learning rates between 

1e-4 and 1e-6 without success. It is possible that the datasets are too different for the thyroid 

segmentation model to benefit from pretraining on the ImageNet dataset. Hyper-parameter 

optimization was performed by a combination of grid search and fine tuning using the 

python Spearmint library [21]. Training performance of the model is shown in Fig 2 

showing training and validation loss and accuracy across all stages of training. There is a 

degree of overfit present in the model indicating greater performance is possible with more 

data or a different training scheme. The effect of introducing new layers can be seen as a 

periodic drop in performance until the new layers are trained. The algorithm was developed 

using Python (version 2.7.11, Python Software Foundation) and open-source deep learning 

libraries Tensorflow (version 0.9.0) [30] and Keras (version 1.1.0) [31].

D. DATA AUGMENTATION

Overfitting and small datasets are challenges often encountered in generalizing the results. 

The problem of overfitting is particularly apt for CNNs. Overfitting occurs due to the 

relatively high number of parameters in the algorithm compared to the number of features 

provided by US images. The most common approach used to avoid overfitting is to increase 

the amount of data using label-preserving transformations or simple image manipulations 
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(e.g. rotating an image but not swapping color pallets). To ensure that data augmentation was 

done while observing the rules of US physics and preserving its associated sonographic 

features, only horizontal axis flipping was used. Conversely, vertical axis flipping was 

rejected due to the deep acoustic shadowing/enhancement feature.

E. POST-PROCESSING

A ten-fold prong net was developed resulting in ten different models. Post-processing was 

used to combine the results of the ten models into one. Equally weighted binary pixels from 

the ten-fold cross-validated MPCNN were averaged, and a threshold was used to implement 

majority voting. The majority voting threshold was set at 0.5. Using multiple models 

ensured that the algorithm did not converge to a local minimum and removed the uncertainty 

associated with randomly initialized seed.

F. LEVEL OF SUSPICION AND HISTOPATHOLOGICAL EXAMINATION

All thyroid nodules were categorized as low, intermediate, or high level of suspicion based 

on their sonographic pattern, as specified by American Thyroid Association guidelines[32]. 

Out of the 234 patients, 71 were evaluated as low suspicion, 82 as intermediate suspicion, 

and 81 as high suspicion. Patients with suspicious thyroid nodules underwent FNA biopsy or 

surgical excision biopsy after the US study as part of the clinical procedure. Using US 

guidance and standard sterile technique, a 25-gauge needle was used by one of our board-

certified radiologists to obtain up to six fine needle aspirates for each nodule. Cytological 

diagnosis was made by a cytologist with more than 15 years of experience. Surgical 

histopathology results were considered conclusive over FNA biopsy results. Cytological and 

histopathological results were used to compare the performance of the segmentation 

algorithm in benign, malignant, and indeterminate thyroid nodules.

G. PARAMETERS FOR EVALUATION OF SEGMENTATION

The proposed MPCNN algorithm was evaluated using the Sørensen–Dice coefficient, true 

positive fraction (TPF), and false positive fraction (FPF). The Sørensen–Dice coefficient is a 

measure of similarity between the predicted area and the ground truth and will be referred to 

as Dice coefficient. Dice coefficient, TPF, and FPF range between 0 and 1. Dice coefficient 

and TPF values closer to 1 are indicative of a good prediction, whereas a FPF value closer to 

1 indicates a bad prediction. Box plot distributions showing the performance of the above 

mentioned three parameters against different cross-sectional orientations, suspicion levels, 

and pathology were analyzed. These parameters will be collectively referred to as evaluation 

metrics.

H. COMPARISON WITH SEEDED ALGORITHM

To compare the performance of the MPCNN with a conventional seeded algorithm, a 

distance regularized level set segmentation (DRLS) algorithm [33] was implemented. 

Similar to MPCNN the clinical images were down-sampled to a size of 320 by 320 pixels. 

The seed for the algorithm was created by dilating the true mask with 20 pixels. An initial 

random search followed by a finer grid search was performed to find the seeded algorithm’s 

optimal parameters, which were lambda = 10, alpha = −0.9, and epsilon = 3; as defined by 
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Chunming Li et al. [33]. A two-tailed unpaired t test was used to assess statistical 

significance between the various evaluation parameters for the two algorithms. P values less 

than 0.05 were considered significantly different.

