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Abstract

Topological features such as persistence diagrams and their functional approximations like 

persistence images (PIs) have been showing substantial promise for machine learning and 

computer vision applications. This is greatly attributed to the robustness topological 

representations provide against different types of physical nuisance variables seen in real-world 

data, such as view-point, illumination, and more. However, key bottlenecks to their large scale 

adoption are computational expenditure and difficulty incorporating them in a differentiable 

architecture. We take an important step in this paper to mitigate these bottlenecks by proposing a 

novel one-step approach to generate PIs directly from the input data. We design two separate 

convolutional neural network architectures, one designed to take in multi-variate time series 

signals as input and another that accepts multi-channel images as input. We call these networks 

Signal PI-Net and Image PI-Net respectively. To the best of our knowledge, we are the first to 

propose the use of deep learning for computing topological features directly from data. We explore 

the use of the proposed PI-Net architectures on two applications: human activity recognition using 

tri-axial accelerometer sensor data and image classification. We demonstrate the ease of fusion of 

PIs in supervised deep learning architectures and speed up of several orders of magnitude for 

extracting PIs from data. Our code is available at https://github.com/anirudhsom/PI-Net.

1. Introduction

Deep learning over the past decade has had tremendous impact in computer vision, natural 

language processing, machine learning, and healthcare. Among other approaches, 

convolutional neural networks (CNNs) in particular have received great attention and 

interest from the computer vision community. This is attributed to the fact that they are able 

to exploit the local temporal and spatial correlations that exist in 1-dimensional (1D) 

sequential time-series signals, 2-dimensional (2D) data like images, 3-dimensional (3D) data 

like videos, and 3D objects. In this paper, we refer to these type of data as input data. CNNs 
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also have far less learnable parameters than their fully-connected counterparts, making them 

less prone to over-fitting and have shown state-of-the-art results in applications like image 

classification, object detection, scene recognition, fine-grained categorization and action 

recognition [27, 20, 54, 55, 56]. Apart from being good at learning mappings between the 

input and corresponding class labels, deep learning frameworks are also efficient in 

discovering mappings between the input data and other output feature representations [49, 

51, 30, 16, 13].

While methods for learning features from scratch and mapping image data to desired outputs 

via neural networks have matured significantly, relatively less attention has been paid to 

invariance to nuisance low-level physical factors like sensor noise. Topological data analysis 

(TDA) methods are popularly used to characterize the shape of n-dimensional point cloud 

data using representations such as persistent diagrams (PDs) that are robust to certain types 

of variations in the data [14]. TDA methods have also been successfully applied to different 

computer vision problems and have shown the ability to incorporate different invariances of 

interest to the computer vision community [28, 12, 44]. The shape of the data is quantified 

by properties such as connected components, cycles, high-dimensional holes, level-sets and 

monotonic regions of functions defined on the data [14]. Topological properties are those 

invariants that do not change under smooth deformations like stretching, bending and 

rotation, but without tearing or gluing surfaces. These attractive traits of TDA have renewed 

interested in this area for answering various fundamental questions, including those dealing 

with interpretation, generalization, model selection, stability, and convergence [19, 6, 37, 35, 

18, 17].

A lot of work has gone into utilizing topological representations efficiently in large-scale 

machine learning [3, 5, 38, 33, 36, 1, 44]. However, bottlenecks such as computational load 

involved in discovering topological invariants as well as a lack of a differentiable 

architecture remain. In this paper we propose simple deep learning architectures to learn 

approximate mappings between data and their topological feature representations.The gist of 

our idea is illustrated in Figure 1 and the main contributions are listed below.

Contributions:

1. We propose a novel differentiable neural network architecture called PI-Net, to 

extract topological representations. In this paper we focus on persistence images 

(PIs) as the desired topological feature.

2. We provide two simple CNN-based architectures called Signal PI-Net that takes 

in multi-variate 1D sequential data and Image PI-Net that takes in multi-channel 

2D image data.

3. We explore transfer learning strategies to train the proposed PI-Net model on a 

source dataset and use it on a different target dataset, with or without fine-tuning.

4. Through our experiments on human activity recognition using accelerometer 

sensor data and image classification on standard image datasets, we show the 

effectiveness of the generated approximations for PIs and compare their 

performance to PIs generated using analytic TDA methods. We also investigate 
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the benefits of concatenating PIs with features learnt using deep learning 

methods.

