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Abstract

Neuropathy is a common complication of long-term diabetes that impairs quality of life by 

producing pain, sensory loss and limb amputation. The presence of neuropathy in both insulin-

deficient (type 1) and insulin resistant (type 2) diabetes along with the slowing of progression of 

neuropathy by improved glycemic control in type 1 diabetes has caused the majority of preclinical 

and clinical investigations to focus on hyperglycemia as the initiating pathogenic lesion. Studies in 

animal models of diabetes have identified multiple plausible mechanisms of glucotoxicity to the 

nervous system including post-translational modification of proteins by glucose and increased 

glucose metabolism by aldose reductase, glycolysis and other catabolic pathways. However, it is 

becoming increasingly apparent that factors not necessarily downstream of hyperglycemia can also 

contribute to the incidence, progression and severity of neuropathy and neuropathic pain. For 

example, peripheral nerve contains insulin receptors that transduce the neurotrophic and 

neurosupportive properties of insulin, independent of systemic glucose regulation, while the 

detection of neuropathy and neuropathic pain in patients with metabolic syndrome and failure of 

improved glycemic control to protect against neuropathy in cohorts of type 2 diabetic patients has 

placed a focus on the pathogenic role of dyslipidemia. This review provides an overview of current 

understanding of potential initiating lesions for diabetic neuropathy and the multiple downstream 

mechanisms identified in cell and animal models of diabetes that may contribute to the 

pathogenesis of diabetic neuropathy and neuropathic pain.

INTRODUCTION

Neuropathy will afflict over half of the estimated 460 million people worldwide who have 

diabetes[305], of whom approximately one third will also develop neuropathic pain[2]. The 

pathogenesis of diabetic neuropathy is uncertain and attaining and maintaining close 

glycemic control remains the only universal recommendation for preventing or slowing 

progression of the condition. While there has been considerable progress in β-cell, stem cell 

and whole pancreas transplantation[231] and ongoing refinement of continuous glucose 

monitors for maintaining consistent euglycemia[283], these advanced bioengineering 
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solutions are unlikely to become available for the majority of the diabetic population 

worldwide in the foreseeable future[65]. Although the mechanisms driving degenerative 

neuropathy and pain are likely intertwined, the unpredictability of which patients with 

neuropathy also exhibit pain suggests as yet ill-defined pathways unique for pain generation. 

Treatment of painful diabetic neuropathy is limited to analgesics[9; 18] with efficacy of any 

given agent limited to unpredictable sub-populations of patients[113]. This somewhat bleak 

landscape has prompted extensive investigation of the pathogenic consequences of 

hyperglycemia and, more recently, glucose-independent neurotoxic mechanisms, as 

downstream sites for therapeutic intervention.

The most common presentation of diabetic neuropathy is as a distal symmetrical 

polyneuropathy with numbness in the distal extremities. Loss of sensation can lead to 

unattended wounds that, when combined with peripheral vascular disease and impaired 

wound healing, may lead to infection and ultimately amputation[161]. Indications of motor 

and autonomic nerve dysfunction may also be present. Early quantifiable features of distal 

symmetrical polyneuropathy (from herein termed diabetic neuropathy unless stated 

otherwise) include slowing of large sensory and motor fiber conduction velocity (SNCV and 

MNCV)[32] and depletion of small sensory nerves in the skin and cornea[276]. Peripheral 

nerves also exhibit resistance to ischemic conduction blockade/failure (RICB/RICF), which 

patients may become aware of as an ability to squat or kneel for lengthy periods of time 

without developing paresthesias and that can be confirmed using routine electrophysiology 

and a blood pressure cuff[137; 316]. Microvascular lesions similar to those reported in other 

organs during diabetes are also an early feature[223]. Biopsy studies have identified 

segmental demyelination in large fibers and axonal degeneration of all fiber classes [97] 

with clusters of regenerating fibers[223], but regeneration is clearly insufficient to overcome 

ongoing distal degenerative processes. It is now widely accepted that diabetes damages all 

components of the nervous system, not just peripheral nerves. Historical autopsy evidence of 

demyelination and neuronal degeneration in the spinal cord[330] has been supported by 

more recent non-invasive imaging studies[313] and there is emerging recognition of 

structural and functional impairments in the higher CNS[27; 314; 325].

Around a third of patients with diabetic neuropathy report intermittent or continuous 

paresthesias and/or pain[2]. The most frequent descriptors are of numbness, tingling, 

burning, pins and needles, electric shock and pain to cold[359]. Pain may develop during the 

pre-diabetic period[331; 338] or relatively early after diagnosis of diabetes[133] but tends to 

be associated with advanced degenerative neuropathy[350]. A separate and distinct pain 

condition, historically termed insulin neuritis, can also develop after instigation of tight 

glycemic control[122].

DISCUSSION

1. MECHANISTIC IMPLICATIONS FROM CLINICAL OBSERVATIONS

A number of deductions made from the clinical presentation of diabetic neuropathy have 

guided development of mechanistic hypotheses and both clinical and preclinical 

investigations:
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1.1. Initiating lesion: The bilateral presentation of diabetic neuropathy implies a 

systemic primary lesion, although people with diabetes are also more vulnerable to focal 

neuropathies[332]. The occurrence of neuropathy in both insulin-deficient (type 1) and 

insulin-insensitive (type 2) diabetes has driven an overwhelming experimental focus on 

hyperglycemia as the initiating lesion. This was encouraged by results from the DCCT study 

which showed that improved glycemic control beyond the accepted standard of care slowed 

onset and progression of diabetic complications, including peripheral neuropathy, in a large 

cohort of type 1 diabetic patients [227]. The association between hyperglycemia and 

complications, including neuropathy, is less convincing in patients with type 2 diabetes and 

alternative primary pathogenic mechanisms have been proposed (see below). Data from the 

DDCT, its follow-up (EDIC) and preclinical studies also prompted the concept of 

“metabolic memory” in which initial exposure to glucose makes indelible epigenetic 

modifications to cells that are not amenable to acute restoration of normoglycemia[372]. To 

date, this has proven to be more applicable to other complications of diabetes than to 

peripheral neuropathy[235], although there is supportive evidence associated with 

autonomic neuropathy[120].

1.2. Cellular targets: As epineurial, perineurial and endoneurial blood vessels are 

compromised in nerves of diabetic patients with early neuropathy[223; 271], a view of 

diabetic neuropathy emerged as representing a secondary manifestation of microvascular 

disease arising from hyperglycemia-induced damage to vascular endothelial cells[218]. This 

aligns diabetic neuropathy with other complications of diabetes[263] and there is an 

association between development of neuropathy and concurrent nephropathy and 

retinopathy. The presence of RICB also implies an early presence of ischemic hypoxia[218], 

although it also suggests that nerve metabolism adapts within acceptable tolerance limits. 

Whether vascular insufficiency initiates peripheral neuropathy in diabetic patients or 

impedes the capacity of cells within the nerve to withstand direct glucotoxic or other insults 

remains an area of lively debate. Similarly, whether there is initial damage to Schwann cells 

(primary Schwannopathy) [175], to axons (primary axonopathy) [98] or independent and/or 

inter-dependent mechanisms of damage to each cell type[123] has also been an area of 

continuous investigation [351].

1.3. Degenerative neuropathy: That numbness is usually first perceived in the toes, 

along with the early loss of epidermal fibers in the lower extremities, suggests a length-

dependent neuropathy associated with an inability to maintain the regions of the axon that 

are most distant from the cell body – not unlike the travails of Napoleon when invading 

Russia in the winter of 1812[198]. However, reports that depletion of sensory nerves in the 

sub-basal plexus of the cornea is an equally sensitive marker for early neuropathy in diabetic 

patients indicates that distal regions of the axon are most vulnerable, irrespective of 

length[8; 276]. Longer axons may be particularly vulnerable to accumulation of focal lesions 

due to size alone, but systemic insults do not appear to discriminate based on absolute 

axonal length.