I. DETECTION OF THYROID NODULES AND CYSTIC COMPONENTS

To quantify the detection rate, a hypothesis test was defined for thyroid nodules and cystic 

components as shown by equation 1.

Hnodule/cystic component = 1: Detectallnodulesorcysticcomponent inanimage
0: Otℎerwise (1)

A high detection rate could enable the correct classification of thyroid nodules as either solid 

or cystic, potentially reducing their localization time.

J. VOLUME ESTIMATION

Volume for the largest thyroid nodule in the thyroid gland was measured in 5 patients. Two 

orthogonal images were used to estimate the three axes of the nodule. The length was 

measured from the longitudinal image as the maximal distance from the most cranial to the 

most caudal part of the nodule. The depth was also measured from the longitudinal image as 

the maximal distance from the most superficial to the deepest part of the nodule. The width 

of the nodule was measured from a transverse image as the maximal distance from the most 

medial to the most lateral part. The thyroid nodule was assumed to be an ellipsoid and the 

volume was estimated using the above three axes by the formula shown in equation 2.

Vellipsoid = π
6 ∗ Dlength ∗ Dwidth ∗ Ddepth (2)

The selected five cases were used to demonstrate the ability of the algorithm to segment 

different nodules and estimate nodule volume. The estimated volume was compared against 

the volume calculated by the board certified radiologist.

III. RESULTS

The clinical suspicion level versus the mean and standard deviation values of evaluation 

metrics achieved during testing of the thyroid nodules and normal thyroid glands are 

summarized in Tables II and III, respectively. The mean and standard deviation values for all 

evaluation metrics for the cystic components inside the thyroid gland are summarized in 

Table IV. The box plots for Dice coefficient, TPF, and FPF versus suspicion level using the 

MPCNN and DRLS algorithms are shown in Fig. 3,4, and 5 respectively. The mean and 

standard deviation values of different metrics versus pathology achieved during testing for 

thyroid nodules and normal thyroid glands are summarized in Tables V and VI, respectively. 

The box plots for Dice coefficient, TPF, and FPF versus pathology using the MPCNN and 

DRLS algorithms are shown in Fig. 6, 7, and 8, respectively. The mean and standard 

deviation values of different metrics versus probe orientation achieved during testing for 

thyroid nodules, normal thyroid gland, and cystic components are summarized in Table VII. 
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The box plots for Dice coefficient, TPF, and FPF versus probe orientation using the MPCNN 

and DRLS algorithms are shown in Fig. 9, 10, and 11, respectively. Fig. 12 depicts the 

variation in mean values of the Dice coefficient versus majority voting threshold values for 

thyroid nodules, normal gland, and cystic components. The MPCNN and DRLS algorithms 

both produced a mean Dice coefficient of 0.78 for the three thyroid anatomies, and a mean 

TPF of 0.77. The mean FPFs for the three thyroid anatomies using MPCNN and DRLS 

algorithms were 0.55×10−6 and 0.34×10−6, respectively. The inference time per image for a 

single model was 107 ms using the pascal architecture TITAN Xp GPU (Nvidia, Santa 

Clara, CA, USA). The MPCNN had an inference time of 1.07 seconds per image. Detection 

rates for thyroid nodules and cystic components were 82% and 44%, respectively. The mean 

size of thyroid nodules was 9.67±10.04 mm, and the mean size of cystic components was 

2.22±2.99 mm. An overall pixel accuracy for the combined model output is 93.0% for 

thyroid, 84.3% for nodules and 67.4% for cysts.

REVIEW OF SELECTED CASES

The results of 5 different cases are reviewed to demonstrate the performance of the 

algorithm in the presence of different pathologies and sonographic features. Table VIII 

shows the estimated volume of the five review cases. The mean percentage error in volume 

estimation was 7.47%.

A. CASE 1

Fig. 13(a) shows the B-mode image of a benign thyroid nodule with a characteristic smooth 

boundary typical for benign nodules. The manually segmented boundaries for the thyroid 

nodule and normal thyroid gland are shown in Fig. 13(b) using red and blue lines, 

respectively. The predicted boundaries are shown in Fig. 13(c). The mean Dice coefficient 

for the MPCNN was 0.95. The algorithm was able to capture both the normal thyroid gland 

and the thyroid nodules; it was not able to capture the low contrast edge of the thyroid gland 

on the top right side of the image. Moreover, the algorithm over-predicted the nodule region.

