
PI-Net: A Deep Learning Approach to Extract Topological
Persistence Images

Anirudh Som1,2, Hongjun Choi1,2, Karthikeyan Natesan Ramamurthy3, Matthew P. Buman4,
Pavan Turaga1,2

1School of Arts, Media and Engineering, Arizona State University

2School of Electrical, Computer and Energy Engineering, Arizona State University

3IBM T. J. Watson Research Center

4College of Health Solutions, Arizona State University

Abstract

Topological features such as persistence diagrams and their functional approximations like

persistence images (PIs) have been showing substantial promise for machine learning and

computer vision applications. This is greatly attributed to the robustness topological

representations provide against different types of physical nuisance variables seen in real-world

data, such as view-point, illumination, and more. However, key bottlenecks to their large scale

adoption are computational expenditure and difficulty incorporating them in a differentiable

architecture. We take an important step in this paper to mitigate these bottlenecks by proposing a

novel one-step approach to generate PIs directly from the input data. We design two separate

convolutional neural network architectures, one designed to take in multi-variate time series

signals as input and another that accepts multi-channel images as input. We call these networks

Signal PI-Net and Image PI-Net respectively. To the best of our knowledge, we are the first to

propose the use of deep learning for computing topological features directly from data. We explore

the use of the proposed PI-Net architectures on two applications: human activity recognition using

tri-axial accelerometer sensor data and image classification. We demonstrate the ease of fusion of

PIs in supervised deep learning architectures and speed up of several orders of magnitude for

extracting PIs from data. Our code is available at https://github.com/anirudhsom/PI-Net.

1. Introduction

Deep learning over the past decade has had tremendous impact in computer vision, natural

language processing, machine learning, and healthcare. Among other approaches,

convolutional neural networks (CNNs) in particular have received great attention and

interest from the computer vision community. This is attributed to the fact that they are able

to exploit the local temporal and spatial correlations that exist in 1-dimensional (1D)

sequential time-series signals, 2-dimensional (2D) data like images, 3-dimensional (3D) data

like videos, and 3D objects. In this paper, we refer to these type of data as input data. CNNs

asom2@asu.edu.

HHS Public Access
Author manuscript
Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020
September 28.

Published in final edited form as:
Conf Comput Vis Pattern Recognit Workshops. 2020 June ; 2020: 3639–3648. doi:10.1109/
cvprw50498.2020.00425.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/anirudhsom/PI-Net

also have far less learnable parameters than their fully-connected counterparts, making them

less prone to over-fitting and have shown state-of-the-art results in applications like image

classification, object detection, scene recognition, fine-grained categorization and action

recognition [27, 20, 54, 55, 56]. Apart from being good at learning mappings between the

input and corresponding class labels, deep learning frameworks are also efficient in

discovering mappings between the input data and other output feature representations [49,

51, 30, 16, 13].

While methods for learning features from scratch and mapping image data to desired outputs

via neural networks have matured significantly, relatively less attention has been paid to

invariance to nuisance low-level physical factors like sensor noise. Topological data analysis

(TDA) methods are popularly used to characterize the shape of n-dimensional point cloud

data using representations such as persistent diagrams (PDs) that are robust to certain types

of variations in the data [14]. TDA methods have also been successfully applied to different

computer vision problems and have shown the ability to incorporate different invariances of

interest to the computer vision community [28, 12, 44]. The shape of the data is quantified

by properties such as connected components, cycles, high-dimensional holes, level-sets and

monotonic regions of functions defined on the data [14]. Topological properties are those

invariants that do not change under smooth deformations like stretching, bending and

rotation, but without tearing or gluing surfaces. These attractive traits of TDA have renewed

interested in this area for answering various fundamental questions, including those dealing

with interpretation, generalization, model selection, stability, and convergence [19, 6, 37, 35,

18, 17].

A lot of work has gone into utilizing topological representations efficiently in large-scale

machine learning [3, 5, 38, 33, 36, 1, 44]. However, bottlenecks such as computational load

involved in discovering topological invariants as well as a lack of a differentiable

architecture remain. In this paper we propose simple deep learning architectures to learn

approximate mappings between data and their topological feature representations.The gist of

our idea is illustrated in Figure 1 and the main contributions are listed below.

Contributions:

1. We propose a novel differentiable neural network architecture called PI-Net, to

extract topological representations. In this paper we focus on persistence images

(PIs) as the desired topological feature.

2. We provide two simple CNN-based architectures called Signal PI-Net that takes

in multi-variate 1D sequential data and Image PI-Net that takes in multi-channel

2D image data.

3. We explore transfer learning strategies to train the proposed PI-Net model on a

source dataset and use it on a different target dataset, with or without fine-tuning.

4. Through our experiments on human activity recognition using accelerometer

sensor data and image classification on standard image datasets, we show the

effectiveness of the generated approximations for PIs and compare their

performance to PIs generated using analytic TDA methods. We also investigate

Som et al. Page 2

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the benefits of concatenating PIs with features learnt using deep learning

methods.

5. We also evaluate the robustness of classification models to Gaussian noise, with

or without fusion with PI representations in image classification tasks.

The rest of the paper is outlined as follows: Section 2 discusses related work. Section 3

provides the necessary background on TDA, PIs and CNNs. In Section 4 we describe the

proposed PI-Net frameworks in detail and in Section 5 we describe the experimental results.

Section 6 concludes the paper.

2. Related Work

Although the formal beginnings of topology is already a few centuries old dating back to

Euler, algebraic topology has seen a revival in the past decade with the advent of

computational tools and software [39, 2, 4]. Arguably the most popular topological summary

is the persistence diagram (PD), which is a multi-set of points in a 2D plane that quantifies

the birth and death times of topological features such as k-dimensional holes or sub-level

sets of a function defined on a point cloud [15]. This simple summary has resulted in the

adoption of topological methods for various applications [34, 47, 8, 11, 10, 23, 42, 48, 31].

