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Abstract

Checkpoint blockade immunotherapy has revolutionized cancer treatment, however, the cellular 

and molecular factors that govern responsiveness to immunotherapy are still poorly understood. 

One emerging area of clinical importance is differential responsiveness to checkpoint blockade 

immunotherapy across different tissues sites of tumor growth. Each tissue site in the body can 

contain unique tissue-resident immune cells from both the lymphoid and myeloid compartments, 

and differences in tissue-specific immune cell composition might predispose tumors in certain 

tissue sites to be more or less responsive to immunotherapy. Understanding the interplay between 

tissue-resident and systemic immune responses against tumors will help to determine how to better 

therapeutically target the immune system to fight cancer. This review summarizes clinical and 

preclinical investigations of tissue specific anti-tumor immune responses, and how they influence 

the tumor immune microenvironment and the efficacy of immunotherapy.
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Immunotherapy and the Cancer Immunity Cycle

The ability of immunotherapy to induce long-term clinical benefit against metastatic disease 

is one major advantage over conventional cancer therapies. The most prominent 

immunotherapy, so-called checkpoint blockade immunotherapy (CBT), targets immune 

inhibitory receptors/ligand interactions on T cells. Engagement of these inhibitory receptors, 

CTLA-4 or PD-1, on activated T cells contributes to T cell dysfunction in the tumor 

microenvironment, and blockade of these receptor/ligand interactions is sufficient to re-

invigorate anti-tumor T cell responses [1, 2]. The presence of a T cell infiltrate in a tumor 
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has long been a positive prognostic indicator [3], and both pre-clinical and clinical evidence 

suggests that responsiveness to CBT is strongly associated with the presence of tumor-

reactive effector T cells within the tumor microenvironment [4, 5]. Studies in pre-clinical 

mouse models have further emphasized that the mechanism of action of CBT is to 

reinvigorate existing anti-tumor immune responses within the tumor-microenvironment itself 

[5, 6]. Our current understanding of how T cells infiltrate a tumor is represented by the 

cancer immune cycle, which is primarily derived from syngeneic, subcutaneous tumor 

models and correlative data from patients [7]. The cancer immune cycle can be summarized 

as follows: dendritic cells (DC) infiltrate the tumor microenvironment where they take up 

tumor-derived materials including dsDNA (Fig. 1A). The activation of the cGAS/STING 

pathway by dsDNA leads to the production of type-I interferons and activation of cross-

presenting, migratory, Batf3-dependent dendritic cells [8]. These migratory DCs traffic 

processed tumor-associated antigens to draining lymph nodes, where they present these 

antigens to activate antigen-specific cytotoxic T cells. The activated T cells then traffic back 

through the circulation to the tumor in a CXCL9/CXCL10-dependent manner, where they 

carry out their effector functions including tumor cell killing [7, 8]. Despite this infiltration 

of activated, antigen-specific CD8+ T cells, tumors still progress. Prolonged activation in the 

tumor microenvironment promotes T cell dysfunction, mediated in part through the 

engagement of inhibitory receptors like CTLA-4 and PD-1, and this dysfunction allows for 

immune escape and tumor progression [9–11]. While several clinical studies provide strong 

evidence for the cancer immune cycle to function in a similar fashion in humans, not all 

cancers have apparent infiltration of immune cells, and not all inflamed cancers respond to 

CBT [12, 13]. The cancer immune cycle currently ignores contributions from the tumor 

microenvironment, including tissue-resident immune cell populations present in organs 

before and during tumor growth. These tissue resident immune cells have the potential to 

impact anti-tumor immune responses at any given point in the cancer immune cycle. 

Myeloid cells collaborate closely with the anti-tumor specific T cells, and varying subsets 

and activation states can skew the cancer immune cycle in a tissue-specific fashion. This 

review highlights both pre-clinical and clinical evidence that the anatomic site of primary or 

metastatic tumor growth, and its tissue-resident or tissue-specific cell populations, can have 

drastic impacts on anti-tumor immunity.