B. CASE 2

The B-mode image of a benign thyroid nodule with degenerative changes is shown in Fig. 

14(a). Almost the entire thyroid gland was covered by the nodule. The nodule had a cystic 

component. The manually segmented boundaries for the thyroid nodule, normal thyroid 

gland, and cystic component are shown in Fig. 14(b) using red, blue, and green lines, 

respectively. The predicted boundaries are shown in Fig. 14(c). The mean Dice coefficient 

for the MPCNN was 0.95. The algorithm correctly predicted both the thyroid gland and the 

cystic components inside the nodule while missing the top right corner of the nodule. 

Furthermore, the predicted thyroid nodule boundaries were not as smooth as the manually 

segmented boundaries.

C. CASE 3

The B-mode image of a benign thyroid nodule with degenerative changes is shown in Fig. 

15(a). The nodule had three cystic components. The manually segmented boundaries for the 

thyroid nodule, normal thyroid gland, and cystic components are shown in Fig. 15(b) using 
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red, blue, and green lines, respectively. The predicted boundaries are shown in Fig. 15(c). 

The mean Dice coefficient for the MPCNN was 0.93. The algorithm was able to predict 

multiple cystic regions inside the thyroid nodule. The algorithm under-predicted the thyroid 

nodule and the nodule boundaries were not as smooth as the manual segmentation.

D. CASE 4

The B-mode image of a suspicious thyroid nodule with cytological features suspicious for 

follicular neoplasm is shown in Fig. 16(a). Calcifications were seen inside the nodule, which 

covered almost the entire thyroid gland. The manually segmented boundaries for the thyroid 

nodule and normal thyroid gland are shown in Fig. 16(b) using red and blue lines, 

respectively. The predicted boundaries are shown in Fig. 16(c). The mean Dice coefficient 

for the MPCNN was 0.94. The algorithm predicted the thyroid gland and most of the thyroid 

nodule.

E. CASE 5

The B-mode image of a malignant thyroid nodule with cytological features consistent with 

papillary thyroid carcinoma is shown in Fig. 17(a). The nodule had multiple calcifications. 

The manually segmented boundaries for the thyroid nodule and normal thyroid gland are 

shown in Fig. 17(b) using red and blue lines, respectively. The predicted boundaries are 

shown in Fig. 17(c). The mean Dice coefficient for the MPCNN was 0.94. The algorithm 

under-predicted the thyroid nodule due to low contrast at the edges.

IV. DISCUSSION

In this paper we presented a MPCNN algorithm which segmented the thyroid anatomy into 

thyroid nodule, normal thyroid gland, and cystic components. The proposed algorithm 

worked without user interference with a mean Dice coefficient on par with the conventional 

user-dependent, seed-based DRLS algorithm. The DRLS algorithm performed better in 

segmenting the thyroid nodule and normal thyroid gland; however, it performed poorly in 

segmenting cystic components. The better performance of the seeded algorithm in the 

thyroid nodule and normal thyroid gland was due to the choice of the seed. The seed was 

selected by dilating the manually segmented masks by 20 pixels. The seed selection was 

deliberate to highlight the capability of the MPCNN algorithm. The proposed algorithm did 

not require an initial seed and automatically identified the region of normal thyroid gland, 

thyroid nodule, and cystic components present inside the thyroid gland region. The proposed 

algorithm learned to differentiate between hypoechoic regions inside and outside the thyroid 

gland and only assigned the hypoechoic region inside the thyroid as cystic components. The 

complexity of the deep learning algorithm was dependent on the architecture and the data 

used to train the algorithm. A larger dataset with more unique and diverse cases could 

further improve algorithm performance. The poor performance of the DRLS algorithm for 

cystic components was due to the selection of DRLS parameters, which were fine-tuned for 

thyroid nodule and gland. The Dice coefficient of the MPCNN algorithm decreased with 

increasing suspicion level due to the irregular margins associated with higher suspicion 

cases. Similarly, the TPF decreased with increasing suspicion.
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As shown in Table II, the majority of the images used for testing were in the intermediate 

and high suspicion categories. The MPCNN algorithm had a lower mean Dice coefficient, 

lower mean TPF, and higher mean FPF than the DRLS algorithm for thyroid nodule and 

normal thyroid gland, as shown in Tables II and III, respectively. The lower TPF and higher 