However, TDA methods suffer from two major limitations. First, it is computationally very

taxing to extract PDs. The computational load increases both with the dimensionality and

with the number of samples in the data being analyzed. The second obstacle is that a PD is a

multi-set of points, making it impossible to use machine learning or deep learning

frameworks directly on the space of PDs. Efforts have been made to tackle the second issue

by attempting to map PDs to spaces that are more favorable for machine learning tools [3, 5,

38, 33, 36, 1, 44]. For further reading, [43] surveys recent topological representations and

their associated metrics. To alleviate the first problem, in this paper we propose a simple

one-step differentiable architecture called PI-Net to compute the desired topological feature

representation, specifically persistence images. To the best of our knowledge, we are the first

to propose the use of deep learning for computing PIs directly from data.

Our motivation to use deep learning stems from its successful use to learn mappings

between input data and different feature representations [49, 51, 30, 16, 13]. However, deep

learning and TDA did cross paths before but not in the same context as what we propose in

this paper. TDA methods have been used to study the topology [19, 6], algorithmic

complexity [37], behavior [18] and selection [35] of deep learning models. Efforts have also

been made to use topological feature representations either as inputs or fused with features

learned using neural network models [12, 24, 7]. Later in Section 5, we show experimental

results on fusing generated PIs with deep learning frameworks for action recognition and

image classification.

3. Background

Persistence Diagrams:

Consider a graph G = {V,E} constructed from data projected onto a high-dimensional point-

cloud space. Here, V is the set of |V| nodes and E denotes the neighborhood relations

Som et al. Page 3

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

defined between the samples. Topological properties of the graph can be estimated by first

constructing a simplicial complex S over G. S is defined as S = (G, Σ), with Σ being a family

of non-empty level sets of G, with each element σ ∈ Σ is a simplex [15]. This falls under the

realm of persistent homology where we are interested in summarizing the k-dimensional

holes present in the data. The simplices are constructed using the the ϵ-neighborhood rule

[15]. It is also possible to quantify the topology induced by a function g defined on the

vertices of a graph G by studying the topology of its sub-level or super-level sets. Since g : V
→ ℝ this is referred to as scalar field topology. In either case, PDs provide a simple way to

summarize the birth vs death time information of the topological feature of interest. In this

paper we use persistent homology to compute ground-truth PDs for images and scalar field
topology to compute ground-truth PDs for time-series signals. In a PD the birth-time b refers

to the scale at which the feature was formed and death-time d refers to the scale at which it

ceases to exist. The difference between d and b gives us the life-time or persistence and is

denoted by l = |d − b|. Each PD is a multi-set of points (b, d) in ℝ2. Since d ≥ b, only one-

half of the space in the PD is actually utilized. Points in the PD that lie close to the diagonal

represent noise and can be easily discarded by simple thresholding. Plotting the birth-time vs

life-time information allows us to utilize the entire 2D space of a PD as shown in Figure 2.

Interested readers can refer to the following papers to learn more about the properties of the

space of PDs [14, 15].

Persistence Images:

A PI is a finite-dimensional vector representation of a PD [1] and can be computed through

the following series of steps. First we map the PD to an integrable function ρ : ℝ → ℝ 2

called a persistence surface. The persistence surface ρ is defined as a weighted sum of

Gaussian functions that are centered at each point in the PD. Next, a discretization of a sub-

domain of the persistence surface is done which results in a grid. Finally, the PI is obtained

by integrating the persistence surface over each grid box, giving us a matrix of pixel values.

An interesting aspect when computing PIs is the broad range of weighting functions to chose

from, to weight the Gaussian functions. Typically, points of high persistence or lifetime are

perceived to be more important than points of low persistence. In such cases one may select

the weighting function to be non-decreasing with respect to the persistence value of each

point in the PD. Adams et al. also talk about the stability of persistence images with respect

to the 1-Wasserstein distance between PDs [1]. Figure 2 illustrates an example of a PD and

its PI where the points are weighted by their life-time.

Convolutional Neural Networks:

CNNs were inspired from the hierarchical organization of the human visual cortex [21] and

consist of many intricately interconnected layers of neuron structures serving as the basic

units to learn, extract both low-level and high-level features from images. CNNs are

particularly more attractive and powerful compared to their connected counterparts because

CNNs are able to exploit the spatial correlations present in natural images and each

convolutional layer has far less trainable parameters than a fully-connected layer. Several

sophisticated CNN architectures have been proposed in the last decade, for example AlexNet
[27], VGG [41], GoogleNet [46], ResNet [22], DenseNet [25], etc. Some of these designs

are known to surpass humans for object recognition tasks [40]. Apart from discovering

Som et al. Page 4

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

features from scratch for classification tasks, CNNs are also popular for learning mappings

between input and other feature representations [49, 51, 30, 16, 13]. This motivates us to

design simple CNN models for the task of learning mappings between the data and their PI

representations. We would like to direct interested readers to the following survey paper to

know more about different CNN architectures [29, 45].

Learning Strategies:

Here we will briefly talk about the two learning strategies namely: Supervised Learning and

Transfer Learning. We employ these strategies to train the proposed PI-Net model.

Supervised Learning is concerned with learning complex mappings from X to Y when many

pairs of (x, y) are given as training data, with x ∈ X being the input data and y ∈ Y being the

corresponding label or feature representation. In a classification setting Y corresponds to a

fixed set of labels. In a regression setting, the output Y is either a real number or a set of real

numbers. In this paper our problem falls under the regression category as we try to learn a

mapping between the input data and its PI. Transfer Learning is a design methodology that

involves using the learned weights of a pre-trained model that is trained on a source dataset

Ds for the source task Ts, to initialize the weights of another model that is fine-tuned using a

target dataset Dt for the target task Tt [52]. This allows us to leverage the source dataset that

the model was initially trained on without having to train the model from scratch. The is

useful in cases where the target dataset has a lot less data samples compared to the source

dataset. In Section 4 we show how transfer learning is employed in our proposed framework

when the target training data is limited.

