
1/17https://jkms.org

ABSTRACT

Background: Observational studies of the ongoing coronavirus disease 2019 (COVID-19) 
outbreak suggest that a ‘cytokine storm’ is involved in the pathogenesis of severe illness. 
However, the molecular mechanisms underlying the altered pathological inflammation in 
COVID-19 are largely unknown. We report here that toll-like receptor (TLR) 4-mediated 
inflammatory signaling molecules are upregulated in peripheral blood mononuclear cells 
(PBMCs) from COVID-19 patients, compared with healthy controls (HC).
Methods: A total of 48 subjects including 28 COVID-19 patients (8 severe/critical vs. 20 mild/
moderate cases) admitted to Chungnam National University Hospital, and age/sex-matched 
20 HC were enrolled in this study. PBMCs from the subjects were processed for nCounter 
Human Immunology gene expression assay to analyze the immune related transcriptome 
profiles. Recombinant proteins of severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) were used to stimulate the PBMCs and monocyte-derived macrophages, and real-time 
polymerase chain reaction was performed to quantify the mRNA expressions of the pro-
inflammatory cytokines/chemokines.
Results: Among the most highly increased inflammatory mediators in severe/critically 
ill patients, S100A9, an alarmin and TLR4 ligand, was found as a noteworthy biomarker, 
because it inversely correlated with the serum albumin levels. We also observed that 
recombinant S2 and nucleocapsid proteins of SARS-CoV2 significantly increased pro-
inflammatory cytokines/chemokines and S100A9 in human primary PBMCs.
Conclusion: These data support a link between TLR4 signaling and pathological 
inflammation during COVID-19 and contribute to develop therapeutic approaches through 
targeting TLR4-mediated inflammation.
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INTRODUCTION

The coronavirus disease 2019 (COVID-19) is caused by the novel coronavirus severe acute 
respiratory syndrome coronavirus-2 (SARS-CoV-2) and has spread globally causing international 
concerns.1-3 As of August 23, 2020, there were 23,057,288 confirmed cases of COVID-19 in 216 
countries, with 800,906 confirmed deaths.4 Most patients are asymptomatic or recover after 
mounting a self-limiting antiviral response with the development of neutralizing anti-viral 
antibodies and cell-mediated immunity.5 However, around 10% of all cases become serious, 
with dyspnoea, lymphopenia, and extensive chest X-ray abnormalities and half of these become 
critically ill, with respiratory and multi-organ failure.6-8 There appears to be a relationship 
between the clinical and immunological features of COVID-19, as the disease severity correlates 
with certain immunological markers.7,9 Recent studies have shown that severe and critically 
ill patients exhibit ‘cytokine storm’, which is related to the production of excessive cytokines, 
dysregulated immune cell function, and massive systemic inflammation.1,5,10 Understanding 
the causes of altered immune features of COVID-19 would enable the refinement of preventive 
vaccine targets and accelerate therapeutic development. Despite this, the molecular mechanisms 
underlying exaggerated inflammatory phenotypes during COVID-19 are largely unknown.

SARS-CoV-2 belongs to subfamily Coronavirinae in the family Coronaviridae.11 The spike (S) 
glycoprotein, which is immunogenic to produce antibodies and crucial for the entry into host cells, 
harbors a furin cleavage site between the S1/S2 subunits.12 Recent efforts for designing epitope-
based peptide vaccine based on an immune-informatics approach showed that a multivalent 
subunit vaccine targeting S2 subunit of SARS-CoV2 S glycoprotein might have potential to activate 
innate and adaptive immune responses.13 In addition, the receptor binding domain (RBD) of the 
S protein of SARS-CoV-2 appears to be potentially useful in the serological diagnostic assays for 
COVID-19 patients.14 Furthermore, the immune responses to S-RBD binding antibodies exhibited 
a correlation with neutralizing capacity, suggesting a potential COVID-19 immunity.15 Thus it is 
challenging whether each recombinant protein antigen of SARS-CoV-2 is able to induce innate 
immune responses in human monocytes and/or peripheral blood mononuclear cells (PBMCs).