Tissue site impacts anti-tumor T cell response and response to checkpoint 

blockade

Recent clinical data has demonstrated the importance of the tissue microenvironment in the 

response to immunotherapy: studies in both melanoma and lung cancer have shown that 

response rates to CBT within individual metastatic patients varies depending on the 

anatomic location of the metastasis [14–16]. These results imply the importance of the local 

tumor microenvironment in anti-tumor immunity, and suggest that similar tumors growing in 

different tissues may lead to very different immune responses and have different 

susceptibilities to immunotherapy. Interestingly, tissue-specific response to CBT are 

dependent on cancer types, meaning responsive and non-responsive sites are different 

between patients with lung cancer or melanoma [14–16]. For instance, metastatic 

melanomas growing in the lung respond particularly well to CBT, while primary and 
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metastatic lung lesions growing in the lung respond similarly to lung metastases in other 

sites [14–16]. This indicates the existence of a complex set of interactions between the 

immune system, tissue sites of tumor growth, and tumor organ of origin, and raises the 

possibility that tissue-specific T cells may play different roles in tumor progression and 

response to CBT depending on the site of tumor growth.

Autochthonous mouse models of cancer have also found that the tissue site of tumor growth 

plays an important role in the anti-tumor T cell response. A series of studies using 

KRasG12DLSL+/− p53fl/fl mice found that induced sarcomas and lung adenocarcinomas 

harbored intrinsically different degrees of immunogenicity, with sarcomas being highly 

immunogenic and prone to immunoediting, while lung adenocarcinomas were found to be 

poorly immunogenic and rarely edited [17, 18]. However, the immunological mechanisms 

behind these differences remains mostly elusive. These results reinforce the notion that the 

tissue in which the tumor grows can drastically affect the anti-tumor immune response. The 

lung has many resident immune populations, and further studies with the KRasG12DLSL+/− 

p53fl/fl mouse model found that T cells present in the lung, especially regulatory T cells 

(Tregs) and γδ T cells, suppressed anti-tumor immune responses and promoted tumor 

development [19, 20]. Therefore, lung resident T cells may establish an immune-suppressive 

environment that enables lung tumor growth. Evidence from human patients suggests, 

however, that not all lung tissue-resident T cells promote tumor growth. In contrast to Treg, 

tissue-resident memory CD8+ T cells are thought to be beneficial to anti-tumor immunity, 

and their presence correlates with a better prognosis in lung cancer patients [21, 22]. A 

similar study found that the presence of CD8+ T cells with a resident-memory phenotype 

was a positive prognostic indicator in melanoma, and that these T cells expanded upon 

immunotherapy [23]. In mouse viral models, tissue-resident memory CD8+ T cells can act as 

sentinels to induce rapid immune responses and can help enhance responses against antigens 

other than their own specificities [24]. To date however, tumor studies have used systems 

with tissue-resident memory T cells specific for model antigens expressed by tumor cells 

[25]. In melanoma, this may be a relevant model, as both human and mouse studies have 

found that tissue-resident CD8+ T cells can be reactive towards melanocyte differentiation 

antigens [23, 25], however this notion is less well-defined for other cancer types. Tissue-

resident T cells could therefore play a major role in promoting or suppressing anti-tumor 

immune responses, potentially explaining differences in immune responses and tumor 

growth between tissue sites. Whether local immune-suppressive or tumor-promoting T cells, 

such as lung Treg and γδ T cells, can influence the growth of metastatic tumors or the 

generation of systemic immune responses remains unknown, and will be important to 

understand in the context of metastasis and immunotherapy.

T cell responses can be locally restricted to one anatomic site

While analyses of anti-tumor immune responses against individual tumor lesions provided, 

and will continue to generate critical insights into the impact of tissue resident immune cells 

on anti-tumor immunity, they fail to assess the crosstalk between different lesions. Clinical 

studies utilizing longitudinal human biopsies have begun to investigate immune responses 

against tumors growing in different tissues within individual patients. After activation in the 

tumor-draining lymph node, tumor-specific T cells traffic through the circulation back to the 
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tumor site [7, 8]. Two distinct hypotheses exist about the distribution of effector T cells 

during an ongoing anti-tumor immune response: the first postulates that any induced anti-

tumor T cell response will be systemic and equally disseminated between all metastatic 

lesions, while the second proposes that each metastatic lesion harbors a distinct set on 

tumor-reactive effector T cells (Fig. 1a and b). While most mouse models suggest the first 

hypothesis to be true, several recent studies using patient biopsies have revealed a large 

heterogeneity of immune infiltrates between different metastases within a patient, and 

between primary and metastatic tumors [26–28]. A study of primary colon cancers found 

that protective, systemic immune responses might take place in some patients but not others. 