4. PI-Net Framework

In this section we first describe the steps to generate ground-truth PIs and later discuss the

proposed Signal PI-Net and Image PI-Net configurations.

4.1. Generating Ground-truth Persistence Images

Data Pre-processing: For uni-variate or multi-variate time-series signals, we consider

only fixed-frame signals, i.e. signals with fixed number of time-steps, and zero-center them.

We standardize the training and test sets such that they have unit variance along each time-

step. For images we enforce the pixel values to range between [0,1].

Persistence Images for Time-series Data: We use the Scikit-TDA python library [39]

and use the Ripser package for computing PDs. As mentioned earlier, we compute level-set
filtration PDs for time-series signals. Scalar field topology offers a simple way to summarize

the different peaks and troughs present in the signal. For example a local minima gives birth

to a topological feature (more accurately a 0-dimensional homology group feature) which

dies at its local maxima. We compute PDs for each of the x,y,z signals in the accelerometer

sample. For better use of the 2D space in the PD we consider birth-time vs life-time

information. For computing PIs we used the Persim package in the Scikit-TDA toolbox. In

all our experiments we set the grid size of the generated PIs to 50×50 and fit a Gaussian

kernel function on each point in the PD. We weight each Gaussian kernel by the life-time of

the point. For all time-series datasets we set the standard deviation of the Gaussian kernel to

Som et al. Page 5

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

0.25 and set the birth-time range to [−10, 10]. Once computed we normalize each PI by

dividing by its maximum intensity value. This forces the values in the PI to also lie between

[0,1].

Persistence Images for Multi-channel Image Data: Here too we use the Scikit-TDA
library for computing PDs and PIs. We represent each image channel as a 3D point cloud

with the three coordinates representing the x-coordinate, y-coordinate and intensity value of

each pixel in the image. For example, an image with c channels will result in c 3D point

clouds. The x and y coordinate information is also normalized to be within [0, 1]. Finally,

we compute the 1-dimensional persistent homology PDs for each channel in the image using

the process described in Section 3. For all image datasets in our experiments we discard

points in the PD with life-time less than 0.02. For computing PIs we set the grid size of the

generated PIs to 50×50 and fit a Gaussian kernel function on each point in the PD. The

Gaussian kernel is weighted by the life-time of the point. Other parameters needed to

compute PIs like birth-time range and standard-deviation of the Gaussian kernel were set to

different values specific to each dataset. We consider the following three datasets in our

experiments: CIFAR10 [26], CIFAR100 [26] and SVHN [32]. For CIFAR10 and CIFAR100
we set birth-time range and standard-deviation to [0,0.3] and 0.01. For SVHN we set the

same parameters to [0,0.2] and 0.005 respectively. Finally, each of the c PIs generated for a

c-channel image is further normalized to lie in the range [0,1].

4.2. Network Architecture

Both PI-Net architectures were designed using Keras with TensorFlow back-end [9].

Signal PI-Net: The input to the network is a b × t × n dimensional time-series signal,

where b is the batch-size, t refers to the number of time-steps or frame size. For a uni-variate

signal n = 1 and for a multi-variate signal n > 1. For our experiments in section 5, n is 3 and t
is either 250 or 500. After the input layer, the encoder block consists of four 1D convolution

layers. Except the final convolution layer, all other convolution layers are followed by batch

normalization, ReLU activation and Max-pooling. The final convolution layer is followed by

batch normalization, ReLU activation and Global-average-pooling. The number of

convolution filters is set to 128, 256, 512 and 1024 respectively. However, the convolution

kernel size is same for all layers and is set to 3 with stride set to 1. We use appropriate zero

padding to keep the output shape of the convolution layer unchanged. For all Max-pool

layers, we set the kernel size to 3 and stride to 2. After the encoder block, we pass the

global-average-pooled output into a final output dense layer of size 2500×n. The output of

the dense layer is subjected to ReLU activation and reshaped to size 50 × 50 × n.

Image PI-Net: The input to this network is a b×h×w×c dimensional image, where b, h,w, c
is the batch-size, the image height, width and number of channels respectively. Image PI-Net
follows the same architecture as Signal PI-Net for the encoder block. However, we now use

2D convolution layers instead. Also, for all the convolution layers the number of filters and

kernel size was set to 128 and 3 respectively. We use appropriate zero padding to keep the

output shape of the convolution layer unchanged. For all Max-pool layers, we set the kernel

size to 3 and stride to 2. We pass the output of the encoder block into a latent variable layer

Som et al. Page 6

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

which consists of a dense layer of size 2500. The output of the latent variable layer is

reshaped to 50 × 50 and is passed into the decoder block. The decoder block consists of one

2D deconvolution layer with kernel size set to 50, stride set to 1, number of filters to c. The

output of the deconvolution layer is also zero-padded such that the height and width of the

output remain unchanged. The deconvolution layer is followed by a final batch

normalization and Sigmoid activation. The shape of the output we get is 50 × 50 × c.

5. Experiments

This section can be broadly divided into four parts. First we show results for human activity

recognition by using PIs alone and PIs in fusion with different deep learning models on two

accelerometer sensor datasets: GENEactiv [50] and USC-HAD [53]. Second, we show

image classification results with and without fusing PIs with a DenseNet [25] classifier on

the following image datasets: CIFAR10 [26] and SVHN [32]. Third, we show how the

generated PIs together with the image classification model can help improve robustness to

Gaussian noise. Finally, we show improvements in computation time for the task of

extracting PIs from image databases using Image PI-Net.

5.1. Action Recognition using Accelerometer Data

Dataset Description: The GENEactiv dataset consists of 29 different human-activity

classes from 152 subjects [50]. The data was collected at a sampling rate of 100Hz using the

GENEactiv sensor, a light-weight, waterproof, wrist-worn tri-axial accelerometer. Interested

readers can refer to the following paper to learn about the data collection protocol [50]. The

USC-HAD dataset consists of 12 different human-activity classes from 14 subjects [53].