5. We also evaluate the robustness of classification models to Gaussian noise, with 

or without fusion with PI representations in image classification tasks.

The rest of the paper is outlined as follows: Section 2 discusses related work. Section 3 

provides the necessary background on TDA, PIs and CNNs. In Section 4 we describe the 

proposed PI-Net frameworks in detail and in Section 5 we describe the experimental results. 

Section 6 concludes the paper.

2. Related Work

Although the formal beginnings of topology is already a few centuries old dating back to 

Euler, algebraic topology has seen a revival in the past decade with the advent of 

computational tools and software [39, 2, 4]. Arguably the most popular topological summary 

is the persistence diagram (PD), which is a multi-set of points in a 2D plane that quantifies 

the birth and death times of topological features such as k-dimensional holes or sub-level 

sets of a function defined on a point cloud [15]. This simple summary has resulted in the 

adoption of topological methods for various applications [34, 47, 8, 11, 10, 23, 42, 48, 31]. 

However, TDA methods suffer from two major limitations. First, it is computationally very 

taxing to extract PDs. The computational load increases both with the dimensionality and 

with the number of samples in the data being analyzed. The second obstacle is that a PD is a 

multi-set of points, making it impossible to use machine learning or deep learning 

frameworks directly on the space of PDs. Efforts have been made to tackle the second issue 

by attempting to map PDs to spaces that are more favorable for machine learning tools [3, 5, 

38, 33, 36, 1, 44]. For further reading, [43] surveys recent topological representations and 

their associated metrics. To alleviate the first problem, in this paper we propose a simple 

one-step differentiable architecture called PI-Net to compute the desired topological feature 

representation, specifically persistence images. To the best of our knowledge, we are the first 

to propose the use of deep learning for computing PIs directly from data.

Our motivation to use deep learning stems from its successful use to learn mappings 

between input data and different feature representations [49, 51, 30, 16, 13]. However, deep 

learning and TDA did cross paths before but not in the same context as what we propose in 

this paper. TDA methods have been used to study the topology [19, 6], algorithmic 

complexity [37], behavior [18] and selection [35] of deep learning models. Efforts have also 

been made to use topological feature representations either as inputs or fused with features 

learned using neural network models [12, 24, 7]. Later in Section 5, we show experimental 

results on fusing generated PIs with deep learning frameworks for action recognition and 

image classification.

3. Background

Persistence Diagrams:

Consider a graph G = {V,E} constructed from data projected onto a high-dimensional point-

cloud space. Here, V is the set of |V| nodes and E denotes the neighborhood relations 
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defined between the samples. Topological properties of the graph can be estimated by first 

constructing a simplicial complex S over G. S is defined as S = (G, Σ), with Σ being a family 

of non-empty level sets of G, with each element σ ∈ Σ is a simplex [15]. This falls under the 

realm of persistent homology where we are interested in summarizing the k-dimensional 

holes present in the data. The simplices are constructed using the the ϵ-neighborhood rule 

[15]. It is also possible to quantify the topology induced by a function g defined on the 

vertices of a graph G by studying the topology of its sub-level or super-level sets. Since g : V 
→ ℝ this is referred to as scalar field topology. In either case, PDs provide a simple way to 

summarize the birth vs death time information of the topological feature of interest. In this 

paper we use persistent homology to compute ground-truth PDs for images and scalar field 
topology to compute ground-truth PDs for time-series signals. In a PD the birth-time b refers 

to the scale at which the feature was formed and death-time d refers to the scale at which it 

ceases to exist. The difference between d and b gives us the life-time or persistence and is 

denoted by l = |d − b|. Each PD is a multi-set of points (b, d) in ℝ2. Since d ≥ b, only one-

half of the space in the PD is actually utilized. Points in the PD that lie close to the diagonal 

represent noise and can be easily discarded by simple thresholding. Plotting the birth-time vs 

life-time information allows us to utilize the entire 2D space of a PD as shown in Figure 2. 

Interested readers can refer to the following papers to learn more about the properties of the 

space of PDs [14, 15].