FPF values indicate that the MPCNN algorithm missed and overestimated the boundaries of 

the thyroid nodules and normal thyroid gland. Low suspicion cases showed the best Dice 

coefficients and TPF performance for the MPCNN algorithm. Intermediate and high 

suspicion cases were more challenging to segment compared to low suspicion cases due to 

the irregular boundaries associated with increased suspicion level. The MPCNN algorithm 

had a higher mean Dice coefficient and mean TPF than the DRLS algorithm for cystic 

components, as shown in Table IV. The performance of both algorithms in cystic 

components was low compared to thyroid nodule and thyroid gland. The MPCNN showed a 

higher FPF than DRLS, indicating over-prediction of the cystic components. The poor 

performance of the DRLS was due to the failure of the algorithm to stop converging at the 

edges.

The MPCNN algorithm had higher variance for both the Dice and TPF than the DRLS 

algorithm for all three thyroid regions. The difference in variance was small, indicating that 

the MPCNN and DRLS algorithms demonstrated equal reliability. The variance for high 

suspicion thyroid nodules was higher than that of low and intermediate suspicion, which 

could be attributed to the irregular margins associated with high suspicion cases. The 

variance for cystic components was high, reflecting the challenge in identifying cystic 

components. The DRLS performed statistically better than the MPCNN algorithm for the 

Dice coefficient in thyroid nodules, and for the Dice, TPF, and FPF in normal thyroid gland. 

However, the MPCNN algorithm performed statistically better than the DRLS for the Dice, 

TPF, and FPF in cystic components.

The performance of the MPCNN algorithm was slightly higher for malignant compared to 

benign thyroid nodules, as shown in Table V. However, higher variance was also shown in 

malignant nodules with irregular margins, indicating the lower reliability associated with 

that characteristic. Thyroid gland from benign nodules showed the highest Dice and TPF, as 

shown in Table VI. Large malignant thyroid nodules that covered most of the thyroid gland 

made it harder to distinguish normal gland from nodule. Cystic components were easier to 

identify in malignant nodules compared to benign, as shown in Table VII; however, the 

reliability was low, indicated by the high variance of the Dice and TPF values.

The mean Dice and TPF performances for the MPCNN algorithm were higher for all three 

structures in the longitudinal orientation compared to transverse, as shown in Table VIII. 

However, the FPF was also higher in the longitudinal orientation, indicating that the 

algorithm over-predicted in that direction. The variances of Dice and TPF were also low for 

the MPCNN algorithm for the three anatomies in the longitudinal orientation compared to 

the transverse. The better longitudinal orientation performance could be attributed to the 

higher contrast of the edges which arises from better contact with the neck, larger cross-

sectional area of the thyroid gland, and less motion from the carotid artery compared to the 

transverse orientation.
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The performance of the Dice coefficient for thyroid nodules, normal thyroid, and cystic 

components increased with an increasing number of models. Increasing the number of 

models removed the uncertainty associated with the algorithm converging in a local 

minimum by initializing the algorithm differently, but it did not improve the performance 

drastically. Although the improvement in mean value of the Dice was low, the decrease in 

variance suggests more reliable and reproducible results could be obtained with higher 

numbers of models. Furthermore, majority voting also contributed to the performance 

improvement by removing the regions which were predicted with low confidence. Increasing 

the number of models increased the inference time proportionally. Depending upon the 

application, the number of models could be traded off for faster performance. Real time 

applications require an inference time of a few tens of milliseconds. Using a single model, 

faster graphical processing unit and optimized code, the inference time of a few tens of 

milliseconds could be easily achieved.

The detection rate of thyroid nodules was higher than that of cystic components due to their 

larger size. Cystic components can be quite small, and the detection was a strict binary 

criterion; thus, all cystic components within the image had to be detected for a positive 

detection. Also, the detection criterion established for cystic components was very strict. 