Data was collected using a tri-axial MotionNode accelerometer sensor at a sampling rate of

100Hz. The sensor was placed at the front right hip on the body. Both datasets were down-

sampled to 50Hz and fixed-length non-overlapping frames were extracted. Figures 5 and 6

show the distribution of the different activity classes in each dataset, with each frame having

a duration of 5 seconds or 250 time-steps. For the GENEactiv dataset we extracted frames

with time-steps = 250 and 500, and used approximately 75% of the frames for training and

the rest as the test set. USC-HAD being a significantly smaller dataset, we only extracted

frames with time-step = 250 and used frames from the first 8 subjects for training and the

remaining 6 subjects as the test set.

Training Signal PI-Net: The Signal PI-Net model was trained using just the training set of

the GENEactiv dataset. The batch-size was set to 128 and the model was trained for a 1000

epochs. The learning rate for the first 300 epochs, next 300 epochs and final 400 epochs was

set to 10−3, 10−4 and 10−5 respectively. Adam optimizer was used and the Mean-Squared-
Error loss function was used to quantify the deviation of the generated PIs from the ground-

truth PIs. Final training and test loss values are tabulated in Table 1.

Data Characterization and Classification: For characterizing the time-series signals,

we consider three different feature representations: (1) A 19-dimensional feature vector

consisting of different statistics calculated over each 10-second frame [50]; (2) Features

learnt from scratch using multi-layer-perceptron (MLP) models and 1D CNNs; (3)

Som et al. Page 7

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Persistence Images generated using the traditional filtration technique and the proposed

Signal PI-Net model. The 19-dimensional feature vector includes mean, variance, root-
mean-square value of the raw accelerations on each of X, Y and Z axes, pearson correlation
coefficients between X-Y, Y -Z and X-Z time series, difference between maximum and
minimum accelerations on each axis denoted by

dx2 + dy2, dy2 + dz2, dx2 + dz2 dx2 + dy2 + dz2. From here on out we will refer to this 19-

dimensional statistical feature as SF.

The MLP classifier contains 8 dense layers, with each layer having 128 units and ReLU

activation. To avoid over-fitting, each dense layer is followed by a dropout layer with a

dropout rate of 0.2 and a batch-normalization layer. The output layer is another dense layer

with Softmax activation and with number of units equal to the number of classes. The 1D

CNN classifier consists of 10 CNN layers with number of filters set to 32, kernel size to 3,

stride to 1 and the output is zero-padded. Each CNN layer is followed by batch-

normalization, ReLU activation and max-pooling layers. For max-pool layers we set the

filter size to 3, the stride was set to 1 for every odd layer and 2 for every even layer. For the

final CNN layer we use a global-average-pooling layer instead of a max-pool layer. Here

too, the output layer consists of a dense layer with softmax activation and number of units

equal to number of target classes.

We used the trained Signal PI-Net model to extract PIs for the test set of the GENEactiv
dataset. We also use the same model to compute PIs for both the training and test sets of the

USC-HAD dataset. The different classification methods are listed in Table 2. The PIs

obtained using traditional analytic methods or using the proposed Signal PI-Net model were

fused with the MLP and 1D CNN classification models differently. For instance, MLP - PI
and MLP - Signal PI-Net use the MLP classifier to learn features directly from the computed

PIs (The PIs were vectorized and passed as inputs). MLP - SF uses the MLP classifier with

the 19-dimensional statistical feature as input. In MLP - SF+PI and MLP - SF+Signal PI-Net
we first concatenate the SF and PI representations before passing them as input to the MLP

model. However, for 1D CNN + PI and 1D CNN + Signal PI-Net we use a slightly different

approach. Using Principal Component Analysis (PCA) we first reduce the vectorized PI

representation (7500-dimensional) to a 32-dimensional feature vector. This was done to

reduce the number of additional parameters that would result from the concatenation of the

PI feature representations to the 1D CNN model. The 32-dimensional PI representation is

then concatenated to the output of the global-average-pool layer in the 1D-CNN model.

The weighted F1 score classification results for GENEactiv and USC-HAD is shown in

Table 2. For each method we report the mean ± std result over 5 runs. We observe similar

results under the different time-step settings in GENEactiv and also across the two datasets.

PIs computed analytically or using Signal PI-Net perform better than SF. Fusing PIs with SF

helps significantly improve the classification performance. 1D CNN is a more powerful

classifier than MLP, which is made clearly evident from the tabulated results. Fusing PIs

with features learnt using 1D CNNs helps marginally improve the overall classification

result.

Som et al. Page 8

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5.2. Image Classification

Dataset Description: We consider the following three datasets in our experiments:

CIFAR10 [26], CIFAR100 [26] and SVHN [32]. CIFAR10 and CIFAR100 each contain

50000 images for training and 10000 images for testing, whereas SVHN has 73257 images

for training and 26032 images for testing. For classification experiments we only show

results for CIFAR10 and SVHN. Both datasets have 10 different label categories. Also, the

height, width and number of channels for each image is equal to 32, 32 and 3 respectively.

Training Image PI-Net: We develop two kinds of Image PI-Net models based on the

datasets we chose as source and target datasets: (1) In the first kind we set the source and

target datasets to be same, i.e. we train the Image PI-Net model using the CIFAR10 or

SVHN dataset. (2) For the second type, we use the CIFAR100 dataset as the source dataset

and the target dataset is either CIFAR10 or SVHN. Simply put, we employ transfer learning

by first training the Image PI-Net model using CIFAR100 and later use the target dataset to

fine-tune the Image PI-Net model. For the second case, we further explore two variations:

(2a) Fine-tune the model using all samples from the training set of the target dataset; (2b)

fine-tune using just a subset i.e. 500 images per class in the training set of the target dataset,

to simulate the scenario of having limited training data. We will refer to these variants as

Image PI-Net Fine-tune All (Image PI-Net FA) and Image PI-Net Fine-tune Subset (Image
PI-Net FS) respectively. We explored the above variants to show the use of the proposed

Image PI-Net model under different scenarios. We set the batch-size to 32. We train the

basic Image PI-Net model for 415 epochs and set the learning rate for the first 15 epochs,

next 200 epochs and final 200 epochs to 10−3, 10−5 and 10−6 respectively. For Image PI-Net
FA and Image PI-Net FS we first load the weights from the CIFAR100 pre-trained model

and fine-tune the weights for 200 epochs with a learning rate of 10−6. We use the Adam
optimizer and the Binary Cross-Entropy loss function to compile the models. The training

and test loss values are tabulated in Table 1.