In this study, we examined the immune-related transcriptome profiles in a total of 48 subjects 
including 28 COVID-19 patients, constituted with 20 mild/moderate (MILD) and 8 severe/
critical (SEVERE) cases, and 20 healthy controls (HC). We found that toll-like receptor (TLR) 
4-mediated inflammatory signaling molecules, which mimic pathogenesis of bacterial sepsis, 
are upregulated in PBMCs from COVID-19 patients. Although there was no significant immune 
biomarker between mild and severe groups, S100A9, an alarmin and TLR4 ligand, was the most 
highly increased inflammatory mediators in SEVERE patients, when compared to HC. Notably, 
it inversely correlated with the serum albumin levels. We also showed that recombinant S2 and 
nucleocapsid (NC) proteins of SARS-CoV2 significantly increased pro-inflammatory cytokines/
chemokines and S100A9 in human primary PBMCs. Finally, we showed that S2 protein in 
presence of recombinant S100A9 significantly amplified the IL1B mRNA expression in PBMCs, 
as compared to those stimulated with either S2 protein or S100A9.

METHODS

Study population
COVID-19 patients were confirmed by real-time quantitative polymerase chain reaction (RT-
qPCR) for SARS-CoV-2 in nasopharyngeal and oropharyngeal swab, with or without sputum. 
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Patients were categorized into two groups; MILD vs. SEVERE cases. In severity assessment, 
the World Health Organization's COVID-19 disease severity definition was used.16 Twenty-
eight COVID-19 patients (8 SEVERE vs. 20 MILD) admitted to Chungnam National University 
Hospital, and age/sex-matched 20 HC, giving specific informed consent were included in 
the study. We excluded patients with age under 19. In the SEVERE group, two patients were 
transferred from a long term care facility in which had a COVID-19 outbreak. They had been 
hospitalized with well-controlled schizophrenia. Another patient was referred to our hospital 
in a state of endotracheal intubation. The patients' characteristics, clinical symptoms and 
laboratory test results are summarized in Table 1. All clinical and laboratory parameters were 
those at the time of sampling. The sampling point (median 5–6 days after illness onset) was 
determined by previous reports about COVID-19 patients,3,17 which is relatively early in the 
clinical courses. In asymptomatic patients, a screened date for COVID-19 because of strong 
epidemiologic link was used for illness onset.

Nanostring nCounter assay
Nanostring nCounter Human Immunology gene expression assays and Human miRNA 
expression assays were performed at PhileKorea Technology (Daejeon, Korea), using the 
NanoString nCounter GX Human Immunology Kit V2 (NanoString Technologies, Inc., 
Seattle, WA, USA). Normalization of gene expression levels was performed by scaling with the 
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Table 1. Characteristics and laboratory findings of patients with COVID-19
Characteristics Mild/moderate cases (n = 20) Severe/critical cases (n = 8) P value
Characteristics

Age, yr 53.5 (21–97) 63.5 (36–78) 0.381
Male 10/20 (50) 4/8 (50) 1.000
Body mass index, kg/m2 23.3 (11.8–30.8) 22.8 (20.3–31.0) 0.359
Fever 2/20 (10) 7/8 (87.5) < 0.001
Days from symptom onset to sampling 5.5 (5–10) 7.0 (5–11) 0.371
Days from symptom onset to mechanical ventilator - 10 (8–12) -
Modified Early Warning Score 1 (1–2) 3 (2–3) < 0.001
National Early Warning Score 0 (0–2) 5 (1–8) < 0.001
Sequential Organ Failure Assessment score 0 (0–1) 2.5 (0–6) < 0.001

Underlying conditions
Cardiovascular diseasea 6/20 (30) 3/8 (37.5) 0.516
Cerebrovascular diseaseb 2/20 (10) 2/8 (25) 0.318
Diabetes mellitus 2/20 (10) 1/8 (12.5) 0.652
Chronic kidney disease 0/20 (0) 1/8 (12.5) 0.286
Charlson comorbidity index 1.0 (0–5) 2.5 (0–6) 0.136

Laboratory findings
White blood cell count, × 103/mm3 4.60 (3.0–8.66) 5.44 (2.8–11.76) 0.576

Neutrophil, × 103/mm3 2.97 (1.9–6.08) 3.82 (2.1–10.43) 0.242
Lymphocyte, × 103/mm3 1.30 (0.5–2.2) 1.03 (0.6–1.93) 0.186
Neutrophil-to-lymphocyte ratio 2.29 (1.05–6.0) 3.42 (2.2–10.98) 0.042
Monocyte, × 103/mm3 0.300 (0.1–0.92) 0.455 (0.1–0.94) 0.601
Monocyte, % 6.65 (0.3–19.8) 6.65 (3.1–14.3) 0.901