1.4. Painful vs painless neuropathy: Why approximately only a third of diabetic 

patients with degenerative neuropathy develop pain[2] remains enigmatic. Studies have 
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sought clinical, structural, functional or metabolic biomarkers that segregate subjects 

otherwise well matched in presentation of diabetes and neuropathy into those with or 

without pain [321; 334]. Recent examples are shown in Table 1 [30; 34; 58; 59; 76; 91; 99; 

114; 115; 140; 177; 178; 196; 216; 224; 226; 242; 273–276; 285; 312; 314; 315; 320; 329; 

335; 343; 350; 359; 362; 386; 416]. However, interpretation of such studies is complicated 

by the heterogeneity of the pain state caused by diabetes and there have been few attempts to 

identify biomarkers that identify specific pain sub-categories identified amongst diabetic 

patients[20; 350]. Perhaps the best examples to date are associations of burning pain with 

gain of function mutations in sub-units of the Nav1.7 ion channel[11; 29], although this 

represents a rare sub-group within those with painful diabetic neuropathy. Identification of 

features unique to subjects with pain could reveal potential pathogenic mechanisms specific 

for pain, with the usual caveat that any implied causality must be proven.

1.5. Pain generator site: It is tempting to assume that if pain is perceived in the feet, 

then the primary lesion site is to sensory nerves that innervate the feet. Recent studies 

suggesting that pain correlates with nerve regeneration markers in the skin[30; 58] have 

revived the old ideas that painful diabetic neuropathy may arise from instability of 

degenerating peripheral sensory neurons, ephaptic activation of adjacent intact peripheral 

fibers and/or activity of regenerating peripheral fibers[34]. Hyperactive nociceptors and 

recruitment of otherwise silent nociceptors have been recorded in subjects with painful 

diabetic neuropathy by microneurography[259] and used to pre-select subjects for clinical 

trial[317]. However, the “irritable nociceptor” phenotype (preserved small fiber function 

with hyperalgesia) formed only a small sub-set (6%) of a cohort comprising 191 subjects 

with painful diabetic neuropathy[350] and peripheral hyperactivity may not be the only 

genesis of pain. A report that onset of type 2 diabetes triggered symmetrical pain in both feet 

of a patient who had one leg amputated some 44 years earlier prompted the suggestion that 

the initiating lesion for diabetes-induced pain need not be at the site where pain is 

perceived[281]. In support of this, there is a growing body of data emerging from imaging 

studies of diabetic subjects with painful neuropathy indicating that there is CNS dysfunction 

and pathology in regions associated with pain processing[312; 314] while preclinical and 

clinical studies also suggest spinal involvement [226]. In addition, there is growing 

appreciation that the genesis of neuropathic pain states evolves over time, progressing from 

peripheral to central sites. Painful diabetic neuropathy may therefore incorporate multiple 

generator sites whose relative dominance waxes and wanes as concurrent degenerative 

pathology progresses. This complexity has implications for selecting clinical trial 

populations that may be more heterogenous than previously recognized[20] and result in the 

infrequent (NNT > 5) and unpredictable efficacy of current pain medications used to treat 

painful diabetic neuropathy[113].

2. GLUCOTOXIC MECHANISMS

The occurrence of neuropathy in both forms of diabetes and the success of intensive 

glycemic control regimens to slow progression of diabetic neuropathy in type 1 

diabetes[269] naturally focused attention on hyperglycemia as the initiating event of diabetic 

neuropathy. Glucose enters peripheral nerve and brain via insulin-independent glucose 

transporters (GLUT’s). GLUT-1 is the major glucose transporter of the microvascular and 
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perineurial components of the blood:brain and blood:nerve barriers[337], with GLUT-3 

localized to peripheral neurons[340]. Insulin dependent GLUT-4 is restricted to select 

neuronal populations of the brain[19]. The search for detrimental consequences of 

hyperglycemia has focused on modifications to protein structure and function by direct 

glycation or enzyme-mediated glycosylation along with excess flux through glucose 

metabolism pathways (FIGURE 1).

2.1 Models of diabetic neuropathy: In vitro studies allow direct environmental 

manipulation of individual cell types and are valuable for identifying plausible pathogenic 

mechanisms, with the recognized caveats that these are traumatically excised tissues in 

artificial environments – neurons enter an axonal injury and regeneration phenotype while 

Schwann cells return to their non-myelinating form[118]. Perhaps the most sophisticated 

studies employ cells derived from adult control and diabetic animals maintained under 

conditions that reflect the in vivo insulin and glycemic environment from which they were 

derived[134] and co-culture neurons and Schwann cells to facilitate myelination[344; 366].

Of the animal models, diabetic cats exhibit nerve pathology that most closely reflects the 

human condition, with prominent demyelination and axonal degeneration[239]. Rats and 

mice are the most commonly used animal models of diabetic neuropathy and provide the 

majority of data that underpins current hypotheses regarding the pathogenesis of diabetic 

neuropathy and neuropathic pain. Both species can be used to model pre-diabetes, type 1 or 

type 2 diabetes using dietary, chemical or genetic initiating events. There are variations in 

the neuropathy phenotype and rate of progression between specific models, species, strains, 

laboratories and assays [26]. The provenance of new disorders identified in streptozotocin 

(STZ)-diabetic rodents, the most commonly used model of type 1 diabetes, should be 

established to address concerns about acute STZ neurotoxicity[15; 261; 296]. This can be 

done using concurrent 3-O-methyl glucose injection[81; 226], using insulin to reverse 

established disorders[226] and by validating disorders using genetic or dietary models[404]. 

Rodents are frequently studied over 4–12 weeks of diabetes and are best viewed as modeling 

early nerve dysfunction in the absence of overt pathology[380], as structural pathology in 

nerve trunks (FIGURE 2) is limited to reduced axonal caliber with late (4 months+) myelin 

thinning, occasional segmental demyelination and minor fiber loss[158; 159; 183; 270; 290; 

398]. This can be viewed as a boon, as molecular and biochemical changes in nerve may be 

interpreted as preceding, perhaps precipitating, degenerative neuropathy. Unfortunately, it 

also limits any guarantees of the translation of therapies developed using these models. 

Recognition that diabetic rodents develop early loss of sensory nerve terminals in the 

epidermis of plantar skin (frequently termed intra-epidermal nerve fibers or IENF)[23] and 

reduced sensory nerve density in the cornea[52] that accompany indices of both sensory loss 

and hyperalgesia[168] to mirror the human condition[276] have revived hopes that rodent 

models can be used to study the early damage to small sensory neurons that is a feature of 

diabetic neuropathy (FIGURE 2).

2.2. Glucose metabolism by the polyol pathway: Early observations that tissues 

that contained the polyol pathway enzymes aldose reductase and sorbitol dehydrogenase 

were prone to diabetic complications prompted extensive research into their potential 
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pathogenic role[96]. Within peripheral nerve, aldose reductase is localized to endothelial and 

Schwann cells[165] and hyperglycemia-driven flux through the polyol pathway results in 

accumulation of the intermediates sorbitol and fructose along with shifts in the redox 

balance of the associated cofactors NADPH and NADH. Downstream consequences 

potentially include local osmotic stress due to sorbitol accumulation[252], fructose-driven 

AGE formation[12] and subsequent RAGE signaling, oxidative[75] and nitrosative 

stress[72] and loss of neurotrophic support[237]. As reviewed elsewhere[252], pre-clinical 

studies showing impressive efficacy of aldose reductase inhibitors (ARI’s) against many 

indices of diabetic neuropathy and neuropathic pain that culminated in a number of clinical 

trials. To date, ARI treatment has not shown sufficiently convincing efficacy in clinical trials 

to support approval by most regulatory agencies, although epalrestat is approved in Japan. 

Whether this reflects a pathogenic mechanism that is pertinent only to diabetic rodents, sub-

optimal drug properties for human use or poor clinical trial design and inappropriate 

endpoints remains the subject of unresolved debate[252]. Polyol pathway research is 

currently out of vogue but the impressive preclinical efficacy of ARI’s must either indicate a 

major contribution to downstream pathways that damage nerve or illustrate a disconcerting 

gulf between preclinical models and the human disease.

2.3. Non-enzymatic glycation and the AGE-RAGE axis: The post-translational 

modification of cellular proteins caused by non-enzymatic attachment of glucose to amino 

acids, causing reversible progression from Schiff base to Amadori products and then 

irreversible formation of advanced glycation end products (AGE’s) has intermittently 

recurred as a mechanism of potential glucotoxicity in many organs, including nerve[352; 

375]. AGE are present throughout peripheral nerve[341] and the initial focus was on 

modification of components of the axonal cytoskeleton that could interrupt axonal transport 

and axial and radial growth[230] along with modification of basement membrane and 

extracellular matrix proteins that could impede neuronal regeneration after injury[95; 189]. 

More recently, glycosylation of ion channels has been implicated in painful diabetic 

neuropathy[25; 258; 390], as discussed below.