Data Characterization and Classification: For image classification we use DenseNet
[25] as our base classification model. PIs alone are not as powerful as features learnt using

deep learning frameworks for image classification. However, past research works have

shown topological features to carry complementary information that can be exploited to

improve the overall performance of a machine learning model [12, 28, 44]. We too show

results using DenseNet in conjunction with PIs that are generated using traditional filtration

techniques and using the proposed Image PI-Net model. Figure 7 illustrates how we pass the

computed PIs as a secondary input to the base classification network. Our DenseNet model

has the following specifications: depth = 16, number of dense blocks = 4, number of

convolution filters = 16, growth rate = 12, dropout rate = 0.2 and weight decay = 10−4. We

pass the generated PIs through a single 2D convolution layer with 32 filters. This is followed

by a global-average-pool layer which results in a 32-dimensional feature vector. This feature

vector is concatenated with the output of the global-average-pool layer (penultimate layer)

of the DenseNet model.

The classification results are averaged over three runs and are tabulated in Table 3. We see

that fusing PI feature helps improve the overall classification result for the base model on

Som et al. Page 9

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

both datasets. PIs generated using the traditional filtration method and the proposed Image
PI-Net framework achieve similar results. Also, Image PI-Net FS being trained on just 500

samples per class, achieves a classification result that is comparable to the other Image PI-
Net variants. This is useful in cases where there is limited training data for the target task. To

check the significance of the different fusion cases we calculate the P-value for each case

with respect to just the DenseNet model. P-value is the area of the two-sided t-distribution

that falls outside ±t. We consistently observe a P-value of less than 0.05 across all fusion

cases. While we only observe marginal improvement in terms of classification accuracy, the

advantage of using PI-Net with the base classification model is made apparent in the next

section.

5.3. Robustness to Gaussian Noise in Images

While data augmentation can help neural networks learn different transforms, TDA methods

have the ability to encode different invariances by default. This could help reduce if not

completely remove the need for different data variations during the training process. Here

we evaluate the robustness of the different DenseNet classification models when the test-set

images are subjected to Gaussian noise. Note, the classification models were trained using

the original training-set images and no data-augmentation was done during the training

process. All images were first normalized to lie between [0,1]. For both datasets we apply a

zero-mean Gaussian noise and vary the standard deviation to the following levels: 0.02, 0.04,

0.06, 0.08. After applying Gaussian noise we clip the pixel values in the image to lie

between [0,1]. We refer to the four increasing severity levels of Gaussian noise as Level 1,
Level 2, Level 3, Level 4 or in short L1, L2, L3, L4.

Since computing PDs and PIs using traditional analytic methods is computationally

expensive, we were not able to evaluate the DenseNet + PI case on all test images. To give

some perspective, computing PIs for each severity level on the test-set would take about 10

hours and 24 hours for CIFAR10 and SVHN respectively. More information about the

computational complexity is discussed in Section 5.4. To compare all methods we randomly

select 500 images from the test set and compare the classification performance. Figure 8

shows the percentage change in the classification performance with respect to the DenseNet
method in the absence of any Gaussian noise. The effect of Gaussian noise is different for

each dataset due to which the y-axis is scaled differently. From the bar-plots we see that the

overall classification performance decreases as the severity level increases. However, the

percentage decrease for DenseNet + PI and the different DenseNet + Image PI-Net variants

is less compared to DenseNet alone. Fusing PIs with the DenseNet model helps incorporate

robustness to different Gaussian noise. We see similar trends between the 500 Test Samples
and All Test Samples cases.

5.4. Computation Time to Generate PIs

We used the NVIDIA GeForce GTX Titan Xp graphic card with 12GB memory to train and

evaluate all deep learning models. All other tasks were carried out on a standard Intel i7

CPU using Python with a working memory of 32GB. We use the Scikit-TDA software to

compute PDs and PIs [39]. Table 4 shows the average time taken to extract PI for one image

by conventional TDA methods using one CPU and the proposed PI-Net framework on both a

Som et al. Page 10

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

CPU and a GPU. The average is computed over all training images in each dataset. Using

the Image PI-Net model on a GPU, we see an effective speed up of three orders of

magnitude in the computation time. Also, Image PI-Net implemented on a CPU is still faster

than the analytic method by an order of magnitude. Using a GPU we also check the time

taken to compute PIs when the entire training set is passed into Image PI-Net as a single

batch. It took about 9.77±0.08 seconds for CIFAR10and 12.93±0.05 seconds for SVHN.

This is a fraction of the time compared to the time it takes using conventional TDA tools. So

far it had been impossible to compute PIs at real-time using conventional TDA approaches.

However, the proposed framework allows us to easily compute PIs in real-time thereby

opening doors to new real-time applications for TDA.

6. Conclusion and Future Work

In this paper we took the first step in using deep learning to extract topological feature

representations. We developed a simple, effective and differentiable architecture called to

extract PIs directly from time-series and image data. PI-Net has a significantly lower

computational complexity compared to using conventional topological tools. We show

improvements in classification performance on two accelerometer and two image datasets.

Despite observing marginal improvement in image classification accuracy, the benefit of

using PI-Net with the base classification network is made apparent through the robustness to

Gaussian noise experiment.