Persistence Images:

A PI is a finite-dimensional vector representation of a PD [1] and can be computed through 

the following series of steps. First we map the PD to an integrable function ρ : ℝ → ℝ 2 

called a persistence surface. The persistence surface ρ is defined as a weighted sum of 

Gaussian functions that are centered at each point in the PD. Next, a discretization of a sub-

domain of the persistence surface is done which results in a grid. Finally, the PI is obtained 

by integrating the persistence surface over each grid box, giving us a matrix of pixel values. 

An interesting aspect when computing PIs is the broad range of weighting functions to chose 

from, to weight the Gaussian functions. Typically, points of high persistence or lifetime are 

perceived to be more important than points of low persistence. In such cases one may select 

the weighting function to be non-decreasing with respect to the persistence value of each 

point in the PD. Adams et al. also talk about the stability of persistence images with respect 

to the 1-Wasserstein distance between PDs [1]. Figure 2 illustrates an example of a PD and 

its PI where the points are weighted by their life-time.

Convolutional Neural Networks:

CNNs were inspired from the hierarchical organization of the human visual cortex [21] and 

consist of many intricately interconnected layers of neuron structures serving as the basic 

units to learn, extract both low-level and high-level features from images. CNNs are 

particularly more attractive and powerful compared to their connected counterparts because 

CNNs are able to exploit the spatial correlations present in natural images and each 

convolutional layer has far less trainable parameters than a fully-connected layer. Several 

sophisticated CNN architectures have been proposed in the last decade, for example AlexNet 
[27], VGG [41], GoogleNet [46], ResNet [22], DenseNet [25], etc. Some of these designs 

are known to surpass humans for object recognition tasks [40]. Apart from discovering 
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features from scratch for classification tasks, CNNs are also popular for learning mappings 

between input and other feature representations [49, 51, 30, 16, 13]. This motivates us to 

design simple CNN models for the task of learning mappings between the data and their PI 

representations. We would like to direct interested readers to the following survey paper to 

know more about different CNN architectures [29, 45].

Learning Strategies:

Here we will briefly talk about the two learning strategies namely: Supervised Learning and 

Transfer Learning. We employ these strategies to train the proposed PI-Net model. 

Supervised Learning is concerned with learning complex mappings from X to Y when many 

pairs of (x, y) are given as training data, with x ∈ X being the input data and y ∈ Y being the 

corresponding label or feature representation. In a classification setting Y corresponds to a 

fixed set of labels. In a regression setting, the output Y is either a real number or a set of real 

numbers. In this paper our problem falls under the regression category as we try to learn a 

mapping between the input data and its PI. Transfer Learning is a design methodology that 

involves using the learned weights of a pre-trained model that is trained on a source dataset 

Ds for the source task Ts, to initialize the weights of another model that is fine-tuned using a 

target dataset Dt for the target task Tt [52]. This allows us to leverage the source dataset that 

the model was initially trained on without having to train the model from scratch. The is 

useful in cases where the target dataset has a lot less data samples compared to the source 

dataset. In Section 4 we show how transfer learning is employed in our proposed framework 

when the target training data is limited.

4. PI-Net Framework

In this section we first describe the steps to generate ground-truth PIs and later discuss the 

proposed Signal PI-Net and Image PI-Net configurations.

4.1. Generating Ground-truth Persistence Images

Data Pre-processing: For uni-variate or multi-variate time-series signals, we consider 

only fixed-frame signals, i.e. signals with fixed number of time-steps, and zero-center them. 

We standardize the training and test sets such that they have unit variance along each time-

step. For images we enforce the pixel values to range between [0,1].

Persistence Images for Time-series Data: We use the Scikit-TDA python library [39] 

and use the Ripser package for computing PDs. As mentioned earlier, we compute level-set 
filtration PDs for time-series signals. Scalar field topology offers a simple way to summarize 

the different peaks and troughs present in the signal. For example a local minima gives birth 

to a topological feature (more accurately a 0-dimensional homology group feature) which 

dies at its local maxima. We compute PDs for each of the x,y,z signals in the accelerometer 

sample. For better use of the 2D space in the PD we consider birth-time vs life-time 

information. For computing PIs we used the Persim package in the Scikit-TDA toolbox. In 

all our experiments we set the grid size of the generated PIs to 50×50 and fit a Gaussian 

kernel function on each point in the PD. We weight each Gaussian kernel by the life-time of 

the point. For all time-series datasets we set the standard deviation of the Gaussian kernel to 
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0.25 and set the birth-time range to [−10, 10]. Once computed we normalize each PI by 

dividing by its maximum intensity value. This forces the values in the PI to also lie between 

[0,1].