Platelet, × 103/mm3 180.0 (107–365) 170.5 (97–269) 0.387
Alanine aminotransferase, U/L 21 (13–50) 27 (19–110) 0.098
Aspartate aminotransferase, U/L 19 (12–121) 20.5 (8–53) 0.858
Albumin, g/dL 4.15 (3.1–4.6) 3.15 (2.3–4.1) 0.001
Total bilirubin, mg/dL 0.20 (0.1–1.23) 0.54 (0.1–2.27) 0.575
Lactate dehydrogenase, U/L 363.5 (280–554) 596.0 (340–1,461) 0.001
C-reactive protein, mg/dL 0.3 (0.3–1.7) 7.9 (2.3–12.4) < 0.001

Data are presented as medians (ranges) or numbers (%). For asymptomatic patients in the mild/moderate group, a time of diagnosis with COVID-19 was used as 
illness onset.
COVID-19 = coronavirus disease 2019.
a Including hypertension; bIncluding dementia and schizophrenia.
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geometric mean of the built-in control gene probes for each sample. Differentially expressed 
immune genes (DEiGs) among HC, SEVERE, and MILD patients satisfied false discovery 
rate (FDR) < 0.05 which was analyzed and corrected by wilcox.test and p.adjust functions, 
respectively, implemented in stat package of R (v. 3.6.2; R Foundation, Vienna, Austria).

Cell culture and SARS-CoV-2 recombinant protein stimulation
Human PBMCs from healthy volunteers were isolated from heparinized venous blood using 
Ficoll-Hypaque (Lymphoprep; Alere technologies, Oslo, Norway) as described previously.18 
For monocyte-derived macrophages (MDMs) differentiation, adherent monocytes were 
incubated in Roswell Park Memorial Institute 1640 medium (Lonza, Basel, Switzerland) 
containing 5% pooled human serum (Sigma-Aldrich, St. Louis, MO, USA), 1% L-glutamine, 
for 1 hour at 37°C, after which the nonadherent cells were removed. Human MDMs were 
prepared by culturing peripheral blood monocytes for 4 days in the presence of 4 ng/mL 
human macrophage colony-stimulating factor (R&D Systems, Minneapolis, MN, USA). 
SARS-CoV-2 (2019-nCoV) NC-His recombinant protein (cat. No. 40588-V08B), Spike S1-
His recombinant protein (cat. No. 40591-V08H), Spike S2 extracellular domain (ECD)-His 
recombinant protein (cat. No. 40590-V08B), and Spike RBD-His recombinant protein (cat. 
No. 40592-V08H) were purchased from Sino Biological, Beijing, China. Cells were stimulated 
with the proteins as indicated in figure legends.

RNA extraction and RT-qPCR
Total RNA from PBMCs or MDMs was extracted using QIAzol lysis reagent (Qiagen, Hilden, 
Germany) and miRNeasy Mini Kits (Qiagen) according to the manufacturer's instructions, 
followed by RNA quantitation. cDNA from total RNA was synthesized using the reverse 
transcription master premix (ELPIS Biotech, Daejeon, Korea). RT-qPCR was performed in 
Rotor-Gene Q 2plex system (Qiagen) using SYBR green master mix (Qiagen) and primers for 
indicated genes. Primers used in this study are listed in Supplementary Table 1. Data were 
analysed using 2ΔΔ threshold cycle method where GAPDH was used for normalization.