For future work we would like to explore more sophisticated deep learning architectures that

can allow us to learn mappings between higher dimensional data and their corresponding

topological feature representations. We would also like to see how deep learning can be

further used to generate other kinds of topological representations and test their robustness

to different image deformations like contrast, blur and affine transformations.

Acknowledgments

This work was supported in part by NIH R01GM135927 and NSF CAREER 1452163. Arizona State University’s
institutional review board approved all study materials and procedures (protocol number 1304009121).

References

[1]. Adams Henry, Emerson Tegan, Kirby Michael, Neville Rachel, Peterson Chris, Shipman Patrick,
Chepushtanova Sofya, Hanson Eric, Motta Francis, and Ziegelmeier Lori. Persistence images: A
stable vector representation of persistent homology. Journal of Machine Learning Research,
18(8):1–35, 2017.

[2]. Adams Henry, Tausz Andrew, and Vejdemo-Johansson Mikael. Javaplex: A research software
package for persistent (co) homology. In International Congress on Mathematical Software,
pages 129–136. Springer, 2014.

[3]. Anirudh Rushil, Venkataraman Vinay, Ramamurthy Karthikeyan Natesan, and Turaga Pavan. A
riemannian framework for statistical analysis of topological persistence diagrams. In The IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pages 68–76, 2016.

[4]. Bauer Ulrich, Kerber Michael, and Reininghaus Jan. Distributed computation of persistent
homology. In Proceedings of the Workshop on Algorithm, Engineering and experiments, pages
31–38. SIAM, 2014.

[5]. Bubenik Peter. Statistical topological data analysis using persistence landscapes. The Journal of
Machine Learning Research, 16(1):77–102, 2015.

Som et al. Page 11

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[6]. Bubenik Peter and Holcomb John. Statistical inferences from the topology of complex networks.
Technical report, Cleveland State University, Cleveland, United States, 2016.

[7]. Cang Zixuan and Wei Guo-Wei. Topologynet: Topology based deep convolutional and multi-task
neural networks for biomolecular property predictions. PLoS Computational Biology, 13(7),
2017.

[8]. Chintakunta Harish, Gentimis Thanos, Gonzalez-Diaz Rocio, Jimenez Maria-Jose, and Krim
Hamid. An entropy-based persistence barcode. Pattern Recognition, 48(2):391–401, 2015.

[9]. Chollet François et al. Keras. https://keras.io, 2015.

[10]. Chung Moo K, Bubenik Peter, and Kim Peter T. Persistence diagrams of cortical surface data. In
International Conference on Information Processing in Medical Imaging, pages 386–397.
Springer, 2009.

[11]. Dabaghian Yuri, Memoli Facundo, Frank Loren, and Carlsson Gunnaŕ. A topological paradigm
for hippocampal spatial map formation using persistent homology. PLoS Computational Biology,
8(8):1–14, 2012. [PubMed: 22629235]

[12]. Dey Tamal Krishna, Mandal Sayan, and Varcho William. Improved Image Classification using
Topological Persistence. In Vision, Modeling & Visualization The Eurographics Association,
2017.

[13]. Dong Chao, Loy Chen Change, He Kaiming, and Tang Xiaoou. Learning a deep convolutional
network for image super-resolution. In European Conference on Computer Vision, pages 184–
199. Springer, 2014.

[14]. Edelsbrunner Herbert and Harer John. Computational topology: an introduction. American
Mathematical Society, 2010.

[15]. Edelsbrunner Herbert, Letscher David, and Zomorodian Afra. Topological persistence and
simplification. Discrete & Computational Geometry, 28(4):511–533, 2002.

[16]. Eigen David, Puhrsch Christian, and Fergus Rob. Depth map prediction from a single image
using a multi-scale deep network. In Advances in Neural Information Processing Systems, pages
2366–2374, 2014.

[17]. Ferri Massimo. Why topology for machine learning and knowledge extraction? Machine
Learning and Knowledge Extraction, 1(1):115–120, 2018.

[18]. Gabella Maxime, Afambo Nitya, Ebli Stefania, and Spreemann Gard. Topology of learning in
artificial neural networks. arXiv preprint arXiv:1902.08160, 2019.

[19]. Gabrielsson Rickard Bruel and Carlsson Gunnar. Exposition¨ and interpretation of the topology
of neural networks. arXiv preprint arXiv:1810.03234, 2018.

[20]. Girshick Ross, Donahue Jeff, Darrell Trevor, and Malik Jitendra. Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 580–587, 2014.

[21]. Grill-Spector Kalanit and Malach Rafael. The human visual cortex. Annu. Rev. Neurosci,
27:649–677, 2004. [PubMed: 15217346]

[22]. He Kaiming, Zhang Xiangyu, Ren Shaoqing, and Sun Jian. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[23]. Heath Kyle, Gelfand Natasha, Ovsjanikov Maks, Aanjaneya Mridul, and Guibas Leonidas J.
Image webs: Computing and exploiting connectivity in image collections. In IEEE Conference
on Computer Vision and Pattern Recognition, 2010.

[24]. Hofer Christoph, Kwitt Roland, Niethammer Marc, and Uhl Andreas. Deep learning with
topological signatures. In Advances in Neural Information Processing Systems, pages 1634–
1644. 2017.

[25]. Huang Gao, Liu Zhuang, Van Der Maaten Laurens, and Weinberger Kilian Q. Densely connected
convolutional networks. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 4700–4708, 2017.

[26]. Krizhevsky Alex and Hinton Geoffrey. Learning multiple layers of features from tiny images.
Technical report, Cite-seer, 2009.

Som et al. Page 12

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://keras.io

[27]. Krizhevsky Alex, Sutskever Ilya, and Hinton Geoffrey E. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems, pages
1097–1105, 2012.

[28]. Li Chunyuan, Ovsjanikov Maks, and Chazal Frederic. Persistence-based structural recognition. In
IEEE Conference on Computer Vision and Pattern Recognition, pages 1995–2002, 2014.