Persistence Images for Multi-channel Image Data: Here too we use the Scikit-TDA 
library for computing PDs and PIs. We represent each image channel as a 3D point cloud 

with the three coordinates representing the x-coordinate, y-coordinate and intensity value of 

each pixel in the image. For example, an image with c channels will result in c 3D point 

clouds. The x and y coordinate information is also normalized to be within [0, 1]. Finally, 

we compute the 1-dimensional persistent homology PDs for each channel in the image using 

the process described in Section 3. For all image datasets in our experiments we discard 

points in the PD with life-time less than 0.02. For computing PIs we set the grid size of the 

generated PIs to 50×50 and fit a Gaussian kernel function on each point in the PD. The 

Gaussian kernel is weighted by the life-time of the point. Other parameters needed to 

compute PIs like birth-time range and standard-deviation of the Gaussian kernel were set to 

different values specific to each dataset. We consider the following three datasets in our 

experiments: CIFAR10 [26], CIFAR100 [26] and SVHN [32]. For CIFAR10 and CIFAR100 
we set birth-time range and standard-deviation to [0,0.3] and 0.01. For SVHN we set the 

same parameters to [0,0.2] and 0.005 respectively. Finally, each of the c PIs generated for a 

c-channel image is further normalized to lie in the range [0,1].

4.2. Network Architecture

Both PI-Net architectures were designed using Keras with TensorFlow back-end [9].

Signal PI-Net: The input to the network is a b × t × n dimensional time-series signal, 

where b is the batch-size, t refers to the number of time-steps or frame size. For a uni-variate 

signal n = 1 and for a multi-variate signal n > 1. For our experiments in section 5, n is 3 and t 
is either 250 or 500. After the input layer, the encoder block consists of four 1D convolution 

layers. Except the final convolution layer, all other convolution layers are followed by batch 

normalization, ReLU activation and Max-pooling. The final convolution layer is followed by 

batch normalization, ReLU activation and Global-average-pooling. The number of 

convolution filters is set to 128, 256, 512 and 1024 respectively. However, the convolution 

kernel size is same for all layers and is set to 3 with stride set to 1. We use appropriate zero 

padding to keep the output shape of the convolution layer unchanged. For all Max-pool 

layers, we set the kernel size to 3 and stride to 2. After the encoder block, we pass the 

global-average-pooled output into a final output dense layer of size 2500×n. The output of 

the dense layer is subjected to ReLU activation and reshaped to size 50 × 50 × n.

Image PI-Net: The input to this network is a b×h×w×c dimensional image, where b, h,w, c 
is the batch-size, the image height, width and number of channels respectively. Image PI-Net 
follows the same architecture as Signal PI-Net for the encoder block. However, we now use 

2D convolution layers instead. Also, for all the convolution layers the number of filters and 

kernel size was set to 128 and 3 respectively. We use appropriate zero padding to keep the 

output shape of the convolution layer unchanged. For all Max-pool layers, we set the kernel 

size to 3 and stride to 2. We pass the output of the encoder block into a latent variable layer 
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which consists of a dense layer of size 2500. The output of the latent variable layer is 

reshaped to 50 × 50 and is passed into the decoder block. The decoder block consists of one 

2D deconvolution layer with kernel size set to 50, stride set to 1, number of filters to c. The 

output of the deconvolution layer is also zero-padded such that the height and width of the 

output remain unchanged. The deconvolution layer is followed by a final batch 

normalization and Sigmoid activation. The shape of the output we get is 50 × 50 × c.

5. Experiments

This section can be broadly divided into four parts. First we show results for human activity 

recognition by using PIs alone and PIs in fusion with different deep learning models on two 

accelerometer sensor datasets: GENEactiv [50] and USC-HAD [53]. Second, we show 

image classification results with and without fusing PIs with a DenseNet [25] classifier on 

the following image datasets: CIFAR10 [26] and SVHN [32]. Third, we show how the 

generated PIs together with the image classification model can help improve robustness to 

Gaussian noise. Finally, we show improvements in computation time for the task of 

extracting PIs from image databases using Image PI-Net.