Immunoblot analysis and enzyme-linked immunosorbent assay (ELISA)
Cells were lysed using RIPA buffer (ELPIS Biotech) containing protease and phosphatase 
inhibitor cocktails (Roche Diagnostics, Mannheim, Germany) and equal amount of protein 
mixed with sodium dodecyl sulphate sample buffer were boiled for 5 minutes. Samples were 
subjected to sodium dodecyl sulphate-polyacrylamide gel electrophoresis and then transferred 
to polyvinylidene difluoride membrane. The membranes were blocked in 5% skim milk in 
Tris-buffered saline containing 0.1% Tween 20 (TBS-T) for 1 hour at room temperature, and 
then incubated overnight with following primary antibodies at 4°C: phospho-nuclear factor 
(NF)-κB p65 (Ser536) from Cell Signaling Technology (Danvers, MA, USA) and beta-actin from 
SantaCruz Biotechnology (Dallas, TX, USA). Membranes were washed using TBS-T and further 
incubated with appropriate secondary antibodies (Cell Signaling Technology) for 1 hour at 
room temperature. The immune-reactive proteins were detected using a chemiluminescence 
kit. ELISA to detect the levels of interleukin (IL)-6 in cell supernatant was performed according 
to the manufacturer's protocol (R&D Systems; cat. No. DY206-05).

Bioinformatics analysis
Spearman's correlation coefficients of gene expression levels of 579 immune genes were 
calculated with a cor.test function implemented in stat package of R. The KEGG pathway 
enrichment analysis was performed using DAVID (version 6.8; https://david.ncifcrf.gov) with 
a human reference gene set. We picked out significantly enriched pathways with FDR < 0.05.
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To identify chemokine, IL, tumor necrosis factor (TNF), interferon (IFN) and those receptor 
gene families, we downloaded gene family annotations from HUGO Gene Nomenclature 
Committee (https://www.genenames.org).19

Statistical analysis
Statistical analyses were performed with Analyse-it, version 5.1 (Analyse-it Software, Ltd., 
Leeds, UK), SPSS Statistics for Windows, version 24.0 (SPSS Inc., Chicago, IL, USA), and 
GraphPad Prism, version 5.0 (GraphPad Software, San Diego, CA, USA). The data were 
processed by principal component analysis (PCA), Spearman's correlation, Student's t-test, 
Mann-Whitney U test, analysis of variance, and Kruskal-Wallis H test, as appropriate, and 
detailed in each figure and figure legends. Results are presented as medians (ranges) or means 
± standard error of the mean or ± standard deviation (SD) as indicated in figure legends.

Ethics statement
This study was approved by the Institutional Research and Ethics Committee at Chungnam 
National University Hospital (Daejeon, Korea; CNUH 2019-04-046, CNUH 2020-07-082) 
and conducted in accordance with the Declaration of Helsinki.20 Informed consent was 
submitted by all subjects when they were enrolled.

RESULTS

Characterization of immune features of COVID-19 patients in terms of clinical 
severity
To investigate the immune signaling signature of COVID-19, a total of 48 Korean subjects 
(untreated COVID-19 patients with various clinical severities [n = 28] and HC [n = 20]) 
were enrolled in the study. Table 1 summarizes the characteristics and laboratory findings 
of 20 MILD (median age 53.5 [range 21–97] years) and 8 SEVERE (median age 63.5 [range 
36–78] years) patients. In the SEVERE group, 7 of 8 (87.5%) patients had fever at the time 
of sampling vs. only 2 (10%) in the MILD group. The median time from symptom onset to 
mechanical ventilation was 10 (range 8–12) days. Underlying comorbidities were present 
in about half of the patients (hypertension, diabetes mellitus, dementia, schizophrenia, 
and chronic kidney disease) and did not differ between the groups. The median time from 
symptom onset to sampling was 5.5 (range 5–10) and 7 (range 5–11) days in the MILD and 
SEVERE groups, respectively. The scores for the degree of illness were higher in the SEVERE 
group at the time of sampling. The Charlson comorbidity index was similar in the two 
groups, because age was matched and the underlying conditions did not differ significantly. 
All MILD patients recovered fully without sequelae, while 4 SEVERE patients required 
extracorporeal membrane oxygenation. One patient died of persistent pneumonia and septic 
shock. Among the laboratory parameters, hypoalbuminemia, high neutrophil-to-lymphocyte 
ratio, and increased serum C-reactive protein and lactate dehydrogenase levels were 
associated with disease severity (Table 1).