[29]. Liu Weibo, Wang Zidong, Liu Xiaohui, Zeng Nianyin, Liu Yurong, and Alsaadi Fuad E. A survey
of deep neural network architectures and their applications. Neurocomputing, 234:11–26, 2017.

[30]. Long Jonathan, Shelhamer Evan, and Darrell Trevor. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3431–3440, 2015.

[31]. Nawar Afra, Rahman Farhan, Krishnamurthi Narayanan, Som Anirudh, and Turaga Pavan.
Topological descriptors for parkinson’s disease classification and regression analysis. arXiv
preprint arXiv:2004.07384, 2020.

[32]. Netzer Yuval, Wang Tao, Coates Adam, Bissacco Alessandro, Wu Bo, and Ng Andrew Y.
Reading digits in natural images with unsupervised feature learning. 2011.

[33]. Pachauri Deepti, Hinrichs Chris, Chung Moo K, Johnson Sterling C, and Singh Vikas. Topology-
based kernels with application to inference problems in alzheimer’s disease. IEEE transactions
on Medical Imaging, 30(10):1760–1770, 2011. [PubMed: 21536520]

[34]. Perea Jose A and Harer John. Sliding windows and persistence: An application of topological
methods to signal analysis. Foundations of Computational Mathematics, 15(3):799–838, 2015.

[35]. Ramamurthy Karthikeyan Natesan, Varshney Kush, and Mody Krishnan. Topological data
analysis of decision boundaries with application to model selection. In Proceedings of the
International Conference on Machine Learning, pages 5351–5360, 2019.

[36]. Reininghaus Jan, Huber Stefan, Bauer Ulrich, and Kwitt Roland. A stable multi-scale kernel for
topological machine learning. In IEEE Conference on Computer Vision and Pattern Recognition,
2015.

[37]. Rieck Bastian, Togninalli Matteo, Bock Christian, Moor Michael, Horn Max, Gumbsch Thomas,
and Borgwardt Karsten. Neural persistence: A complexity measure for deep neural networks
using algebraic topology. In International Conference on Learning Representations, 2019.

[38]. Rouse David, Watkins Adam, Porter David, Harer John, Bendich Paul, Strawn Nate, Munch
Elizabeth, DeSena Jonathan, Clarke Jesse, Gilbert Jeffrey, et al. Feature-aided multiple
hypothesis tracking using topological and statistical behavior classifiers. In SPIE Defense
+Security, 2015.

[39]. Saul Nathaniel and Tralie Chris. Scikit-TDA: Topological data analysis for python. 10.5281/
zenodo.2533369, 2019.

[40]. Silver David, Huang Aja, Maddison Chris J, Guez Arthur, Sifre Laurent, Van Den Driessche
George, Schrittwieser Julian, Antonoglou Ioannis, Panneershelvam Veda, Lanctot Marc, et al.
Mastering the game of go with deep neural networks and tree search. nature, 529(7587):484,
2016. [PubMed: 26819042]

[41]. Simonyan Karen and Zisserman Andrew. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[42]. Singh Gurjeet, Memoli Facundo, Ishkhanov Tigran, Sapiro Guillermo, Carlsson Gunnar, and
Ringach Dario L. Topological analysis of population activity in visual cortex. Journal of Vision,
2008.

[43]. Som Anirudh, Ramamurthy Karthikeyan Natesan, and Turaga Pavan. Geometric metrics for
topological representations. Handbook of Variational Methods for Nonlinear Geometric Data,
page 415.

[44]. Som Anirudh, Thopalli Kowshik, Ramamurthy Karthikeyan Natesan, Venkataraman Vinay,
Shukla Ankita, and Turaga Pavan. Perturbation robust representations of topological persistence
diagrams. In Proceedings of the European Conference on Computer Vision, pages 617–635,
2018.

[45]. Srinivas Suraj, Sarvadevabhatla Ravi Kiran, Mopuri Konda Reddy, Prabhu Nikita, Kruthiventi
Srinivas SS, and Babu R Venkatesh. A taxonomy of deep convolutional neural nets for computer
vision. Frontiers in Robotics and AI, 2:36, 2016.

Som et al. Page 13

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[46]. Szegedy Christian, Liu Wei, Jia Yangqing, Sermanet Pierre, Reed Scott, Anguelov Dragomir,
Erhan Dumitru, Vanhoucke Vincent, and Rabinovich Andrew. Going deeper with convolutions.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9,
2015.

[47]. Tralie Christopher J and Perea Jose A. (quasi) periodicity quantification in video data, using
topology. SIAM Journal on Imaging Sciences, 11(2):1049–1077, 2018.

[48]. Venkataraman Vinay, Ramamurthy Karthikeyan Natesan, and Turaga Pavan. Persistent homology
of attractors for action recognition. In IEEE International Conference on Image Processing, pages
4150–4154. IEEE, 2016.

[49]. Walker Jacob, Gupta Abhinav, and Hebert Martial. Dense optical flow prediction from a static
image. In Proceedings of the IEEE International Conference on Computer Vision, pages 2443–
2451, 2015.

[50]. Wang Qiao, Lohit Suhas, Toledo Meynard John, Buman Matthew P, and Turaga Pavan. A
statistical estimation framework for energy expenditure of physical activities from a wrist-worn
accelerometer. In Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, pages 2631–2635. IEEE, 2016.

[51]. Wang Xiaolong, Fouhey David, and Gupta Abhinav. Designing deep networks for surface normal
estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 539–547, 2015.

[52]. Yosinski Jason, Clune Jeff, Bengio Yoshua, and Lipson Hod. How transferable are features in
deep neural networks? In Advances in Neural Information Processing Systems, pages 3320–
3328, 2014.

[53]. Zhang Mi and Sawchuk Alexander A. USC-HAD: a daily activity dataset for ubiquitous activity
recognition using wearable sensors. In Proceedings of the ACM Conference on Ubiquitous
Computing, pages 1036–1043. ACM, 2012.