Identification of a receptor for AGE (RAGE) on the surface of neurons, Schwann cells and 

vascular endothelial cells[377] aligned nerve with other organs prone to damage during 

chronic diabetes[301]. In other tissues AGE binding to RAGE activates NADPH oxidase 

with subsequent release of reactive oxygen species (ROS) while RAGE signaling via NF-kB 

modifies gene expression, promoting inflammation and dysregulation of the survival/

apoptosis equilibrium. There is evidence that similar toxic events occur in nerve[358] with 

recent in vitro studies demonstrating that RAGE signaling potentiates TRPV1-mediated 

calcium signals and contribute to painful neuropathy[24; 199]. Preclinical studies of agents 

with anti-AGE/RAGE properties such as aminoguanidine and B vitamins show some 

efficacy in rodent models of diabetic neuropathy[397] and neuropathic pain[170] while a 

small-scale clinical trial of the vitamin B1 derivative benfotiamine suggested improvement 

in pain[339]. However, these agents have other potential mechanisms of action and it should 

also be noted that RAGE signaling is reported to have beneficial effects in nerve such as 

promoting neurite outgrowth[306] and that RAGE deletion attenuated indices of neuropathy 

in diabetic mice.[85]
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2.4. Glycolysis: Hyperglycemia-driven increases in intermediates of glycolysis have 

been linked to diabetic complications, including neuropathy. For example, metabolism of 

fructose 6-phospate by the hexosamine (glucosamine) pathway produces UDP-N-

acetylglucosamine, which is highly reactive with proteins, most notably transcription factors, 

in a process called O-GlcNAcylation. This pathway has been particularly linked with 

cardiovascular complications of diabetes[265] and a recent study indicates that O-

GlcNAcylation regulates remyelination of peripheral neurons after injury so that 

hyperglycemia-driven abnormal O-GlcNAcylation has the potential to impact nerve structure 

and function in diabetes[188].

In vascular tissue, glucose-derived diacylglycerol (via glyceraldehyde-3-phophate and 

phosphatidic acid), is a substrate for protein kinase C β (PKC β) and excess glucose drives 

elevated PKC β activity which in turn promotes increased vascular permeability and 

dysfunction[121]. The association of diabetic neuropathy with microvascular disease led to 

interest in the therapeutic potential of PKC β inhibitors. Following supportive preclinical 

studies[45], a clinical trial of ruboxistaurin in diabetic patients with neuropathy showed 

some improvement in skin blood flow, the NTSS-6 questionnaire, which quantified 

frequency and intensity of aching, burning, prickling, lancinating pain, numbness and 

allodynia, and in quality of life[48]. However, there was no significant effect on other 

measures of large and small fiber neuropathy, diminishing enthusiasm in this therapeutic 

approach.

There is an increasing focus on the role of the intermediate glycation product methylglyoxal 

in diabetic complications, including neuropathy and neuropathic pain. Methylglyoxal is 

formed by non-enzymatic dephosphorylation of triose phosphate intermediates of glycolysis 

(fructose 1,6-biphosphate, glyceraldehyde 3-phosphate and dihydroxyacetone phosphate) 

and cleared by the glyoxalase pathway. Both excess glycolysis and impaired activity of 

glyoxalase pathway enzymes may contribute to accumulation of methylglyoxal in diabetes, 

which reacts with proteins to form AGE’s (see above). Mice overexpressing glyoxylase 1 do 

not develop indices of degenerative diabetic neuropathy[156]. A gain of function property 

has also been proposed from studies showing that binding of methylglyoxal to the NaV1.8 

voltage gated sodium channel in sensory neurons increases excitability[25], while the 

potential for methylglyoxal to produce pain in diabetes may also be mediated via agonism of 

the TRPA1 channel in peripheral nerve[191] and spinal cord[126] and induction of the 

integrated stress response[21]. Recent studies have confirmed the pro-nociceptive properties 

of methylglyoxal in humans[93] and elevated plasma methyglyoxal has been identified as a 

risk factor for neuropathy in patients with type 2 diabetes[13]. Approaches to reducing 

methylglyoxal levels or blocking downstream consequences are in development.

2.5. Mitochondrial overdrive or idling?—It has been argued that increased substrate-

driven glycolysis with subsequent Krebs’ cycle activity and oxidative phosphorylation 

(OXPHOS) in mitochondria will result in formation of free radicals that may not be 

adequately buffered so that there is oxidative damage to local structures. This hypothesis 

was developed in endothelial cells exposed to short periods of hyperglycemia in vitro[246]. 

There is little evidence that substrate driven “overdrive” of mitochondrial OXPHOS persists 

and is toxic to nerve. Exposing Schwann cells to acute hyperglycemia causes an increase in 
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free radical buffering capacity and does not increase ROS production[374]. In neurons from 

diabetic rodents, basal respiration is unchanged and maximal mitochondrial respiratory 

capacity reduced, not increased[60; 410]. This is accompanied by reduced expression and 

activity of the mitochondrial proteome[7; 61] and dysregulation of mitochondrial 

biogenesis[49], with aberrant fission/fusion dynamics[303]. It has therefore been proposed 

that nutrient excess promotes downregulation of mitochondrial function and increasing 

reliance on glycolysis[106]. This metabolic shift supports normal neuronal function during 

hyperglycemia but may limit energy-intensive processes such as dynamic plasticity of 

peripheral terminals in the epidermis and the capacity to respond to other insults. Efficacy of 

diverse activators of the AMPK/PGC1α pathway, a nutrient sensor system that regulates 

mitochondrial activity and dynamics, in restoring mitochondrial respiration and preventing 

or reversing multiple indices of neuropathy and neuropathic pain in diabetic rodents [4; 43; 

300; 402] supports this concept.

There is an emerging appreciation that not all cells within the nervous system utilize glucose 

for ATP production in a similar manner. For example, neurons of the CNS express high 

levels of pyruvate dehydrogenase (PDH), which controls entry of pyruvate into Krebs cycle 

and drives OXPHOS, whereas astrocytes have high levels of lactate dehydrogenase, which 

converts pyruvate to lactate[202]. Utilization of glycolysis-derived pyruvate in astrocytes is 

also limited by suppression of PDH complex activity via phosphorylation by pyruvate 

dehydrogenase kinase (PDK). Consequently, these relatively quiescent glial cells rely 

primarily on glycolysis-derived ATP and indeed may provide lactate to neurons as energy 

substrate[173]. In contrast, electrically active neurons keep the PDH gateway open and 

utilize the more efficient generation of ATP by OXPHOS[136]. The metabolic dependence 

of neurons on glia is highlighted by the report that selective damage to Schwann cell 

mitochondria results in a neuropathy with damage to both myelin and axons[370]. Diabetes 

has been reported to increase PDK expression and activity in peripheral neurons and glia, 

supporting the idea that during persistent hyperglycemia, neurons suppress entry to 

OXPHOS and rely on glycolysis for ATP production[278]. Conversely, PDK deficiency 

attenuated multiple indices of neuropathy in diabetic mice including overexpression of 

TRPV1 and neuropathic pain. How hyperglycemia impacts the distinct metabolic profiles of 

neurons and Schwann cells has yet to be widely explored but such studies may provide 

insight into cell-specific mechanisms of glucotoxicity.

3. IMPAIRED INSULIN SIGNALING

The correlation between glycemic control and neuropathy reported in the DCCT study is not 

overwhelming, while the follow up study (EDIC) failed to show reversal of established 

neuropathy upon instigation of improved glycemic control[227; 269]. Similar studies of 

glycemic control in type 2 diabetic subjects did not replicate the DDCT findings for 

neuropathy[291; 419] and indices of neuropathy are detected in patients with pre-diabetes 

(elevated fasting glucose levels and/or impaired glucose tolerance) and metabolic syndrome 

(representing a combination of risk factors for progression to overt diabetes – central 

obesity, high triacylglycerides and LDL-cholesterol, low HDL-cholesterol, hypertension and 

hyperglycemia)[266]. A recent study that sub-divided a cohort of 1105 recently-diagnosed 

diabetics into 5 groups based on multiple metabolic parameters found that peripheral 
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neuropathy was most prevalent in those with severe insulin-deficient diabetes [407]. Taken 

together, these observations have driven interest in non-glucotoxic insults that may either act 

alone or in concert with hyperglycemia[127].