Typically, very small cystic components would be ignored; thus, to set high standards for the 

algorithm, a strict criterion was used. The algorithm faces challenges in detecting small 

cystic components. This challenge is partly associated with the small input size, 320 by 320 

pixels, of the thyroid image. If the size of the cystic component inside the nodule in pixels is 

comparable to the convolutional filter size, it is hard to extract that feature. Larger image 

input size may perform better in segmenting small cystic components. The ROC curve is 

displayed in Fig 18 was created by replacing the sigmoid and softmax output of the MPCNN 

with linear outputs. The output of each model was normalized between 0 and 1, the outputs 

of all models was summed and renormalized. Each pixel in the test set was treated as a 

binary classification problem; feature or not-feature for the thyroid, nodules and cysts. Fig 

18 indicates high performance for the thyroid class and similar performance for both the 

nodule and cyst classes. This is likely reflects the bulk performance of the segmentation 

which correct segments the centers of features and struggles with the margins. This ROC 

curve ignores inter-class relationships in the normal MPCNN output that ultimately 

prioritizes one class over others; likely the model prioritizes nodule segmentation over cyst 

segmentation.

Most of the previous work done on segmentation of the thyroid gland, nodules, and cystic 

components was done with semi-automated algorithms, limiting their use to post-

sonographic exams. A recent paper segmented the thyroid gland using a U-net based 

convolutional neural network that had a Dice coefficient of 0.876 [19]. The performance of 

our algorithm was slightly better than their U-net based approach. Application of an original 

U-net based convolutional neural network [34] to our data set resulted in a low Dice value of 

0.538 for the thyroid gland. We did not apply the U-net algorithm to the nodules and cysts, 

anticipating poor performance (results not reported). Chang et. al. used the radial basis 

function neural network, a patch based classification trained achieved an accuracy of 96.52, 

but on manually selected thyroid ROIs [8].
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Freesmeyer et. al. have demonstrated that manual tracing is superior to ellipsoid model for 

healthy and deformed thyroid phantoms. An automatic segmentation model could provide 

similar improvements without additional the time commitments necessary for an expert to 

provide manual segmentations [35]. A recent study using three different computer 

segmentation approaches on 3D thyroid healthy ultrasound, selecting the features inside and 

outside of the thyroid and using Level Set, Graph Cut, and Pixel Classifier resulted in mean 

Dice Coefficients of 0.713, 0.748, and 0.601[36]. These results underperformed compared to 

our model and do not attempt to perform segmentations of nodules or of thyroids with 

nodules present which may have lowered performance.

Another study using variable Background Active Contour Model (VBAC) was able to 

achieve a mean IoU of 0.91 over the established ACWE which achieved an IoU of 0.848 [9]. 

IoU is a similar segmentation evaluation metric to Dice coefficient. Dice and IoU cannot be 

directly compared, however in my experience IoU is a ‘harsher’ metric and indicates that 

VBAC significantly outperforms our MPCNN model. They test using a smaller dataset and 

limit themselves only to hypoechoic cases.

The interobserver variability in estimating thyroid nodule volume is approximately 23.69% 

using the ellipsoid method [37]. The percentage error in volume estimation using the 

MPCNN algorithm was much lower than the value reported in the literature. The low 

percentage error in volume estimation showcases the feasibility of using the algorithm for 

estimating volume of thyroid nodules while decreasing the subjectivity associated with 

different observers.

Segmenting the thyroid anatomy into normal gland versus nodules and cystic components 

has various applications. In the clinic, estimating thyroid nodule size and volume is 

important as they are features that can be used for selecting the nodule for biopsy. After 

segmenting the thyroid nodule, its size and volume can be estimated. Lobulated or irregular 

margins, and taller-than-wider shape are also associated with increased risk in the 

stratification process. These features could be estimated after segmenting the thyroid nodule 

within the thyroid gland. Another possible application in the clinical setting could include 

the generation of thyroid maps, which are rough sketches showing the location of all thyroid 

nodules, their size and composition (i.e., solid or cystic). Furthermore, many clinics have an 

established protocol which includes collection of thyroid cine clips. These clips are gathered 

by traversing the probe from superior to inferior thyroid in transverse probe orientation. 

Each cine clip frame can be segmented to identify the location of thyroid nodules and cystic 

components; with this information, size and volume of each nodule can be estimated. Since 

the algorithm can predict cystic regions inside a nodule, it can also be used to classify the 

nodule as solid, cystic, predominantly solid, or predominantly cystic depending upon the 

percentage of cystic components inside the nodule. The algorithm can also be used in the 

continuing education of sonographers.