The authors found that a stronger immune response in the primary tumor correlated with a 

lack of metastases [27]. Examining patients with only early stage metastatic tumors, the 

authors ruled out that the presence of metastases decreased the immune response at the 

primary tumor site. This indicated that generating a sufficient immune response in the 

primary lesion can lead to control of metastasis in a systemic fashion, and that a protective 

systemic immune response is possible only if the primary tumor is sufficiently 

immunogenic. The strength of the immune response in the primary tumors was also 

correlated with increased lymphatic vessel density of the tumor, suggesting that lymphatic 

drainage was critical for allowing a strong immune response. These data suggest that 

systemic, protective immune responses can be generated, but do not always take place, and 

that the physical characteristics of the primary tumors such as lymphatic drainage can 

impact the strength of anti-tumor immunity. A different study by Galon and colleagues 

followed 2 patients longitudinally, assessing T cell infiltration in 36 lesions (primaries and 

metastases) over 11 years [26]. They found that the lesion with the least amount of T cell 

infiltration was predictive for overall survival, with no or very low T cell infiltration being 

correlated with shorter survival. These data indicate that metastases can be differentially 

controlled by the immune system within a single patient, and that immune control of 

metastases plays a critical role in patient survival [28]. Interestingly, the authors not only 

found that different metastases have drastically different amounts of infiltrating T cells, but 

that the T cell receptor repertoires between metastases can differ greatly. Further, the authors 

identified non-overlapping TCR repertoires between metastatic lesions within patients, 

indicating that each metastasis harbors its own unique T cell environment [26]. These 

distinct T cell environments were observed in simultaneously growing metastases with 

overlapping profiles of non-synonymous mutations. These results suggest that within the 

same patient, each metastasis is its own unique immunological event, and that systemic 

immune responses are not always generated, or cannot always reach every metastasis. It 

could be possible that even if a systemic immune response is generated individual lesions 

could blunt T cell infiltration. In a mouse model of melanoma, it was found that an 

activating β-catenin mutation could inhibit the recruitment of circulating, tumor antigen-

specific T cells [29]. Additionally, it is possible that mutations leading to neoantigens could 

take place after metastatic dissemination (often referred to as branch mutations), leading to 

T cell clones reactive against only individual metastases. However, a recent study of 39 

patients with primary lung tumors and matched brain metastases found that despite a high 

rate of shared mutations and infiltrating T cell clonotypes, T cells were significantly less 

abundant in brain metastases than in primary lung tumors [30]. These results highlight that 

even when tumors are genetically similar and a systemic T cell response has been generated, 
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the anatomic site of tumor growth can have a strong influence on the anti-tumor T cell 

response.

Locally restricted T cell responses due to distinct T cell repertoires 

between metastatic sites

Studies in mice and humans have shown that different anatomic sites harbor different 

antigen-specific T cells within the tissues and tissue-draining lymph nodes [31]. These 

locally restricted T cell pools can potentially give different tissues access to distinct TCR 

repertoires that can respond and expand during tumor growth [32]. While many T cells 

recirculate throughout the blood and lymph, subsets of T cells have been found to be 

preferentially localized to certain metastatic sites [33]. Sequencing of TCRs from different 

lymph nodes in mice found that the repertoire of TCRs varied between lymph nodes that 

drained different tissue sites [31]. This was true for both Treg and activated CD4+ effector T 

cells. Thus, different sets of tumor-reactive T cells would be activated depending on the pre-

existing repertoire found within the tissue-draining lymph node. Work in an autochthonous 

mouse prostate cancer model found that prostate-antigen specific Treg preferentially reside 

in prostate-draining lymph nodes, and are expanded upon tumor growth by tumor-expressed 

self-antigen [32, 34]. These Treg then infiltrate tumors as they grow and suppress effector T 

cell responses [35]. Whether these tissue-specific Treg are able to traffic to metastases in 

other tissue sites is largely unknown. Interestingly, biopsies from human tumors have 

provided evidence of increased Treg in primary tumors compared to metastatic lesions [28]. 

Different metastases within a patient could therefore harbor different Treg populations, 

depending on which tissue site they grow in (Fig 1c). This could potentially affect the level 

of immune suppression in different lesions, contributing to different immune responses and 

different responses to CBT between metastases.