Diabetes can be viewed as a disease of impaired insulin signaling due to insulinopenia 

and/or insulin resistance. Insulin is structurally similar to the liver-derived peptides insulin-

like growth factors 1 and 2 (IGF-1, IGF-2) and shares their growth factor-like properties. 

Insulin receptors are found on peripheral neurons[35], signal via Akt[129] and activation 

promotes growth of normal sensory[112] and motor[396] neurons. Conversely, sequestration 

of local insulin causes peripheral neuropathy in normal rats[35]. Schwann cells also express 

insulin and IGF-1 receptors and their depletion results in a peripheral neuropathy phenotype 

with injury to both Schwann cells and axons[135]. Loss of insulin-mediated trophic support 

represents a primary pathogenic mechanism of diabetic neuropathy that is independent of 

hyperglycemia. This applies to both type 1 and type 2 diabetes, as studies in type 2 diabetic 

rodents indicate that insulin signaling is impaired in peripheral nerve[128], so that the 

nervous system can be considered insulin resistant.

A number of preclinical studies have demonstrated a role for insulin deficiency in diabetic 

neuropathy and neuropathic pain. Animals injected with STZ at doses that significantly 

reduce insulin production but do not cause hyperglycemia, go on to develop hyperalgesia in 

the paw pressure test[294–296]. Insulin-resistant but normoglycemic models of pre-diabetes 

also develop neuropathy[81] and onset of allodynia to von Frey filaments parallels onset of 

insulin resistance but precedes onset of hyperglycemia in a model of type 2 diabetes[297]. 

Conversely, insulin-deficient diabetic rodents treated with trace amounts of systemic insulin 

for over 1 year to maintain body weight without impacting systemic hyperglycemia showed 

attenuation of large fiber conduction slowing and did not progress to paw heat 

hypoalgesia[37]. Most notable are studies in which trace insulin was injected into the 

footpad[131], infused into the spinal intrathecal space[357] or applied topically to the 

eye[52] of STZ-diabetic rodents. In each case, treatment prevented functional and structural 

indices of neuropathy without impacting hyperglycemia indicating that, provided there is 

adequate insulin-derived trophic support, hyperglycemia is not sufficient to induce 

neuropathy.

A mechanism of direct insulin action on neurons may involve mitochondria. Insulin 

increases mitochondrial inner membrane potential when applied direct to sensory neurons 

derived from normal rats in vitro[150]. Moreover, the reduced inner membrane potential, 

protein expression and bioenergetics profile of mitochondria from sensory neurons of STZ-

diabetic rodents are restored when animals received trace insulin supplementation that also 

impacted functional and structural indices of diabetic neuropathy without impacting 

hyperglycemia[3; 61; 150]. This ability to protect against both mitochondrial dysfunction 

and the neuropathy phenotype also extends to IGF-1[4] with the apparent redundancy 

perhaps reflecting the importance of the system to cells with consistently elevated energy 

demands.

Insulin secretion is accompanied by equimolar release of C-peptide, the other product of 

pro-insulin cleavage. Although initially considered inert, there is evidence that C-peptide has 
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biological actions in a variety of tissues, including peripheral nerve[324], possibly via an 

insulin-sensitizing action. As C-peptide prevents and reverses multiple indices of 

neuropathy[411] and neuropathic pain[180] in animal models of type 1 diabetes[171] and 

showed efficacy against some manifestations of diabetic neuropathy in a clinical trial[379] it 

should perhaps be aligned in tandem with insulin when considering primary pathogenic 

mechanisms of diabetic neuropathy and neuropathic pain.

4. DYSLIPIDEMIA

Major risk factors for developing diabetic neuropathy reflect exposure to impaired insulin 

signaling/hyperglycemia (age, duration of diabetes and long-term glycemic control) 

followed by vascular dysfunction (hypertension, smoking) and dyslipidemia (obesity, 

elevated plasma cholesterol and triacylglycerols)[31]. Clinical evidence linking changes in 

specific plasma lipids to neuropathy is mixed, with studies that both demonstrated, and 

failed to demonstrate, associations between elevated triacyglycerols, elevated LDL-

cholesterol or reduced HDL-cholesterol and neuropathy. Clinical efficacy of lipid lowering 

agents such as statins and fibrates against neuropathy is promising, but limited[83; 245; 280; 

371]. Nevertheless, there is growing interest in how dyslipidemia may damage peripheral 

nerves to produce degenerative and painful neuropathy that is driven by recent preclinical 

studies.

Indices of neuropathy and neuropathic pain are detected in rodents fed high fat diet to induce 

insulin resistance and dyslipidemia but not overt hyperglycemia[81; 82; 254; 373], although 

the neuropathy phenotype may be species and strain specific[14]. Many of these disorders 

are prevented or reversed by treating pre-diabetic, type 1 or type 2 diabetic rodents with diets 

high in n-3 polyunsaturated fatty acids (PUFA’s) to adjust the plasma ratio of n-3:n-6 PUFA 

[68–70; 200; 318]. Adjusting high fat diets to increase the proportion of monounsaturated 

fatty acids shows similar efficacy[302] and there is a growing suspicion that long chain 

saturated fatty acids may therefore be a pro-neuropathic entity in dyslipidemia[248]. 

Downstream pathogenic mechanisms may include disruption of mitochondrial function and 

transport in sensory neurons[303]. Dyslipidemia thus joins glucotoxicity and impaired 

insulin signaling as a potential driver of mitochondrial dysfunction to cause peripheral 

neuropathy (FIGURE 3).

5. MOLECULAR PATHOLOGY

The preclinical literature on mechanisms of diabetic neuropathy and neuropathic pain is 

replete with studies describing increased/decreased activity, expression or mRNA of proteins 

in nerve from diabetic rodents frequently accompanied by data showing that preventing or 

reversing specific change can impact one or multiple indices of neuropathy and/or 

neuropathic pain. Studies relating such changes to the primary pathogenic mechanisms 

discussed above are less frequent. The advent of what are now politely termed unbiased 

studies has allowed a somewhat less fragmented approach, with technical and bioinformatics 

advances supporting analysis of large data sets and identification of clusters of differentially 

regulated genes for pathway analysis.
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5.1. Gene expression and regulation: Initial approaches used oligonucleotide 

microarrays and target amplification to identify differentially regulated genes in autonomic 

and sensory ganglia of type 1 diabetic rats [47; 272] and emphasized changes that preceded 

onset of functional and structural damage. Studies followed characterizing expression 

profiles of mouse models of type 1[56] and type 2 diabetes[142; 251; 262] and pre-

diabetes[249], contrasting profiles of type 1 vs type 2 diabetic mice[130; 152] or diabetic 

rodents with or without an intervention that corrected indices of neuropathy[78; 84; 221; 

401; 409] or specifically painful neuropathy[401]. Expression profiles of nerve biopsies 

from humans with diabetes have also been reported[153; 210; 229]. Common themes 

emerging from these studies largely echo the suspected pathogenic mechanisms described 

above such as glucose and lipid metabolism, oxidative stress and mitochondrial dysfunction. 

Additional abnormal gene expression clusters implicate impaired cytoskeletal organization, 

nerve growth and regeneration, inflammatory/immune system activity and signaling through 

MAPK, JAK/STAT and AMPK pathways. These studies have also driven the growing 

suspicion that neuropathy in type1 and type 2 diabetes has many molecular dissimilarities 

and the recent heightened interest in dyslipidemia as a primary pathogenic mechanism of 

diabetic neuropathy[101].

Both the production and degradation of mRNA and its subsequent translation are modified 

by interactions between the mRNA and the RNA-induced silencing complex (RISC) which 

consists of assorted proteins (the RNAse DICER, argonaute family proteins etc) and single 

stranded non-coding microRNA’s (miRNA). This mechanism of gene silencing adds 

additional layers of control and complexity, particularly as each gene can be silenced by 

many miRNA’s and each miRNA can target multiple genes. Polymorphisms of specific 

miRNA’s are associated with susceptibility to peripheral and autonomic neuropathy in 

patients with type 2 diabetes[63; 64] and miRNA have attracted recent interest both as 

potential contributors to the pathogenesis of diabetic neuropathy and as sites of therapeutic 

intervention[326]. Examples are shown in TABLE 2 [5; 53; 56; 105; 132; 148; 149; 164; 

185; 215; 319; 381; 384; 394; 405; 412]. While changes in miRNA are frequently linked 

with such downstream pathogenic mechanisms of diabetic neuropathy as inflammation, 

oxidative stress and impaired neuronal growth and regeneration the primary events that 

trigger disruption of miRNA expression have yet to be defined. Manipulation of miRNA is 

an emerging therapeutic approach in which identifying nerve-specific targets or delivery 

systems will be critical for ensuring appropriate safety profiles that will allow translation to 

clinical use.