In this study, we first assessed the profiles of immunological determinants depending 
on disease severity in Korean COVID-19. To examine the immune-related transcriptome 
profiles induced by COVID-19 infection, we performed nCounter Human Immunology 
gene expression assays for PBMCs from 20 HC, 8 SEVERE, and 20 MILD samples (Fig. 1A). 
Using PCA, we found that HC was clearly separated from both SEVERE and MILD, while 
the two patient groups intermingled (Fig. 1B). These data imply that altered expression of 
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immune-related genes is a transcriptional hallmark of COVID-19 and that the overall immune 
transcriptome profiles are similar in SEVERE and MILD groups in Korea. To determine which 
genes are differentially expressed in COVID-19 patients, we compared the expression of 
immune-related genes between HC and COVID-19 patients. In all, 298 DEiGs were identified, 
and they were mainly involved in the cytokine–cytokine receptor interaction and NF-κB 
signaling pathways (Fig. 1C and D). The same analysis was repeated for each patient group 
separately, and we identified 230 and 255 DEiGs in the SEVERE and MILD samples, respectively 
(Supplementary Fig. 1A and C). The cytokine–cytokine receptor interaction was the top 
enriched pathway in both the SEVERE and MILD groups (Supplementary Fig. 1B and D).

We then investigated the full list of gene families associated with the cytokine–cytokine 
receptor interaction pathway. Using the HUGO gene nomenclature database, members 
of several gene families were identified, including chemokines, ILs, TNFs, and IFNs 
(Supplementary Fig. 2A). Notably, C-C motif (CC) chemokines (CC chemokine ligand 
[CCL] 2, CCL7, CCL8, CCL24, CCL20, CCL13, and CCL3), C-X-C motif (CXC) chemokines (CXC 
chemokine ligand [CXCL] 2 and CXCL10), and chemokine receptor subfamilies were most 
numerous, and were significantly (FDR < 0.05) upregulated in both MILD and SEVERE 
COVID-19 patient groups (Fig. 1E and F; Supplementary Fig. 2B). Similar upregulated gene 
expression patterns were observed in the other three family members including ILs, IFNs, 
and TNFs (Supplementary Fig. 3). It was noted that IL7R and CD40LG levels were significantly 
depressed in SEVERE patients, compared with HC (Supplementary Fig. 3). Together, these 
data suggest that abnormal inflammatory chemokine generation represents as common 
immune features during COVID-19.

Elucidation of molecular signaling pathways of immune transcriptome during 
COVID-19
Next, we explored the second top hit pathway, NF-κB signaling (Fig. 1D), which is one of the major 
hyper-activated pathways following COVID-19 infection.21 With some exceptions (such as LCK, 
CD40LG, PLAU, PTGS2, and TRAF5), the expression of TLR4 and its related/downstream signaling 
molecules (CD14, myeloid differentiation primary-response 88 [MYD88], IRAK1, TRAF6, TIRAP, and 
TICAM) were significantly (FDR < 0.05) upregulated (Fig. 2A). In addition, most NF-κB signaling 
pathway genes (NFKBIA, NFKB1, RELA, and NFKB2) were significantly (FDR < 0.05) upregulated 
(Fig. 2A). These data suggest that TLR4-mediated NF-κB signaling pathway activation is involved in 
the upregulation of inflammatory responses in patients with COVID-19 infection.

Interestingly, there were no significant differences in the expression of IFN regulatory factor 
(IRF) 3, TLR3, TLR7, TLR8, and TLR9, all of which are related to putative viral signaling,22,23 
between COVID-19 patients and HC (Fig. 2B). We also found that IL1B and its downstream 
inflammatory signaling molecules (IL1R1, MYD88, IRAK1, TRAF6, NFKBIA, NFKB1, and 
RELA) were dramatically elevated in COVID-19 patients (Fig. 2A). The data suggest that the 
upregulated profiles of TLR4, IL1R, and NF-κB signaling pathway molecules in COVID-19 
patients are presumably associated with the altered immune responses to viral components, 
host damage-associated molecular pattern (DAMP) signals, or cytokine signaling 
activation,10 and may contribute to uncontrolled pathological inflammation.