LIMITATIONS

During two-dimensional US scanning the sonographer had access to various planar views of 

the thyroid by varying the probe angle, orientation, and pre-compression. Probe angle can 
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change the planar view, along with the deep acoustic shadowing or enhancement, allowing 

better visualization of anatomical parts. Pre-compression increases the contrast of nodule 

edges with respect to normal thyroid gland. Orientation can give a wider perspective of the 

nodule shape in three dimensions. During live scanning the sonographer was able to rock 

and angle the US probe to view the thyroid nodule from different directions, angles, 

orientations, and at different pre-compression levels. After the scanning the sonographer 

manually segmented the thyroid nodule. During manual segmentation the sonographer had 

access to prior information for the selection of boundaries gained from the experience of 

utilizing the previously mentioned probe motion techniques. On the other hand, the 

algorithm only had access to the single two-dimensional planar images when delineating the 

boundaries. Thus, the algorithm showed a fair performance compared to manual 

segmentation from the sonographer. For better segmentation, a three-dimensional view of 

the nodule from multiple angles, at different compression levels, and different orientations 

should be combined together. The algorithm was able to identify multiple cystic regions; 

however, it failed to identify very small ones. Even though the algorithm performed poorly 

on cystic components, it was significantly better than the conventional algorithm.

V. CONCLUSIONS

The MPCNN algorithm can segment the thyroid gland, nodules, and cystic components in 

real time without the need for an initial seed, and it performs on par with contemporary 

seeded algorithms (DRLS). The number of models in the algorithm can be traded for higher 

accuracy or faster performance. The algorithm can identify thyroid nodules and cystic 

components from normal thyroid gland; however, it fails to segment very small cystic 

components. The error in volume estimation for thyroid nodules was low, making the 

algorithm a feasible objective tool for volume estimation. The algorithm has applications in 

point of care, mobile health monitoring, improving workflow, reducing localization time and 

assisting sonographers with limited expertise.
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Fig. 1. 
Architecture of a multi-prong convolutional neural network. N is the number of filters. Input 

is a B-mode image and output is the normal thyroid, thyroid nodule, and cyst mask.
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Fig. 2. 
Training and validation characteristics of loss and accuracy for all stages of training. The 

blue line is the mean results on the training set during each epoch and the red line is the 

results on the validation at the end of each epoch.
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Fig. 3. 
Boxplots showing the Dice coefficient versus different suspicion levels using the multi-

prong convolutional neural network (MPCNN) and distance regularized level set (DRLS) 

algorithms for (a) thyroid nodules, (b) normal thyroid, and (c) cysts.

Kumar et al. Page 17

IEEE Access. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Boxplots showing the true positive fraction versus different suspicion levels using the multi-

prong convolutional neural network (MPCNN) and distance regularized level set (DRLS) 

algorithms for (a) thyroid nodules, (b) normal thyroid, and (c) cysts.
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Fig. 5. 
Boxplots showing the false positive fraction versus different suspicion levels using the multi-

prong convolutional neural network (MPCNN) and distance regularized level set (DRLS) 

algorithms for (a) thyroid nodules, (b) normal thyroid, and (c) cysts.
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Fig. 6. 
Boxplots showing the Dice coefficient versus pathology using the multi-prong convolutional 

neural network (MPCNN) and distance regularized level set (DRLS) algorithms for (a) 

thyroid nodules and (b) normal thyroid.
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Fig. 7. 
Boxplots showing the true positive fraction versus pathology using the multi-prong 

convolutional neural network (MPCNN) and distance regularized level set (DRLS) 

algorithms for (a) thyroid nodules and (b) normal thyroid.
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Fig. 8. 
Boxplots showing the false positive fraction versus pathology using the multi-prong 

convolutional neural network (MPCNN) and distance regularized level set (DRLS) 

algorithms for (a) thyroid nodules and (b) normal thyroid.
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Fig. 9. 
Boxplots showing the Dice coefficient versus orientation using the multi-prong 

convolutional neural network (MPCNN) and distance regularized level set (DRLS) 

algorithms for (a) thyroid nodules, (b) normal thyroid, and (c) cysts.
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Fig. 10. 
Boxplots showing the true positive fraction versus orientation using the multi-prong 

convolutional neural network (MPCNN) and distance regularized level set (DRLS) 

algorithms for (a) thyroid nodules, (b) normal thyroid, and (c) cysts.
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Fig. 11. 
Boxplots showing the false positive fraction versus orientation using the multi-prong 