5.2. Structural proteins: Early interest in dysfunctional axonal transport as a cause of 

distal degenerative neuropathy promoted interest in proteins of the axonal cytoarchitecture, 

with tubulin, neurofilament sub-units and associated proteins variously reported as being 

over or under expressed, glycated, glycosylated, polymerized and/or phosphorylated[111; 

230; 311]. Proteins of the extracellular matrix also show post-translational modifications[10; 

95]. Potential structural consequences include reduced axonal caliber and associated large 

fiber conduction slowing [238] and delayed axonal regrowth following focal lesions as 

reported in diabetic rodents[172] and humans[186], although fast axonal transport velocities 

are unchanged[1]. Altered expression or post-translational modification of myelin structural 
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proteins such as myelin basic protein (MBP), myelin associated glycoprotein (MAG), 

myelin protein 0 (P0 or MPZ) and peripheral myelin protein 22 (PMP22) are also 

reported[102; 277; 299]. Unfortunately, appropriately fixed nerve of diabetic rodents does 

not display overt myelin pathology similar to that reported in animals were these proteins are 

selectively ablated.

5.3. Trophic factors: The growing repertoire of trophic factors and their receptors that 

modulate nerve phenotype and function has been frequently accompanied by the discovery 

of reduced mRNA, protein, receptor and/or signaling in peripheral neurons, Schwann cells 

or target organs of diabetic rodents and thereafter by reports that delivery of the trophic 

factor gene or protein, mimetics, inducers or agonists corrects indices of neuropathy in the 

same. Examples include NGF[109; 141], CNTF[40; 42; 240], NT-3[110; 238], IGF-1[4; 

154; 414] GDNF[62; 212], bFGF[244], HGF[181], G-CSF[187], MMP2[10], hedgehog 

proteins[38]. There are also reports of diabetes-induced increased expression of trophic 

factors, as occurs with BDNF[108] and both HIF-1 and its target gene VEGF[50; 307], that 

are attributed to responses to injury or compensation for loss of other trophic support 

systems. VEGF delivery improves indices of neuropathy in diabetic rodents [151; 292; 310], 

while the role of BDNF is more complex. Acute spinal delivery of BDNF causes tactile 

allodynia in normal rats and sequestration of endogenous spinal BDNF alleviates tactile 

allodynia and restores H-wave RDD (see above) in diabetic rats[206]. In contrast, chronic 

spinal delivery of BDNF to diabetic rats alleviated hyperalgesia[207]. In some cases, altered 

neurotrophic support has been linked to downstream consequences of hyperglycemia. For 

example, hyperglycemia-driven increased flux though the polyol pathway leads to reduced 

nerve levels of the Schwann cell derived factors NGF[256] and CNTF[237] and ARI 

treatment prevents diabetes-induced elevated Trk-C receptor mRNA expression [322]. 

However, the pathogenesis of most neurotrophic factor deficits in diabetic nerve remains 

unknown and clinical trials using trophic factors have not been promising[16; 103; 391], 

with the exception of early HGF trials against neuropathic pain[6] and a neurotrophic 

erythropoietin analog against pain and corneal nerve loss[33].

5.4. Cytokines and inflammatory pathways: There is little evidence from human 

studies that diabetic neuropathy represents a typical inflammatory neuropathy. Chronic 

inflammatory demyelinating polyneuropathy occurs in diabetic patients but is readily 

distinguished from diabetic symmetrical polyneuropathy[279]. Animal models of diabetes 

also lack marked inflammatory infiltrates, although there are reports of transient increases in 

the number and activation of peripheral nerve macrophages [67; 247] and spinal 

microglia[363]. The absence of large increases in inflammatory cell numbers is not 

surprising due to the physical constraints on tissue expansion imposed by the epineurium 

and spinal column. Glial cells of the PNS and CNS play many roles associated with 

peripheral inflammatory cells following nerve injury, including release of cytokines and 

chemokines[92] and clearance of myelin debris[162]. As recently reviewed in detail 

elsewhere [289] this neuroinflammatory system is increasing recognized as being 

dysregulated in diabetes.
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There are multiple reports of changes in both pro- and anti-inflammatory cytokines and 

chemokines in the nervous system of diabetic rodents. The most widely studied are increases 

in the pro-inflammatory cytokines IL-1β, IL-6, TNFα and interferon-γ, [420] along with 

changes to downstream transcription regulators such as NF-κB and Nrf2[197]. Expression 

of bradykinin B1 and B2 receptors by microglia and neurons is also increased in the spinal 

cord of diabetic rodents[46; 345] and receptor antagonists alleviate indices of pain[345]. 

Pathogenic consequences include induction of enzymes such as COX-2[182; 284] and 

isoforms of nitric oxide synthase[417] that can drive tissue damage via ischemic hypoxia 

and oxidative/nitrosative stress thereby contributing to both degenerative neuropathy and 

initiation or amplification of neuropathic pain[116]. For example, induction of COX-2 and 

subsequent release of prostaglandins from spinal oligodendrocytes[284] and release of pro-

inflammatory cytokines[345] and BDNF[241] from activated microglia have been linked to 

spinally-mediated pain in diabetic rodents. Increased chemokine/receptor signaling, 

including CCL1/CCR8[422], CXCL12/CXCR4[160], CXCL13/CXCR5[214] and 

others[421] is also linked to neuropathic pain in diabetic rodents. The primary pathogenesis 

of many of the reported changes to the neuro-inflammatory system remains to be 

determined, although hyperglycemia driven flux through the polyol pathway may be 

involved in some aspects[157; 284; 336]. Therapeutic approaches around manipulation of 

the neuro-inflammatory system tested in diabetic rodents range from microglial 

inactivators[241; 420], COX inhibitors[268; 284], TNFα inactivators[399] or inhibitors[90], 

overexpression of anti-inflammatory cytokines[349], antagonists to pro-inflammatory 

cytokines[139], chemokine neutralizing antibodies[293] and chemokine receptor 

antagonists[176; 232]. Efficacy of stem cells [138; 387] and natural products [78; 167; 255] 

against aspects of diabetic neuropathy may also be at least partly due to their anti-

inflammatory properties. To date, clinical trials have not been successful[176].

5.5. Death and Survival Pathways: Dysregulation of cytoplasmic calcium has been 

implicated in many neurodegenerative diseases, given its role in triggering autophagic, 

necrotic and apoptotic pathways[51; 124]. Steady state cytoplasmic calcium concentrations 

are regulated by pumps located in mitochondria and endoplasmic reticulum and these 

organelles serve as calcium stores. Steady state cytoplasmic calcium concentrations are 

increased in sensory neurons from diabetic rodents[369] and this is associated with impaired 

calcium reuptake into endoplasmic reticulum by the sarco-endoplasmic reticulum Ca2+ 

ATPase (SERCA) pump[413]. Subsequent depletion of calcium in the sarcoplasmic 

reticulum produces ER stress which can precipitate cell death[308] and this mechanism has 

been integrated into schema of potential pathogenic mechanisms of diabetic 

neuropathy[250]. It is not yet known whether mitochondrial calcium pumps, such as the 

mitochondrial calcium uniporter (MCU) complex and voltage-dependent anion channel 

(VDAC) are dysfunctional in diabetes.