5.1. Action Recognition using Accelerometer Data

Dataset Description: The GENEactiv dataset consists of 29 different human-activity 

classes from 152 subjects [50]. The data was collected at a sampling rate of 100Hz using the 

GENEactiv sensor, a light-weight, waterproof, wrist-worn tri-axial accelerometer. Interested 

readers can refer to the following paper to learn about the data collection protocol [50]. The 

USC-HAD dataset consists of 12 different human-activity classes from 14 subjects [53]. 

Data was collected using a tri-axial MotionNode accelerometer sensor at a sampling rate of 

100Hz. The sensor was placed at the front right hip on the body. Both datasets were down-

sampled to 50Hz and fixed-length non-overlapping frames were extracted. Figures 5 and 6 

show the distribution of the different activity classes in each dataset, with each frame having 

a duration of 5 seconds or 250 time-steps. For the GENEactiv dataset we extracted frames 

with time-steps = 250 and 500, and used approximately 75% of the frames for training and 

the rest as the test set. USC-HAD being a significantly smaller dataset, we only extracted 

frames with time-step = 250 and used frames from the first 8 subjects for training and the 

remaining 6 subjects as the test set.

Training Signal PI-Net: The Signal PI-Net model was trained using just the training set of 

the GENEactiv dataset. The batch-size was set to 128 and the model was trained for a 1000 

epochs. The learning rate for the first 300 epochs, next 300 epochs and final 400 epochs was 

set to 10−3, 10−4 and 10−5 respectively. Adam optimizer was used and the Mean-Squared-
Error loss function was used to quantify the deviation of the generated PIs from the ground-

truth PIs. Final training and test loss values are tabulated in Table 1.

Data Characterization and Classification: For characterizing the time-series signals, 

we consider three different feature representations: (1) A 19-dimensional feature vector 

consisting of different statistics calculated over each 10-second frame [50]; (2) Features 

learnt from scratch using multi-layer-perceptron (MLP) models and 1D CNNs; (3) 
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Persistence Images generated using the traditional filtration technique and the proposed 

Signal PI-Net model. The 19-dimensional feature vector includes mean, variance, root-
mean-square value of the raw accelerations on each of X, Y and Z axes, pearson correlation 
coefficients between X-Y, Y -Z and X-Z time series, difference between maximum and 
minimum accelerations on each axis denoted by 

dx2 + dy2, dy2 + dz2, dx2 + dz2 dx2 + dy2 + dz2. From here on out we will refer to this 19-

dimensional statistical feature as SF.

The MLP classifier contains 8 dense layers, with each layer having 128 units and ReLU 

activation. To avoid over-fitting, each dense layer is followed by a dropout layer with a 

dropout rate of 0.2 and a batch-normalization layer. The output layer is another dense layer 

with Softmax activation and with number of units equal to the number of classes. The 1D 

CNN classifier consists of 10 CNN layers with number of filters set to 32, kernel size to 3, 

stride to 1 and the output is zero-padded. Each CNN layer is followed by batch-

normalization, ReLU activation and max-pooling layers. For max-pool layers we set the 

filter size to 3, the stride was set to 1 for every odd layer and 2 for every even layer. For the 

final CNN layer we use a global-average-pooling layer instead of a max-pool layer. Here 

too, the output layer consists of a dense layer with softmax activation and number of units 

equal to number of target classes.

We used the trained Signal PI-Net model to extract PIs for the test set of the GENEactiv 
dataset. We also use the same model to compute PIs for both the training and test sets of the 

USC-HAD dataset. The different classification methods are listed in Table 2. The PIs 

obtained using traditional analytic methods or using the proposed Signal PI-Net model were 

fused with the MLP and 1D CNN classification models differently. For instance, MLP - PI 
and MLP - Signal PI-Net use the MLP classifier to learn features directly from the computed 

PIs (The PIs were vectorized and passed as inputs). MLP - SF uses the MLP classifier with 

the 19-dimensional statistical feature as input. In MLP - SF+PI and MLP - SF+Signal PI-Net 
we first concatenate the SF and PI representations before passing them as input to the MLP 

model. However, for 1D CNN + PI and 1D CNN + Signal PI-Net we use a slightly different 

approach. Using Principal Component Analysis (PCA) we first reduce the vectorized PI 

representation (7500-dimensional) to a 32-dimensional feature vector. This was done to 

reduce the number of additional parameters that would result from the concatenation of the 

PI feature representations to the 1D CNN model. The 32-dimensional PI representation is 

then concatenated to the output of the global-average-pool layer in the 1D-CNN model.