convolutional neural network (MPCNN) and distance regularized level set (DRLS) 

algorithms for (a) thyroid nodules, (b) normal thyroid, and (c) cysts.
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Fig. 12. 
Dice coefficient values versus number of models along with error bars for (a) thyroid 

nodules, (b) normal thyroid, and (c) cysts.
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Fig. 13. 
(a) B-mode image of a benign thyroid nodule. (b) Manual segmentation by a board-certified 

sonographer with thyroid nodule in red and normal thyroid in blue. (c) Predicted boundaries 

using the MPCNN algorithm.
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Fig. 14. 
(a) B-mode image of a benign thyroid nodule with degenerative changes. (b) Manual 

segmentation by a board-certified sonographer with the thyroid nodule in red, normal 

thyroid in blue, and cyst in green. (c) Predicted boundaries using the multi-prong 

convolutional neural network with the thyroid nodule in red, normal thyroid in blue, and cyst 

in green. A mean Dice coefficient of 0.95 was achieved.
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Fig. 15. 
(a) B-mode image of a benign thyroid nodule with degenerative changes. (b) Manual 

segmentation by a board-certified sonographer with thyroid nodule in red, normal thyroid in 

blue, and cysts in green (c) Predicted boundaries using the multi-prong convolutional neural 

network with thyroid nodule in red, normal thyroid in blue, and cysts in green. A mean Dice 

coefficient of 0.93 was achieved.
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Fig. 16. 
(a) B-mode image of a suspicious thyroid nodule with cytological features suspicious for a 

follicular neoplasm. (b) Manual segmentation by a board-certified sonographer with thyroid 

nodule in red and normal thyroid in blue. (c) Predicted boundaries using the multi-prong 

convolutional neural network with thyroid nodule in red and normal thyroid in blue. A mean 

Dice coefficient of 0.94 was achieved.
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Fig. 17. 
(a) B-mode image of a malignant thyroid nodule with cytological features consistent with 

papillary thyroid carcinoma. (b) Manual segmentation by a board-certified sonographer with 

thyroid nodule in red and normal thyroid in blue. (c) Predicted boundaries using the multi-

prong convolutional neural network with thyroid nodule in red and normal thyroid in blue. A 

mean Dice coefficient of 0.94 was achieved.
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Fig. 18. 
shows an ROC curve for the thyroid, nodules and cyst classes
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TABLE V

Mean and Standard Deviation Values of Evaluation Metrics From Testing Set Versus Pathology for Thyroid 

Nodules Using the Multi-Prong Convolutional Neural Network (MPCNN) Algorithm and the Distance 

Regularized Level Set (DRLS) Algorithm

Metrics Algorithm Benign (11=94) Malignant (n=31) Indeterminate (n=17)

Dice coefficient MPCNN 0.73±0.22 0.75±0.31 0.82±0.15

DRLS 0.80±0.20 0.84±0.20 0.89±0.11

TPF MPCNN 0.76±0.22 0.81±0.23 0.88±0.12

DRLS 0.76±0.22 0.81±0.23 0.88±0.12

FPF, ×(1e-6) MPCNN 0.33±0.70 0.20±0.33 0.29±0.34

DRLS 0.33±0.70 0.20±0.33 0.29±0.34

TPF = true positive fraction, FPF = false positive fraction, n = number of images
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TABLE VI

Mean And Standard Deviation Values of Evaluation Metrics From Testing Set Versus Normal Thyroid Gland 

Containing Nodules Classified According to Pathology Using the Multi-Prong Convolutional Neural Network 

(MPCNN) Algorithm and the Distance Regularized Level Set (DRLS) Algorithm

Metrics Algorithm Benign (n=98) Malignant (n=32) Indeterminate (n=18)

Dice coefficient MPCNN 0.90±0.08 0.88±0.14 0.85±0.16

DRLS 0.95±0.03 0.95±0.02 0.94±0.03

TPF MPCNN 0.89±0.12 0.87±0.17 0.85±0.21

DRLS 0.94±0.05 0.96±0.04 0.94±0.05

FPF ×(1e-6) MPCNN 0.78±1.29 0.56±0.64 0.72±0.96

DRLS 0.48±0.64 0.59±0.57 0.46±0.42

TPF = true positive fraction, FPF = false positive fraction, n = number of images
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