Reports describing marked expression of components of apoptotic death pathways in the 

peripheral nerve of short-term diabetic rodents[304; 309] were initially difficult to reconcile 

with the slowly evolving loss of neurons and axons in these models and clinical descriptions 

of a distal degenerative neuropathy. Later work reported that increased caspase-3 in nerve 

was not associated with structural features of apoptosis such as nuclear fragmentation and 
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that DNA-repair mechanisms were activated, suggesting that peripheral nerve utilizes 

endogenous defence mechanisms to block progression from caspase-3 activation to 

apoptosis[57]. Over-activity of the DNA repair enzyme poly(ADP-ribose) polymerase 

(PARP) has itself been linked to a mechanism of nerve injury[219]. Elevated PARP and 

other survival and repair markers such as heat shock protein 27 (HSP27)[282; 418] and 

growth associated protein 43 (GAP43)[131] in the nerve of diabetic rodents has encouraged 

the view that peripheral nerve is exposed to chronic stress arising from one or more of 

mechanisms described above but can largely tolerate and repair metabolic injuries, 

paralleling to the way that it survives and repairs physical injury. Therapeutic approaches 

that strengthen endogenous survival and repair mechanisms include overexpression of HSP 

27[193] and inhibition of HSP90 to induce HSP70, a molecular chaperone protein with 

multiple neuroprotective properties including protecting mitochondrial function and 

reducing inflammation and oxidative stress[221]. HSP90 inhibitors reverse multiple indices 

of neuropathy in diabetic rodents and are currently in clinical development[104]. Conversely, 

the emerging appreciation that there are endogenous systems that constrain nerve growth has 

provided opportunity to intervene and thereby promote nerve growth and regeneration 

pathways[94]. For example, the tumor suppressor molecule PTEN (phosphatase and tensin 

homolog deleted on chromosome 10) inhibits the PI3K-pAkt neuronal growth pathway[195] 

and is upregulated in sensory neurons from diabetic animals while knockdown of PTEN 

improved the otherwise impaired nerve regeneration following crush injury in STZ-diabetic 

mice[327].

5.6. Membrane pumps: NCV slowing in short-term diabetic rodents that lack overt 

damage to axons or myelin led to interest in changes to nodal ion pumps that facilitate 

saltatory conduction in myelinated fibers. Chief of these was the Na+/K+ ATPase, given its 

role in maintaining and restoring resting membrane potential. Reduced maximal pump 

activity in membrane fragments associated with reduced protein expression was widely 

studied as a potential cause of NCV slowing and is downstream of hyperglycemia driven 

polyol pathway activity[125]. However, Na+/K+ ATPase pump activity is not impaired in 

intact endoneurial preparations from diabetic rodents[217] so the physiological relevance is 

unclear. Increased expression and activity of the Na+/H+ pump has also been reported in 

nerve of diabetic rodents and inhibition of the pump reversed functional and structural 

indices of neuropathy and neuropathic pain[220]. Overactivity of this pump increases 

cytoplasmic pH, glucose uptake and glycolysis, thereby having the potential to trigger 

multiple pathogenic mechanisms.

In the spinal cord, reduced expression of the potassium-chloride co-transporter 2 (KCC2) 

pump, which maintains the chloride gradient across neuronal membranes, has been linked 

with loss of GABAergic inhibitory function and neuropathic pain in diabetic rats[205]. 

KCC2 expression is suppressed by the neurotrophic factor BDNF and increased BDNF 

levels in central projections of primary afferents in diabetic rats suggest that the primary 

lesion may be of peripheral origin[205], although it has also been linked to activated spinal 

microglia[241]. The electrophysiological consequence of disrupted spinal GABAergic 

inhibitory tone in diabetic rodents is loss of rate dependent depression (RDD) of the H 

wave[206], which is secondary to impaired insulin signaling rather than 
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hyperglycemia[226]. Loss of RDD may serve as a biomarker for identifying a sub-set of 

diabetic humans in whom painful neuropathy includes a contribution from spinal 

disinhibition[226].

5.7. TRP channels: Transient receptor potential (TRP) channels are a family of non-

selective cation permeable channels that transduce diverse extracellular stimuli into acute 

and chronic neuronal responses via influx of calcium[174]. TRPA, TRPV and TRPM family 

members are modulated by endocannabinoids, which may contribute to the analgesic 

properties of these substances[243]. There is substantial preclinical evidence that 

dysregulation or dysfunction of TRP channels may contribute to neuropathic pain in 

diabetes.

The TRPV1 channel, known for transducing the burning sensation of capsaicin, is activated 

by a range of physiological and pathological stimuli including heat, low pH, pro-

inflammatory molecules and endocannabiniods. TRPV1 currents are also enhanced by 

insulin and IGF-1[368] and by the TRPM8 receptor[260]. An initial report [145] indicated 

that membrane bound TRPV1 protein is increased in DRG from diabetic rats, along with the 

channel phosphorylation state and both capsaicin and proton activated currents while 

TRPV1 protein expression increased in large sensory neurons and decreased in small 

sensory neurons. The pattern of TRPV1 protein expression and whole cell currents in the 

DRG and spinal cord of diabetic rodents paralleled progression from heat hyperalgesia to 

hypoalgesia[261] and increased TRPV1 expression at peripheral and central terminals of 

primary afferents has been implicated in allodynia to von Frey filaments[74]. Agents that 

reduce TRPV1 expression, antagonize TRPV1 or ablate it also alleviate thermal 

hyperalgesia and tactile allodynia in diabetic rats[17; 209]. Involvement in diabetic 

neuropathy beyond indices of pain is suggested by a report that TRPV1 agonists given to 

normal mice produce multiple indices of small fiber neuropathy including IENF loss[204]. 

Upstream events that may drive TRPV1-mediated pain include increased insulin, RAGE and 

protein kinase C activity[24; 368] and hypoxia[287]. Little is known about other TRPV 

family members, although a recent study reported that a selective TRPV4 channel antagonist 

blocked mechanical, but not cold, allodynia in diabetic mice[87].

Early indications of a role for the irritant sensing TRPA1 channel in diabetes-induced 

hyperalgesia came from studies with TRPA1 antagonists that alleviated allodynia to von 

Frey filaments and mechanical hyperalgesia[388; 389]. Cold allodynia in diabetic mice has 

also been attributed to TRPA1 activity[143]. Diabetes enhances channel activity without 

inducing TRPA1 protein expression in DRG of diabetic animals[288]. As discussed above, a 

pathogenic mechanism linking hyperglycemia with TRPA1 channel activation via 

methylglyoxal binding to the channel has been proposed[100; 192] and there is also a recent 

report linking TRPA1-mediated hyperalgesia in diabetic rodents to local hydrogen 

sulfide[288].

Protein for the cold/menthol sensing TRPM8 channel is elevated in the DRG of STZ-

diabetic rats with concurrent cold allodynia[403]. Conversely, agonist activated TRPM8 

currents are decreased in DRG of STZ-diabetic mice[260] and in normal DRG cells 

following exposure to methylglyoxal[66]. While this does not appear to be consistent with a 

Calcutt Page 15

Pain. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



role for methylglyoxal in diabetes-evoked pain (see above), it has been argued that loss of 

TRPM8 activity enhances other TRP channel activities associated with neuropathic 

pain[260]. There is clearly room for additional studies in this area.

5.8. Voltage gated calcium channels: Gabapentin and pregabalin, widely used to 

treat painful neuropathy in diabetic patients[9], target the α2δ–1 sub-unit of voltage gated 

Ca2 channels[22]. This sub-unit regulates the trafficking and activation kinetics of pore-

forming α1 sub-units and thus surface expression and activity of voltage gated Ca2 channels 

([264]). The plasmalemma of sensory neurons contains multiple voltage-gated Ca2+ 

channels, including L-type (Cav1.2 and Cav 1.3), N-type (Cav 2.2), R type (Cav 2.3) and T-

type (Cav 3.2 and Cav 3.3). Of these, the most extensively studied in the context of diabetic 

neuropathy is the T-type (Cav 3.2) calcium channel [354]. This channel shows altered 

kinetics due to post-translational modification by glycosylation under hyperglycemic 

conditions accompanied by enhanced gene expression and glucose-regulated trafficking[203; 

390]. A role in neuropathic pain is suggested by reports that diverse interventions that target 

the Cav3.2 channel reverse allodynia to von Frey filaments and thermal hyperalgesia in 

diabetic rodents[117; 201; 233; 253]. Clinical trials of T-type calcium channel antagonists, 

including one that used the innovative design of using microneurography to pre-select 

diabetic subjects with both pain and spontaneously active C fibers[317] have yet to show 

efficacy[184; 415].

Increased mRNA for sub-units of the P/Q, but not N, type calcium channels have been 

reported in DRG of STZ-diabetic mice[365] and a P/Q and R type channel antagonist 

alleviated allodyina to von Frey filaments in STZ-diabetic rats and mice[77]. Reports of 

increased L-type currents in both primary afferent and dorsal horn neurons of STZ-diabetic 

rats[194; 376] have promoted studies of efficacy of the L-type channel antagonists against 

hyperalgesia[323] while efficacy against other indices of peripheral neuropathy were largely 

attributed to indirect effects via improved blood flow[28].

5.9: Voltage gated potassium channels and HCN channels: Given the 

importance of potassium channels in regulating axonal excitability there are relatively few 

studies implicating them in the pathogenesis of diabetic neuropathy and neuropathic pain. 