Different T cell responses mediated by local factors in the tumor 

microenvironment

After T cell activation occurs, local factors within the tumor microenvironment can further 

modulate a T cell response. Recently described examples include expression of Fas-L and 

TGF-β. While reports of Fas-FasL mediated T cell apoptosis as a form of immune 

suppression date back to the 1990’s, recent studies have again highlighted the importance of 

TIL apoptosis in dampening anti-tumor immune responses [36, 37]. Several groups have 

shown that apoptosis of both endogenous and transferred T cells in the tumor environment is 

a key obstacle limiting anti-tumor immunity. These studies found that decreasing T cells’ 

ability to undergo cell death, whether by inhibiting FAS signaling or through the 

overexpression of anti-apoptotic molecules, increases anti-tumor immune responses and 

synergizes with immunotherapy. Both a neutralizing antibody and the introduction of a 

dominant-negative FAS receptor into CAR T cells was effective at decreasing CD8+ T cell 

apoptosis and increasing tumor control in mouse models [37, 38]. This suggests that 

inhibition of FAS-FASL interactions could synergize with current modes of immunotherapy. 

Interestingly, FASL is differentially expressed across both normal tissues and tumor sites, 

suggesting the extent of FAS-mediated T cell apoptosis could be tumor and tissue specific 
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[38]. FAS-FASL interactions may also play a role in shaping tissue-resident T cell 

populations outside of the cancer setting [38, 39]. It was recently shown that healthy lung 

tissue expresses much higher levels of FASL than healthy skin, and that memory T cells 

express increased levels of FAS [38]. Another group found that pathogen-specific TRM T 

cells in lung are more prone to undergo apoptosis than those in skin [39]. Thus FAS-FASL 

interactions could be a tissue-specific mediator of T cell apoptosis in both normal immune 

responses and in tumors.

TGFβ is generally considered immune suppressive [40], but recent data suggests it plays a 

specific role in the tumor microenvironment by restraining T cell infiltration into tumors 

[41]. Powles and colleagues found that in metastatic urothelial cancer patients receiving anti-

PD-L1 treatment could be grouped into one of three pre-treatment groups based on immune 

phenotype: immune inflamed, immune excluded, or immune desert. In the immune excluded 

group, tumors had immune cells restricted to the periphery of the tumor and T cells were 

often interacting with fibroblasts or stroma. In this group, the authors found that high 

fibroblast TGFβ expression correlated with stable or progressive disease, while lower TGFβ 
correlated with partial or complete responses [41]. In a mouse model, blocking TGFβ 
synergized with anti-PD-L1 to induce greater tumor regression and allowed for greater 

infiltration of T cells into tumors. It was not discussed if patients could exhibit multiple 

immune phenotypes, but it is imaginable that a patient with multiple lesions might have both 

immune-inflamed, excluded, and desert tumors, leading to localized immune responses that 

differ across tumor sites. What drives stroma to produce TGFβ and what determines whether 

this will restrict T cells’ ability to infiltrate tumors remains unknown, but should be explored 

further.

T cell exclusion via tumor cell-intrinsic factors

An obvious explanation for differential T cell infiltration into the TME is a substantially 

different expression of immunogenic antigens. This notion has been predominantly tested 

for mutationally derived neo-antigens. While human studies have found significant 

correlations between overall response to immunotherapy and the presence of highly 

immunogenic neo-antigens [42, 43], no correlation has been found between the absence of T 

cells and neo-antigen quantity or quality [44–46]. In contrast, multiple tumor cell-intrinsic 

pathways have now been associated with differences in T cell infiltration and resistance to 

CBT. The first pathway to be associated with differences in T cell infiltration of tumors was 

the Wnt/β-catenin pathway in metastatic melanoma [47]. Using TCGA, we found that 

increased Wnt/β-catenin signaling was correlated with decreased T cell infiltration into the 

tumor. This analysis has subsequently been expanded to at least 19 cancer types including 

bladder and ovarian cancer [48, 49]. The mechanism blocking T cell infiltration was further 

associated with diminished infiltration by dendritic cells, which will be covered in more 

detail below [29, 47]. Other tumor cell-intrinsic signaling alterations associated with T cell 

exclusion include PTEN, Myc, Cox1/2, PPARγ, and FGF3 [48, 50–52]. It is therefore 

plausible that as metastases in a patient evolve, some may acquire mutations in pathways 

that exclude an ongoing, systemic T cell response.
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Impact of tissue-specific myeloid cells on anti-tumor T cell responses