The weighted F1 score classification results for GENEactiv and USC-HAD is shown in 

Table 2. For each method we report the mean ± std result over 5 runs. We observe similar 

results under the different time-step settings in GENEactiv and also across the two datasets. 

PIs computed analytically or using Signal PI-Net perform better than SF. Fusing PIs with SF 

helps significantly improve the classification performance. 1D CNN is a more powerful 

classifier than MLP, which is made clearly evident from the tabulated results. Fusing PIs 

with features learnt using 1D CNNs helps marginally improve the overall classification 

result.
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5.2. Image Classification

Dataset Description: We consider the following three datasets in our experiments: 

CIFAR10 [26], CIFAR100 [26] and SVHN [32]. CIFAR10 and CIFAR100 each contain 

50000 images for training and 10000 images for testing, whereas SVHN has 73257 images 

for training and 26032 images for testing. For classification experiments we only show 

results for CIFAR10 and SVHN. Both datasets have 10 different label categories. Also, the 

height, width and number of channels for each image is equal to 32, 32 and 3 respectively.

Training Image PI-Net: We develop two kinds of Image PI-Net models based on the 

datasets we chose as source and target datasets: (1) In the first kind we set the source and 

target datasets to be same, i.e. we train the Image PI-Net model using the CIFAR10 or 

SVHN dataset. (2) For the second type, we use the CIFAR100 dataset as the source dataset 

and the target dataset is either CIFAR10 or SVHN. Simply put, we employ transfer learning 

by first training the Image PI-Net model using CIFAR100 and later use the target dataset to 

fine-tune the Image PI-Net model. For the second case, we further explore two variations: 

(2a) Fine-tune the model using all samples from the training set of the target dataset; (2b) 

fine-tune using just a subset i.e. 500 images per class in the training set of the target dataset, 

to simulate the scenario of having limited training data. We will refer to these variants as 

Image PI-Net Fine-tune All (Image PI-Net FA) and Image PI-Net Fine-tune Subset (Image 
PI-Net FS) respectively. We explored the above variants to show the use of the proposed 

Image PI-Net model under different scenarios. We set the batch-size to 32. We train the 

basic Image PI-Net model for 415 epochs and set the learning rate for the first 15 epochs, 

next 200 epochs and final 200 epochs to 10−3, 10−5 and 10−6 respectively. For Image PI-Net 
FA and Image PI-Net FS we first load the weights from the CIFAR100 pre-trained model 

and fine-tune the weights for 200 epochs with a learning rate of 10−6. We use the Adam 
optimizer and the Binary Cross-Entropy loss function to compile the models. The training 

and test loss values are tabulated in Table 1.

Data Characterization and Classification: For image classification we use DenseNet 
[25] as our base classification model. PIs alone are not as powerful as features learnt using 

deep learning frameworks for image classification. However, past research works have 

shown topological features to carry complementary information that can be exploited to 

improve the overall performance of a machine learning model [12, 28, 44]. We too show 

results using DenseNet in conjunction with PIs that are generated using traditional filtration 

techniques and using the proposed Image PI-Net model. Figure 7 illustrates how we pass the 

computed PIs as a secondary input to the base classification network. Our DenseNet model 

has the following specifications: depth = 16, number of dense blocks = 4, number of 

convolution filters = 16, growth rate = 12, dropout rate = 0.2 and weight decay = 10−4. We 

pass the generated PIs through a single 2D convolution layer with 32 filters. This is followed 

by a global-average-pool layer which results in a 32-dimensional feature vector. This feature 

vector is concatenated with the output of the global-average-pool layer (penultimate layer) 

of the DenseNet model.

The classification results are averaged over three runs and are tabulated in Table 3. We see 

that fusing PI feature helps improve the overall classification result for the base model on 
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both datasets. PIs generated using the traditional filtration method and the proposed Image 
PI-Net framework achieve similar results. Also, Image PI-Net FS being trained on just 500 

samples per class, achieves a classification result that is comparable to the other Image PI-
Net variants. This is useful in cases where there is limited training data for the target task. To 

check the significance of the different fusion cases we calculate the P-value for each case 

with respect to just the DenseNet model. P-value is the area of the two-sided t-distribution 

that falls outside ±t. We consistently observe a P-value of less than 0.05 across all fusion 

cases. While we only observe marginal improvement in terms of classification accuracy, the 

advantage of using PI-Net with the base classification model is made apparent in the next 

section.