Expression of the voltage-gated Kv channel subunits Kv1.2 and Kv1.6, but not Kv1.1, was 

reduced in small neuronal cell bodies of the DRG in STZ-diabetic rats coincident with 

reduced K+ currents and these changes were linked to enhanced C-fiber excitability and 

hyperalgesia[382]. Most recently, voltage gated Kv7 (KCNQ) channels, which produce a 

slow non-inactivating outward K+ current also called the M current due to its modulation by 

muscarinic antagonists[392], have been examined. There was decreased mRNA and protein 

for the Kv7.2, Kv7.3 and Kv7.5 channels in the DRG of STZ-diabetic rats accompanied by 

reduced M current density and increased neuronal excitability[406]. A Kv7 channel activator 

reduced neuronal excitability and alleviated allodynia to von Frey filaments and thermal 

hyperalgesia

Hyperpolarization-activated and cyclic nucleotide-gated channels (HCN1–4) are a distinct 

category of voltage-gated ion channels whose threshold potentials are regulated by cyclic 

nucleotides and that have been implicated in neuropathic pain states[361]. Inhibition of 
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HCN’s1–4 or ablation of HCN2 alleviated allodynia to von Frey filaments but not thermal 

hypoalgesia in diabetic mice[360]. Expression of HCN1–4 protein was not altered in the 

peripheral nerve of diabetic mice and it was speculated that a measured increased in 

intracellular cAMP might activate HCN2 and thus increase primary afferent firing.

5.10. Voltage gated sodium channels: Voltage-gated sodium channels (VGSC: 

NaV1.1–1.9) are critical regulators of neuronal excitability and the discovery of gain of 

function mutations to Nav1.7, NAv1.8 and Nav1.9 in human small fiber “channelopathy” 

pain states [333] has focused interest on the potential role of VGSC in painful diabetic 

neuropathy. Diabetes alters currents and protein expression of a variety of VGSC: Nav1.8 

protein expression is consistently reported as being decreased [73; 146; 257] with a parallel 

increased phosphorylation or post-translational modification by methylglyoxal (see above) 

considered indicative of activation[25; 147]. Others, such as Nav’s 1.1, 1.2, 1.3, 1.7 and 1.9 

show increased protein expression[73; 146; 147; 328], while there is disagreement over the 

fate of Nav1.6 [73; 146; 286]. Interestingly, around 10% of a cohort of patients with painful 

diabetic neuropathy expressed rare Nav1.7 variants, some of which were gain of function 

variants[29]. These patients tended to report more severe burning pain and increased 

pressure sensitivity. A gain of function variant to the β sub-unit of VGSC has also been 

identified in a patient with painful diabetic neuropathy[11] while a recent genome wide 

association study of type 2 diabetics with or without pain has drawn attention to Nav1,2 

([347]).

There have been a number of studies that have manipulated VGSC activity. Antagonists of 

overexpressed VGSC have been studied for their ability to block indices of neuropathic pain 

in both preclinical and clinical studies[353]. In diabetic rodents indices of neuropathic pain 

have been reduced by the non-selective VGSC blockers lidocaine[41] and mexiletine [400], 

by selective knockdown of NAv1.3,[346], by induction of miR-96 to reduce Nav1.3 

expression[5] and by blockers of Nav1.7[385] and Nav1.8[367]. Topical lidocaine has shown 

efficacy against painful diabetic neuropathy [393] and is used off-label[9]. A clinical trial of 

a Nav1.7 blocker in subjects with painful diabetic neuropathy showed only minor 

effects[228], perhaps reflecting the cohort of subjects in whom pain could be due to a variety 

of diabetes-related mechanisms. While the pathogenesis of altered expression and/or 

function of VGSC is not clear, other than relatively rare gain of function mutations and a 

link to hyperglycemia via increased glycolysis and methlyglyoxal for modification of Nav1.8 

activity[25], there is an interesting suggestion that mutations in NaV1.7 may be a primary 

cause of both painful diabetic neuropathy and diabetes itself due to the location of this 

channel on both primary sensory neurons and pancreatic β cells[144].

5.11. Neurotransmitters and receptors: Purinergic P2X receptors are ligand (ATP)-

gated non-selective cation channels location on neurons, Schwann cells and microglia[36]. 

There is increased P2X2R and P2X3R expression and current density in DRG of STZ-

diabetic rats and mice and increased P2X4R expression by satellite glial cells[348]. 

Increased gene expression of P2X3R in diabetic rats has been linked to demethylation of the 

p2x3r gene[408]. Involvement of P2XR in pain is suggested by reports that peripheral and 

intrathecal delivery of antagonists alleviated tactile and thermal hyperalgesia in diabetic 
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animals[234; 348; 395; 408]. Increased activity of receptors located at synapses and on 

adjacent microglia has the potential to enhance primary afferent input and spinal 

sensitization of sensory processing.

The spinal cord of diabetic rodents shows increased glutamate and substance P ligand 

binding [179; 208] and increased mRNA for subunits of glutamatergic NMDA and AMPA 

receptors [355]. The NMDA NR1 and NR2B subunits also show and increased 

phosphorylation (activation) [80; 155] secondary to elevated protein tyrosine phosphatase 

activity[342]. NR2B expression is also increased in a model of pre-diabetes[342]. These 

findings are consistent with efficacy of spinally delivered NK-1 and NMDA antagonists 

against allodynia and hyperalgesia in diabetic rodents [39; 71; 79; 298]. Unfortunately, side-

effect free targeting of spinal excitatory receptors as a strategy to treat painful diabetic 

neuropathy has been largely unsuccessful to date.

Of the spinal inhibitory receptors, GABAA expression is unchanged by diabetes[169] but 

inhibitory function is diminished secondary to reduced KCC2 activity (see above), while 

GABAB expression is reduced[383]. Both basal and stimulus-evoked spinal GABA levels 

are increased in diabetic rats[225] and may contribute to pain via dysfunctional GABAA 

receptors, as GABAA antagonists alleviate allodynia and hyperalgesia[169] whereas 

activation of GABAB receptors shows the expected inhibitory effects[213]. Multiple 

serotoninergic receptor agonists have been shown to alleviate indices of pain in animal 

models of diabetes, including agonists or indirect activators of 5-HT1A,[163] 5HT2A/C[236] 

and 5HT7[364] receptors. While spinal expression of 5HT2A receptors is unchanged by 

diabetes[267], efficacy of duloxetine, a selective serotonin reuptake inhibitor approved for 

use against pain in diabetic patients[9], is via activation of these receptors in the spinal cord 

of diabetic rats[236]. Muscarinic M2 receptors are increased in spinal cord of diabetic 

rats[55] and facilitate the antinociceptive actions of cholinergic agonists operating via 

GABAB receptors[54].

While increased expression and/or activity of ion channels and receptors may lead to 

hypersensitive or destabilized primary afferents and inappropriate electrical activity, the 

contribution of peripherally drive to pain in diabetes may be offset by progression to a 

degenerative neuropathy phenotype. No matter how electrically active a primary afferent 

becomes, it is effectively silent if it cannot release adequate neurotransmitter at the spinal 

dorsal horn. For example, in diabetic rats there is an early reduction in the synthesis[89], 

transport[356] and stimulus-evoked spinal release of both neuropeptide[44; 119] and amino 

acid[225] excitatory neurotransmitters that is concurrent with enhanced pain-associated 

behavior in the same animals. There is also a progression from increased, to loss of, synaptic 

markers in the spinal cord of diabetic rats[166; 211]. Pain generator sites may evolve over 

time, with initial pain driven by a hypersensitive or hyperactive periphery but progressing to 

spinal and CNS generator/maintenance sites as primary afferent input fades with first 

neurochemical, then physical, degeneration. Longitudinal clinical studies in subjects with 

diabetic neuropathy, using such techniques as microneurography[317], RDD[226] and 

MRI[314] to track activity of generator sites over time may be of value.
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6. SUMMARY

A PubMed search at 7pm PST on 14th February 2020 using the search phrase “diabetic 

neuropathy treatment” returned 17,238 hits – a lot of words for a condition with no approved 

therapy. It is challenging to reconcile the plethora of biochemical and molecular changes in 

the nervous system of diabetic rodents described above with their mildly dysfunctional 

neuropathy phenotype and limited nerve pathology. It is also remarkable that so many highly 

selective interventions against specific pathways are completely effective in preventing or 

reversing indices of neuropathy and pain, despite presumably continued operation of 

multiple other documented pathways. The sheer volume of effective interventions must raise 

concerns about the relevance of preclinical models and assays to the clinical condition. 