Myeloid cell types exert a broad array of functions in the TME ranging from activation of 

tumor-specific T cell responses to local and systemic immune suppression [53]. Numerous 

studies have highlighted the tissue-specific distribution of myeloid cells [54] and therefore it 

is plausible that myeloid cell populations may also directly impact tumor-reactive T cells in 

individual metastatic lesions [53, 55–57]. Similarly, the developmental origin of myeloid 

cells from circulating vs. tissue-resident pools may impinge on their functions within the 

TME. Here we summarize our current knowledge on the impact of tissue-specific myeloid 

cell populations on anti-tumor T cell responses.

Conventional dendritic cells impact T cell function beyond T cell priming

Upon their development and initial seeding into peripheral tissues, DC rapidly ingest cell 

debris and particles from their surroundings through phagocytosis or pinocytosis [58, 59]. 

Pattern or Danger Associated Molecular Patterns (PAMPs or DAMPs, respectively) triggers 

DC maturation, resulting in a decrease in cell debris uptake, increases in surface expression 

of peptide bound Major Histocompatibility Complex receptors as well as costimulatory 

ligands. Migratory DC further upregulate the chemokine receptor CCR7 to traffic into 

draining lymph nodes [60]. Together, these highly specialized behaviors endow DC with 

unrivaled ability to activate T cells [61]. While all DC respond to danger signals by 

maturation, different subtypes orchestrate different T cell responses, and inadequate 

activation might result in immune suppressive DC phenotypes [62].

The most prominent DC in anti-tumor immunity are conventional DC type 1 (cDC1), which 

depend on the transcription factor Batf3 and express the integrin CD103 in peripheral tissues 

or CD8a homodimers in lymphoid organs [63, 64]. This subset of DC is especially adept at 

ingesting and cross-presenting tumor cell-derived antigens to CD8+ T cells, thereby inducing 

cytotoxic effector T cells [29, 60, 65]. Preclinical models of melanoma have identified 

unique roles for cDC1 beyond cross-priming T cells in draining lymph nodes. cDC1 residing 

within the TME secrete CXCL9 and CXCL10 to recruit effector T cells (Fig. 2a) [29, 65, 

66]. This unique role of cDC1 ensures continuous infiltration and activation of CD8+ T cells 

into the tumor. cDC1 however are rare cells and can be excluded by tumor-intrinsic signaling 

through beta-catenin or the lipid signaling molecule prostaglandin-E2 (PGE2) in melanoma 

and ovarian cancer among others [47, 48, 50, 67, 68]. This experimental evidence aligns 

with sequencing data from primary tumors showing correlations between the presence of 

cDC1 in tumors and the presence of CD8+ T cells and also with improved patient outcomes, 

in breast, lung, and head and neck cancer [29, 69]. Interventions that stimulate cDC1 

accumulation in melanomas can potently augment anti-PD1 or anti-CTLA4 

immunotherapies, consistent with their role in regulating T cell responses to melanoma [70, 

71]. These results primarily obtained in melanoma models indicate that cDC1s are required 

for a potent anti-tumor T cell response. Data beyond melanoma however strongly suggest 

that the role of cDC1 in the cancer immune cycle appears to be broadly applicable.

Besides cross-presenting cDC1, other subsets of DC haJournal Pre-proofve been shown to 

impact anti-tumor immunity [72, 73]. Conventional DC type 2 (cDC2) present tumor-
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derived antigens to activate CD4+ T cells but can also interact directly with Tregs, driving a 

suppressive T cell response. In fact, a cross-talk between Tregs and cDC2 has been 

described in pancreas and melanoma cancer models, resulting both in enhanced Treg 

function but also inadequate cDC2 maturation [74–76]. However, patient data suggests a 

positive correlation between a cDC2 signature and overall survival for melanoma, HNSCC, 

and lung cancer cohorts, indicating that cDC2 can be both immune potentiating as well as 

immune dampening [75, 77]. Additional studies are required to fully elucidate the role of 

cDC2 on anti-tumor immunity and whether this role might differ depending on the organ 

site.