[54]. Zhang Ning, Donahue Jeff, Girshick Ross, and Darrell Trevor. Part-based R-CNNs for fine-
grained category detection. In European Conference on Computer Vision, pages 834–849.
Springer, 2014.

[55]. Zhang Ning, Paluri Manohar, Ranzato Marc’Aurelio, Darrell Trevor, and Bourdev Lubomir.
Panda: Pose aligned networks for deep attribute modeling. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1637–1644, 2014.

[56]. Zhou Bolei, Lapedriza Agata, Xiao Jianxiong, Torralba Antonio, and Oliva Aude. Learning deep
features for scene recognition using places database. In Advances in Neural Information
Processing Systems, pages 487–495, 2014.

Som et al. Page 14

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
Illustration of the proposed PI-Net model to directly compute persistence images from input

data. Traditional analytic methods (illustrated in the top half of the figure) consist of a

sequence of steps that are computationally expensive.

Som et al. Page 15

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Illustration of a PD and its weighted PI for three points with same birth-time but different

life-time. Due to the weighting function points with higher life-time appear more brighter.

Som et al. Page 16

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Illustration of Signal PI-Net for computing PIs directly from multi-variate time-series

signals.

Som et al. Page 17

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Illustration of Image PI-Net for computing PIs directly from multi-channel image data.

Som et al. Page 18

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Distribution of activity classes in the GENEactiv dataset for time-step length = 250.

Som et al. Page 19

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.
Distribution of activity classes in the USC-HAD dataset for time-step length = 250.

Som et al. Page 20

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7.
Illustration of the modified base model where we concatenate PI feature with features learnt

using the base classification network.

Som et al. Page 21

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8.
Percentage point drop in the classification performance on CIFAR10 (top) and SVHN

(bottom) as the Gaussian noise severity increases. The percentage drop is calculated with

respect to the classification performance of the DenseNet model in the absence of any

Gaussian noise. Without noise, the DenseNet classification performance for 500 Test

Samples and All Test Samples for CIFAR10 is 82.93% and 83.80%, and for SVHN is

96.06% and 95.65%. While the performance of all models drop as degradation increases, the

drop of topological fusion models is less compared to just the DenseNet model. Note, the y-

axis is scaled different for each dataset.

Som et al. Page 22

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Som et al. Page 23

Table 1.

Final train and test loss values after training the different Signal PI-Net and Image PI-Net models.

PI-Net Train Loss Test Loss

Signal PI-Net Time-steps = 250 0.00159 0.00158

Signal PI-Net Time-steps = 500 0.00187 0.00187

CIFAR10 Image PI-Net 1.99793 2.06193

CIFAR10 Image PI-Net FA 2.02095 2.04441

CIFAR10 Image PI-Net FS 0.51734 0.52560

SVHN Image PI-Net 1.53533 1.51732

SVHN Image PI-Net FA 1.57923 1.54195

SVHN Image PI-Net FS 0.41519 0.40955

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Som et al. Page 24

Table 2.

Weighted F1 score classification results for the GENEactiv and USC-HAD datasets. The mean ± std values

were calculated over five runs.

Method
GENEactiv USC-HAD

Time-steps = 250 Time-steps = 500 Time-steps = 250

MLP - PI 46.45±0.32 49.67±0.63 43.21±0.66

MLP - Signal PI-Net 49.47±0.69 53.69±1.08 48.15±0.67

MLP - SF 41.70±0.41 42.01±0.42 35.68±0.11

MLP - SF + PI 48.57±0.37 49.82±0.62 44.31±0.36

MLP - SF + Signal PI-Net 50.66±0.78 54.44±0.80 48.97±0.30

1D CNN 53.56±0.31 54.97±1.35 54.58±0.64

1D CNN + PI 54.28±0.23 56.38±0.23 54.64±0.62

1D CNN + Signal PI-Net 54.41±0.21 56.41±0.22 57.82±0.78

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Som et al. Page 25

Table 3.

Image classification accuracy results for CIFAR10 and SVHN datasets, with the mean ± std values calculated

over three runs. P-value is calculated with respect to the base DenseNet model.

Method
CIFAR10 SVHN

Mean±SD p-Value Mean±SD p-Value

DenseNet 83.80±0.12 - 95.65±0.00 -

DenseNet + PI 84.37±0.21 0.0153 95.86±0.01 <0.0001

DenseNet + Image PI-Net 84.82±0.19 0.0160 95.95±0.08 0.0038

DenseNet + Image PI-Net FA 84.69±0.38 0.0195 95.84±0.06 0.0063

DenseNet + Image PI-Net FS 84.59±0.17 0.0032 95.95±0.07 0.0020

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Som et al. Page 26

Table 4.

Comparison of the average time taken to compute PIs for one image using conventional TDA tools and the

proposed PI-Net model. The time reported is averaged over all images present in. the training set of each

dataset.

Method
Time (10−3 seconds)

CIFAR10 (50000 images) SVHN (73257 images)

Conventional TDA - CPU 3567.29±867.74 3433.06±622.21

PI-Net - CPU 125.45±5.30 125.49±5.34

PI-Net - GPU 2.52±0.02 2.19±0.02

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

	Abstract
	Introduction
	Contributions:

	Related Work
	Background
	Persistence Diagrams:
	Persistence Images:
	Convolutional Neural Networks:
	Learning Strategies:

	PI-Net Framework
	Generating Ground-truth Persistence Images
	Data Pre-processing:
	Persistence Images for Time-series Data:
	Persistence Images for Multi-channel Image Data:

	Network Architecture
	Signal PI-Net:
	Image PI-Net:

	Experiments
	Action Recognition using Accelerometer Data
	Dataset Description:
	Training Signal PI-Net:
	Data Characterization and Classification:

	Image Classification
	Dataset Description:
	Training Image PI-Net:
	Data Characterization and Classification:

	Robustness to Gaussian Noise in Images
	Computation Time to Generate PIs

	Conclusion and Future Work
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Table 1.
	Table 2.
	Table 3.
	Table 4.