Identification of SEVERE-specific immune target genes
To understand the pathophysiological differences between SEVERE and MILD patients 
better, we then examined whether there are any transcriptomic differences between the 
two COVID-19 patient groups. Directly comparing the gene expression profiles between the 
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SEVERE and MILD groups, no genes were significantly (FDR < 0.05) differentially expressed, 
which might have been partly hindered by the heterogeneity of the presentation of disease 
severity. Therefore, we performed two pairwise transcriptome comparisons: SEVERE vs. HC 
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and MILD vs. HC. From these comparisons, 58 DEiGs were identified showing significant 
(FDR < 0.05) changes in gene expression between SEVERE and HC, which are potential 
therapeutic targets, but none between MILD and HC (Fig. 3A). Intriguingly, the highly 
expressed SEVERE-specific upregulated genes were mainly associated with complement 
activation (C9 and C1QA), autoimmunity (AIRE and PRKCD), and inflammatory processes 
(CXCL11, CCL16, and S100A9) (Fig. 3B). The SEVERE-specific downregulated genes were 
linked to major histocompatibility complex proteins (HLA-DRA and HLA-DMA), T-cell factor/
lymphoid enhancer-binding factor family (TCF7 and LEF1), and natural killer cell functions 
(KLRB1, KLRG1, CD160, and GZMK) (Fig. 3C).
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We then evaluated the correlation between the immune mediators and clinical parameters 
(Supplementary Fig. 4) and among the immune markers (Supplementary Fig. 5) in COVID-19 
patients. On examining the relationship between immune markers and clinical parameters 
(Supplementary Fig. 4), we identified S100A9 as an important biomarker that was inversely 
correlated with serum albumin level in the SEVERE group (Fig. 3D).

Inflammatory signaling activation triggered by SARS-CoV-2 proteins
To gain more insight into the effects of viral components on the inflammatory responses 
in human PBMCs and MDMs, we then assessed whether recombinant proteins of SARS-
CoV-2 (NC, S2 ECD, S1, and RBD) (Fig. 4A) induced the expression of pro-inflammatory 
cytokines/chemokines and NF-κB signaling activation. Notably, our data showed that 
recombinant NC and S2 ECD, but not the S1 subunit or RBD domain of S proteins, of 
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SARS-CoV-2 significantly increased pro-inflammatory cytokines/chemokines in human 
primary PBMCs (Fig. 4B) and MDMs (Supplementary Fig. 6A and B). However, none of the 
proteins induced pro-inflammatory cytokine or chemokine gene expression in A549 airway 
epithelial cells (Supplementary Fig. 6C). In addition, either NC or S2 significantly triggered 
expression of various chemokines, IFNG, and S100A8/A9 in human PBMCs (Fig. 4C) and 
MDMs (Supplementary Fig. 6A and B). It was striking that SARS-CoV-2 NC and S2 proteins 
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markedly increased the production of pro-inflammatory cytokine IL-6 in human PBMCs 
(Fig. 4D and Supplementary Fig. 6D; at 6 and 18 hours, respectively).

In addition, S2 protein triggered NF-κB signaling activation in human PBMCs within 30 
minutes (Fig. 4E). Furthermore, S2 protein in presence of recombinant S100A9 significantly 
induced the IL1B mRNA expression in PBMCs as compared to those stimulated with either S2 
protein or S100A9 alone (Fig. 4F). These data strongly suggest that the NC and spike protein 
S2 ECD can trigger inflammatory responses and NF-κB signaling activation, and S100A9 
may act as a mediator in a positive feedforward loop of inflammatory signaling activation in 
human PBMCs and MDMs. Together, these data demonstrated for the first time that SARS-
CoV-2 proteins NC and S2 ECD trigger the activation of inflammatory cytokine/chemokine 
responses in human PBMCs and MDMs.

DISCUSSION

We found that many CC chemokines, ILs, and type I IFNs are highly upregulated in PBMCs 
from both MILD and SEVERE patients, compared with those from HC. Results in this 
study partially correlate with recent reports that SEVERE cases are associated with defective 
immune responses, i.e., lymphopenia, high neutrophil-to-lymphocyte ratio, and increased 
inflammatory cytokine levels.1,5,24-27 We also have similar data with recent studies from 
Wuhan, China, that found excessive expression of chemokines (CCL2/MCP1, CXCL10/IP10, 
CCL3/MIP1A, and CCL4/MIP1B) in bronchoalveolar lavage fluid and PBMCs from patients 
with SARS-CoV-2.28 Huang et al.17 showed that intensive care unit patients with clinical 
complications had high levels of pro-inflammatory cytokines and chemokines, including 
IL-2, IL-7, IL-10, granulocyte colony-stimulating factor, CXCL10, CCL2, CCL3, and TNF-α. 
In addition, our data partly correlate with recent studies reported by Lee et al.29 that Korean 
patients with COVID-19 had hyper-inflammatory phenotypes with TNF/IL-1β upregulation 
in all types of cells among PBMCs. In that study, severe patients exhibited co-existed pattern 
of type I IFN and TNF/IL-1β responses in monocytes.29 The discrepancy from previous 
studies29 and ours might be due to different subjects as well as single vs. total cell population 
in PBMCs. Our study has a limitation of immune transcriptome analysis in mixed cell 
population of PBMCs. Future studies are requested to analyze the immune profile at a single-
cell level, and in a larger population than the present data.