Macrophages impact anti-tumor T cell responses in two distinct fashions

Macrophages constitute a diverse set of myeloid cells whose functions are intimately linked 

with the properties of their surrounding tissue [78, 79]. While they can impact the adaptive 

immune response through antigen presentation and cytokine production, macrophages 

specialize in uptake and digestion of cellular debris and pathogens [80]. Their plasticity is 

evident during the response to infection, and is mirrored in the tumor microenvironment: 

macrophages can adopt an inflammatory phenotype that participates in tumor destruction, 

but more frequently mature to subtypes responsible for tissue repair and neoangiogenesis 

which support tumor growth [81]. These opposing roles have been designated M1 and M2 

respectively, which in vivo are thought to correspond to a continuum of activation states [82, 

83]. In colon cancer, macrophages are placed at the nexus of an inflammatory state that has 

been well-documented as a driver of this malignancy, for instance through secretion of PGE2 

[84, 85]. Chemokines such as colony-stimulating factor recruit macrophages to the colonic 

epithelium, where they may exclude T cells or become major sources of PD-L1 (Fig. 2b) 

[52, 86, 87]. While tumor-promoting macrophages may dominate the tumor 

microenvironment, it is critical to note that tumors do not induce de novo macrophage 

functions but coopt existing cell behaviors. Indeed, macrophages deprived of M2-polarizing 

signals participate with DC and T cells in the anti-tumor immune response in breast cancer 

[88, 89]. Given that macrophage populations differ drastically form one anatomic site to the 

other it is plausible that the immune dampening effects might differ between sites in the 

metastatic setting.

Monocytes and Neutrophils – friend or foe?

A common feature of neutrophil and monocyte biology is that immature states, defined 

differently for different subsets [79], are by default immune suppressive. As tumors often 

lack required maturation signals for infiltrating neutrophils and monocytes, these cell types 

accumulate within the TME in their immature state and are often referred to as myeloid-

derived suppressor cells (MDSC). Many studies have documented the tumor-promoting 

effects of immature granulocyte lineage cells in a variety of tumor types [90]. This cell 

population has been designated on a functional basis with little insights into their ontogeny, 

but a recent study linked ER stress with differentiation of granulocyte-lineage cells into 

MDSC marked by Lectin-type Oxidized LDL Receptor-1 [91]. Although the drivers of this 

differentiation remain unclear, this marker identified substantial increases in circulating 

MDSC in patients bearing colon, head and neck, and lung cancers, but not melanoma. 
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Mature neutrophils are short-lived members of the myeloid lineage and are the most 

abundant nucleated cells in circulation. Neutrophils have been reported to both collaborate 

with and protect against metastatic tumor cells during seeding to the lung and are frequently 

associated with circulating tumor cells [92–94]. Further, accumulation of neutrophils in lung 

cancer lesions has been associated with T cell exclusion in LKB1-positive lung cancer 

patients [95] (Fig. 2b). Similar to DC and macrophages, neutrophils can come in many 

flavors and we are only beginning to appreciate the impact of different neutrophil subsets on 

tumor progression and anti-tumor immunity. For example, a recent study identified a novel 

neutrophil subset defined by expression of type I interferon sensitive genes. Presence of this 

subset, but not other neutrophil subsets, negatively correlated with survival in lung cancer 

patients, offering clues to the potential mechanisms underlying their tumor promoting effects 

[77].

Monocytes are circulating precursor cells which upon stimulation can differentiate into 

highly plastic macrophage-like or DC-like states. The most prominent example impacting 

anti-tumor immune responses are monocyte-derived DC (moDC) producing high levels of 

TNF-alpha and iNOS, so called TiP-DC [96]. This subset has been correlated with increased 

anti-tumor immune responses in colon cancer via CD40:CD40 ligand interaction. The exact 

cues required to mediate TiP-DC differentiation versus induction of MDSC remain 

somewhat elusive. Notably, monocyte-derived DC are the basis of most DC vaccination 

therapies, which can mediate potent tumor control of melanoma [97].