5.3. Robustness to Gaussian Noise in Images

While data augmentation can help neural networks learn different transforms, TDA methods 

have the ability to encode different invariances by default. This could help reduce if not 

completely remove the need for different data variations during the training process. Here 

we evaluate the robustness of the different DenseNet classification models when the test-set 

images are subjected to Gaussian noise. Note, the classification models were trained using 

the original training-set images and no data-augmentation was done during the training 

process. All images were first normalized to lie between [0,1]. For both datasets we apply a 

zero-mean Gaussian noise and vary the standard deviation to the following levels: 0.02, 0.04, 

0.06, 0.08. After applying Gaussian noise we clip the pixel values in the image to lie 

between [0,1]. We refer to the four increasing severity levels of Gaussian noise as Level 1, 
Level 2, Level 3, Level 4 or in short L1, L2, L3, L4.

Since computing PDs and PIs using traditional analytic methods is computationally 

expensive, we were not able to evaluate the DenseNet + PI case on all test images. To give 

some perspective, computing PIs for each severity level on the test-set would take about 10 

hours and 24 hours for CIFAR10 and SVHN respectively. More information about the 

computational complexity is discussed in Section 5.4. To compare all methods we randomly 

select 500 images from the test set and compare the classification performance. Figure 8 

shows the percentage change in the classification performance with respect to the DenseNet 
method in the absence of any Gaussian noise. The effect of Gaussian noise is different for 

each dataset due to which the y-axis is scaled differently. From the bar-plots we see that the 

overall classification performance decreases as the severity level increases. However, the 

percentage decrease for DenseNet + PI and the different DenseNet + Image PI-Net variants 

is less compared to DenseNet alone. Fusing PIs with the DenseNet model helps incorporate 

robustness to different Gaussian noise. We see similar trends between the 500 Test Samples 
and All Test Samples cases.

5.4. Computation Time to Generate PIs

We used the NVIDIA GeForce GTX Titan Xp graphic card with 12GB memory to train and 

evaluate all deep learning models. All other tasks were carried out on a standard Intel i7 

CPU using Python with a working memory of 32GB. We use the Scikit-TDA software to 

compute PDs and PIs [39]. Table 4 shows the average time taken to extract PI for one image 

by conventional TDA methods using one CPU and the proposed PI-Net framework on both a 
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CPU and a GPU. The average is computed over all training images in each dataset. Using 

the Image PI-Net model on a GPU, we see an effective speed up of three orders of 

magnitude in the computation time. Also, Image PI-Net implemented on a CPU is still faster 

than the analytic method by an order of magnitude. Using a GPU we also check the time 

taken to compute PIs when the entire training set is passed into Image PI-Net as a single 

batch. It took about 9.77±0.08 seconds for CIFAR10and 12.93±0.05 seconds for SVHN. 

This is a fraction of the time compared to the time it takes using conventional TDA tools. So 

far it had been impossible to compute PIs at real-time using conventional TDA approaches. 

However, the proposed framework allows us to easily compute PIs in real-time thereby 

opening doors to new real-time applications for TDA.

6. Conclusion and Future Work

In this paper we took the first step in using deep learning to extract topological feature 

representations. We developed a simple, effective and differentiable architecture called to 

extract PIs directly from time-series and image data. PI-Net has a significantly lower 

computational complexity compared to using conventional topological tools. We show 

improvements in classification performance on two accelerometer and two image datasets. 

Despite observing marginal improvement in image classification accuracy, the benefit of 

using PI-Net with the base classification network is made apparent through the robustness to 

Gaussian noise experiment.

For future work we would like to explore more sophisticated deep learning architectures that 

can allow us to learn mappings between higher dimensional data and their corresponding 

topological feature representations. We would also like to see how deep learning can be 

further used to generate other kinds of topological representations and test their robustness 

to different image deformations like contrast, blur and affine transformations.
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Figure 1. 
Illustration of the proposed PI-Net model to directly compute persistence images from input 

data. Traditional analytic methods (illustrated in the top half of the figure) consist of a 

sequence of steps that are computationally expensive.