Experimental models of diabetic neuropathy are perhaps best viewed as hypothesis-

generating tools that offer a veritable cornucopia of potential pathogenic events and 

plausible targets for therapeutic intervention against neurodegeneration and pain (Figure 4). 

Relatively few of the biochemical and molecular changes described above have been 

confirmed in humans and, when they are, it is not easy to determine whether altered protein 

expression and/or activity has physiological and pathological consequences or is itself a 

consequence of neuropathy.

The challenge before us remains the same as it was over half a century ago following the 

advent of aldose reductase inhibitors[190] - namely translating mechanisms and 

interventions identified in preclinical models of diabetes into viable therapies to prevent and 

reverse diabetic neuropathy and neuropathic pain. Agents that appear promising in 

preclinical studies have consistently failed in clinical trials against degenerative diabetic 

neuropathy and there has been plenty of subsequent finger pointing, from allegations of poor 

drug design and unrepresentative animal models to flawed clinical trial designs and outcome 

measures[107; 222]. Encouragingly, recognition and analysis of prior failings [222] has 

prompted development of focused in vitro models to aid mechanistic and drug screening 

studies[118], animal models that more closely resemble the human diabetic condition [404], 

refinement of clinical protocols [32] and introduction of outcome measures such as nerve 

fiber density in the skin and cornea that highlight small fiber neuropathy[222; 276]. In 

contrast to degenerative neuropathy, there are a number of therapies approved by regulatory 

agencies to alleviate pain in diabetes, and others that are used off-label [9; 18]. However, it is 

notable that none were developed to target diabetes-specific mechanisms while efficacy is 

both unpredictable and restricted to small sub-sets of patients (NNT>5–10) [113]. 

Refinement of models of neuropathic pain and of assays towards those that incorporate more 

complex cognitive functions may improve the predictive value of preclinical studies[88] and 

have begun to be used in models of diabetes[378]. There is also a growing appreciation that 

pain in diabetic patients falls into distinct sub-types [20], potentially reflecting different 

dominant pathogenic mechanisms and thus responsiveness to targeted therapeutic 

interventions. Drugs not statistically effective against pain in an unrefined cohort have been 

shown to be effective in a sub-group defined by pain mechanism[86], and clinical trial 

designs are beginning to incorporate patient stratification based on the likely mechanism of 

both pain generation and the agent under investigation[317]. Together, these advances may 

allow the identification and development of translatable therapies that are tested against the 
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mechanistically-appropriate population and open an encouraging gateway into the world of 

personalized medicine.
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Figure 1: Mechanisms of glucotoxicity in diabetic neuropathy.
Hyperglycemia has been considered central to the pathogenesis of diabetic neuropathy and 

multiple mechanisms have been proposed from both preclinical studies and clinical 

observations (see text for details).
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Figure 2: Imaging diabetic neuropathy.
Rat plantar skin stained with antibody to PGP9.5 and viewed by bright field (panel A) or 

fluorescence (panel B) microscopy reveals dermal nerves (yellow arrows) projecting across 

the dermal:epidermal junction and into the epidermis (purple/blue counterstained nuclei) 

where they form profiles of intra-epidermal nerve fibers (red arrows). Note that PGP9.5 also 

stains epidermal Langerhans cells (red circles). Diabetic rodents and humans (panel C) show 

early reductions in IENF density that are associated with both sensory loss and pain [23, 

276]. Confocal images of the corneal sub-basal nerve plexus of a live mouse (panel D, 

showing inferior whorl) and human (panel E]. Reduced corneal nerve morphometric 

parameters are detected within weeks of onset of diabetes in rodents [52] and in early stages 

of clinical diabetic neuropathy [276]. A cross section of sciatic nerve from a STZ-diabetic 

rat (panel F), with an endoneurial blood vessel at the centre of field (black circle), lacks 

overt evidence of the axonal degeneration or demyelination common in nerve biopsies from 

diabetic patients. Apparently mis-shapen axons (black arrows) represent normal paranodal 

regions of the nerve fiber while multiple myelin profiles illustrate normal Schmidt-

Lanterman incisures (red arrows). Mild axonal fixation artifact is illustrated by the black 

star. Morphometric analysis identifies reduced mean axonal diameter in the absence of 

significant fiber loss, indicative of axonal atrophy or impaired maturation. Technical details 

of procedures used to generate these images and representative data showing the effects of 
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diabetes are published [168]. Images by Ms. Katie Frizzi, Ms. Lucie Guernsey and Ms. Alex 

Marquez.
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Figure 3: A convergence of pathogenic mechanisms?
There is accumulating evidence that the primary initiators of pathogenic cascades leading to 

diabetic neuropathy, impaired insulin signaling, hyperglycemia and dyslipidemia share a 

common pathway through disruption of mitochondrial bioenergetics.

Calcutt Page 47

Pain. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: A plethora of potential pain precipitating pathways?
Animal models of diabetic neuropathy develop molecular and functional disorders 

throughout the neuraxis that have the potential to generate or amplify pain and thus serve as 

targets for therapeutic intervention. The majority of these disorders have yet to be validated 

in the human condition.

Calcutt Page 48

Pain. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Calcutt Page 49

TABLE 1.
Potential biomarkers for painful vs painless diabetic neuropathy.

Studies where no change was detected are shown in italics.

Type Tissue Biomarker for painful neuropathy Representative Publications

STRUCTURAL (PNS) Nerve biopsy Small fiber damage and regeneration [34,216,224]

Skin biopsy Increased regeneration and/or axonal swellings [30,58,59,114]

Cornea Increased corneal nerve loss [177,178,226,276]

Increased corneal nerve branching [274]

STRUCTURAL (CNS) Cortex Atrophy of somatosensory cortex [314]

FUNCTIONAL (PNS) Nerve Increased epineurial blood flow [99]

Skin Impaired stimulus-evoked blood flow [275]

Skin Increased LDI flare (small fiber function) [196]

Sensory systems Severe hypoalgesia [285,350]

FUNCTIONAL (CNS) Spinal cord Impaired rate dependent depression of H wave [226]

PAG Dysfunction of descending inhibitory systems [312]

Thalamus Hyperperfusion [315]

Anterior cingulate cortex Hyperperfusion [386]

Limbic/striatal structures Increased responses to stimuli [362]

OTHER Blood Increased CRP and slCAM-1 [91]

Increased TNFα, [242,273]

Increased iNOS [273]

Reduced vitamin D [320]

Reduced Glo-1 [329]

Physiology Sex (female) [140,359]

Increased BMI [416]

Autonomic dysfunction [76,115,335,343]
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TABLE 2:

miRNA implicated in the pathogenesis of diabetic neuropathy

miRNA species Impact of diabetes Model (tissue) Effective therapeutic manipulations Representative 
publications

multiple Multiple upregulated STZ-mouse (DRG) Mimics/KO impact multiple indices of 
degenerative and painful neuropathy

[57]

Multiple 
downregulated

multiple Multiple upregulated STZ-rat (DRG) Not done [132]

Multiple 
downregulated

multiple Multiple upregulated STZ-rat (nerve) Some expression changes normalized by 
taurine

[319]

Multiple 
downregulated

miR-25 downregulated db/db-mouse (nerve) Precursor reduced inflammation markers [412]

miR-29c upregulated db/db mouse (DRG, nerve) KO improved neurite growth in vitro [164]

miR-34c upregulated STZ-mouse (trigeminal) Antagomir improved corneal nerve 
growth

[148]

miR-96 downregulated HFD/STZ-rat (nerve) Exercise increased miR, reduced Nav1.3 
and thermal pain

[5]

miR-106a downregulated STZ-mouse (DRG) Not done [394]

miR-146a upregulated STZ-rat (nerve) Not done [405]

db/db-mouse (nerve) Mimics improved neuropathy/pain [215]

downregulated STZ-rat (nerve) Not done [105]

db/db-mouse (nerve) Inducer improved neuropathy/pain [381]

miR-155 downregulated STZ-rat (nerve) Not done [185]

upregulated STZ-rat (nerve Antagomir improved neuropathy [53]

miR-181a upregulated STZ-mouse (trigeminal) Antagomir improved corneal nerve 
growth

[149]

miR-182 downregulated STZ-mouse (trigeminal) Agomir increased corneal nerve density [384]
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