Concluding Remarks

Recent findings in mice and humans have provided evidence that the anatomic site of tumor 

growth can greatly impact response to immunotherapy. Specifically, metastases in some 

organs respond to CBT at much higher rates than metastases in other organs, indicating an 

underappreciated role of tissue-specific immune responses against cancer [14, 15]. These 

heterogeneous responses pose a clinical problem, as patients with responses to CBT in all 

lesions survive longer than patients with responses in only some lesions [98]. Determining 

how the tissue microenvironment impacts anti-tumor immunity and the response to CBT 

could facilitate the development of new strategies to improve patient survival. Possible 

mechanisms by which tissue and organ environments impact anti-tumor immunity range 

from evasion of the immune system through myeloid cell exclusion [47], skewing which T 

cell repertoires become activated in response to tumor growth [32], to local factors such as 

inducing T cell apoptosis in the tumor microenvironment [36]. However, the interplay 

among these is ill-defined, and the role of tissue-resident and tissue-specific T cells in anti-

tumor immunity is not well understood (see Outstanding Questions). Tissue resident T cells 

have been shown to both promote and suppress tumor progression, potentially dependent on 

the context [20, 25]. Similarly, few studies delineate tissue-resident vs infiltrating myeloid 

cell populations [77], leaving unclear how cell origin and exposure to tumor cells dictates 

the ensuing myeloid response. Further, local physical features such as lymphangiogenesis 

impact how tumors access the lymphatics, affecting how they trigger immune system 

activation [27]. At the same time other features of the host environment, especially 

commensal bacteria, have also been shown to have significant impacts on both tissue 

resident immune cells and anti-tumor immune responses [19, 99]. An immense amount of 
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work will be needed to fully elucidate and integrate the importance of these complex 

interactions affecting anti-tumor immune responses at metastatic sites.

Clinical correlates will be critical to understand the impact of organ-site specific immune 

responses on the responsiveness of tumors to immunotherapy. Reporting the responses of 

every lesion in an individual patient, instead of overall changes in tumor burden, will help to 

determine patterns of response between tumors and patients. Pairing changes in tumor size 

with information from biopsies of individual tumors, such as genetic and transcriptomic 

information, will allow for more meaningful biological conclusions from immunotherapy 

clinical trials. These approaches will help to increase our understanding of the complex web 

of interactions that determines immunotherapy response, and help guide us towards 

improving immunotherapy efficacy.
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Outstanding Questions

• What factors define the tumor-reactive T cell pool at a given tissue site?

• What features of the immune response to a primary tumor ensure the 

generation of a systemic immune response?

• Can immune suppressive T cell populations in one tissue site impact systemic 

immunity?

• Are myeloid responses restricted to one metastatic lesion or can they be 

systemic as well?

• Can certain myeloid cell subsets suppress or potentiate existing systemic T 

cell immunity?
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Highlights

• Generating CD8+ T cell responses to primary or metastatic lesions depends 

on both lymphoid and myeloid cell populations that impact CD8+ effector T 

cell activation and infiltration into the tumor microenvironment.

• T cell responses may be limited to specific tissue sites and are not detectable 

in all metastatic tumors.

• Type 1 conventional dendritic cells are indispensable for initiating an anti-

tumor T cell response,

• M2 type macrophages and neutrophils can dampen the anti-tumor response or 

even mediate T cell exclusion.
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Figure 1 –. 
The influence of tissue site on T cell inflammation of tumors

A) T cell-inflamed tumors are the result of dendritic cell activation that leads to tumor-

specific T cell priming in the tumor-draining lymph node (TdLN) followed by T cell 

trafficking to the tumor microenvironment. Tissue-resident T cells may also expand in 

response to tumors, likely through pathways independent of T cell priming. B) T cell 

responses against metastatic cancer might infiltrate the lesion from an existing systemic 

immune response (top) or generate their own cancer immune cycle independent of the 

immune response against the primary tumor (middle). Further metastasis may exclude T 

cells from infiltrating even if a systemic immune response is generated.
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Figure 2 –. 
Myeloid cells act both systemically and locally to direct T cell responses in the tumor 

environment

A) DC1 mediate T cell activation in lymph nodes and recruit effector T cells to the local 

tumor environment through the secretion of CXCL9/10. While DC1 activate CD8+ T cells, 

DC2 can interact with Treg, and these interactions lead to enhanced Treg functions and 

blunted DC2 maturation. B) Tumors with high T cell infiltration are associated with DC1 

and M1 macrophage infiltration. The presence of M2 macrophages is correlated with a 

suppressive microenvironment and high PD-L1 expression, however the state of T cell 

infiltration may vary. Tumors lacking T cell infiltration are characterized by a lack of DC1 

and the recruitment of neutrophils.
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