Som et al. Page 15

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Illustration of a PD and its weighted PI for three points with same birth-time but different 

life-time. Due to the weighting function points with higher life-time appear more brighter.
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Figure 3. 
Illustration of Signal PI-Net for computing PIs directly from multi-variate time-series 

signals.
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Figure 4. 
Illustration of Image PI-Net for computing PIs directly from multi-channel image data.
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Figure 5. 
Distribution of activity classes in the GENEactiv dataset for time-step length = 250.
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Figure 6. 
Distribution of activity classes in the USC-HAD dataset for time-step length = 250.
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Figure 7. 
Illustration of the modified base model where we concatenate PI feature with features learnt 

using the base classification network.

Som et al. Page 21

Conf Comput Vis Pattern Recognit Workshops. Author manuscript; available in PMC 2020 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Percentage point drop in the classification performance on CIFAR10 (top) and SVHN 

(bottom) as the Gaussian noise severity increases. The percentage drop is calculated with 

respect to the classification performance of the DenseNet model in the absence of any 

Gaussian noise. Without noise, the DenseNet classification performance for 500 Test 

Samples and All Test Samples for CIFAR10 is 82.93% and 83.80%, and for SVHN is 

96.06% and 95.65%. While the performance of all models drop as degradation increases, the 

drop of topological fusion models is less compared to just the DenseNet model. Note, the y-

axis is scaled different for each dataset.
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Table 1.

Final train and test loss values after training the different Signal PI-Net and Image PI-Net models.

PI-Net Train Loss Test Loss

Signal PI-Net Time-steps = 250 0.00159 0.00158

Signal PI-Net Time-steps = 500 0.00187 0.00187

CIFAR10 Image PI-Net 1.99793 2.06193

CIFAR10 Image PI-Net FA 2.02095 2.04441

CIFAR10 Image PI-Net FS 0.51734 0.52560

SVHN Image PI-Net 1.53533 1.51732

SVHN Image PI-Net FA 1.57923 1.54195

SVHN Image PI-Net FS 0.41519 0.40955
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Table 2.

Weighted F1 score classification results for the GENEactiv and USC-HAD datasets. The mean ± std values 

were calculated over five runs.

Method
GENEactiv USC-HAD

Time-steps = 250 Time-steps = 500 Time-steps = 250

MLP - PI 46.45±0.32 49.67±0.63 43.21±0.66

MLP - Signal PI-Net 49.47±0.69 53.69±1.08 48.15±0.67

MLP - SF 41.70±0.41 42.01±0.42 35.68±0.11

MLP - SF + PI 48.57±0.37 49.82±0.62 44.31±0.36

MLP - SF + Signal PI-Net 50.66±0.78 54.44±0.80 48.97±0.30

1D CNN 53.56±0.31 54.97±1.35 54.58±0.64

1D CNN + PI 54.28±0.23 56.38±0.23 54.64±0.62

1D CNN + Signal PI-Net 54.41±0.21 56.41±0.22 57.82±0.78
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Table 3.

Image classification accuracy results for CIFAR10 and SVHN datasets, with the mean ± std values calculated 

over three runs. P-value is calculated with respect to the base DenseNet model.

Method
CIFAR10 SVHN

Mean±SD p-Value Mean±SD p-Value

DenseNet 83.80±0.12 - 95.65±0.00 -

DenseNet + PI 84.37±0.21 0.0153 95.86±0.01 <0.0001

DenseNet + Image PI-Net 84.82±0.19 0.0160 95.95±0.08 0.0038

DenseNet + Image PI-Net FA 84.69±0.38 0.0195 95.84±0.06 0.0063

DenseNet + Image PI-Net FS 84.59±0.17 0.0032 95.95±0.07 0.0020
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Table 4.

Comparison of the average time taken to compute PIs for one image using conventional TDA tools and the 

proposed PI-Net model. The time reported is averaged over all images present in. the training set of each 

dataset.

Method
Time (10−3 seconds)

CIFAR10 (50000 images) SVHN (73257 images)

Conventional TDA - CPU 3567.29±867.74 3433.06±622.21

PI-Net - CPU 125.45±5.30 125.49±5.34

PI-Net - GPU 2.52±0.02 2.19±0.02
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