Innate immune responses are triggered by pattern-recognition receptors, including TLRs 
and nucleotide-binding oligomerization domain-like receptors, and activate the complicated 
intracellular signaling cascades that culminate in the activation of NF-κB pathways.30-33 
TLR signaling pathways are mediated by the components, including sensors that recognize 
certain pathogen- and damage-associated molecular patterns (PAMPs and DAMPs) and the 
adaptors that transduce signals.32 Among TLRs, TLR4 can recognize lipopolysaccharide, 
other PAMPs, and DAMPs at the cell surface, whereas TLR3, TLR7, TLR8, and TLR9 are 
exclusively expressed in endosomal compartments and recognize viral components.31-33 
TLR4 is the only TLR to transduce innate immune signals through both MyD88 and Toll-IL-1 
receptor-domain-containing adaptor-inducing IFN-β to activate NF-κB and IRF signaling, 
respectively.31-33 NF-κB signaling pathway is required for pro-inflammatory cytokine/
chemokine generation and the production of antimicrobial proteins33,34; IL-1 family 
members are involved in the initiation of potent inflammatory responses, orchestration of 
innate and adaptive immunity, and development of sepsis.35,36 Although both TLR and IL-1 
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signaling activation are critical for innate immune defense against a variety of pathogens, 
dysregulation of this signaling pathway can lead to pathogenesis of various diseases including 
inflammatory and autoimmune diseases.35-38

The increased S100A9 seems to be critically important because hypoalbuminemia is associated 
with disease severity in COVID-19 patients.7 S100A8/A9 (a heterodimer complex of S100A8 and 
S100A9 proteins)39 is a DAMP signal as a TLR4 ligand.40 The elevated expression of S100A8/A9 
is induced by inflammation, and secreted S100A8/A9 further amplifies inflammatory soluble 
cytokines/chemokines, forming a feed-forward loop affecting the persistent inflammation.41 
Importantly, S100A8/A9, as a ‘soil signal’, mediates metastasis of melanoma or breast 
cancers to the lung.40 Since S100A8/A9 protein is involved in the pathogenesis of numerous 
inflammation-associated and autoimmune diseases,40,42 our findings provide new insight into 
the pathogenesis of COVID-19, and may contribute to therapeutic approaches based on the 
S100A9-CC chemokine-mediated inflammatory signaling.

Notably, we found that the recombinant NC and S2 ECD, but not the S1 subunit or RBD 
domain of S proteins, of SARS-CoV2 significantly increased pro-inflammatory cytokines/
chemokines in human primary PBMCs and MDMs. These data strongly suggest that the viral 
proteins are able to induce pro-inflammatory responses in human immune cells. Similarly, 
a previous study on the S protein of SARS-CoV showed that it was selectively recognized 
by lung surfactant protein and effectively activated macrophages, but not dendritic cells, 
to produce TNF-α, IL-6, and IL-8.43 However, unlike our results, authors proclaim that 
purified S-protein did not trigger TLR2 or TLR4 pathway due to unresponsiveness of NF-κB 
signaling.43 Recently, cytomegalovirus protein US31 was reported to directly interact with 
NF-κB2, resulting induction of NF-κB2-induced inflammation in macrophages.44 Duette 
et al.45 revealed that release of extracellular vesicle, which is likely to contain viral proteins, 
during HIV infection promoted viral replication and macrophage-mediated inflammatory 
responses in coordination with HIF-1α induction. These results indicate that some viral 
proteins function as a pro-inflammatory mediator depending on their functional structures 
and species origin.

Recent promising results suggest that dexamethasone has beneficial effects to reduce deaths 
of patients receiving invasive ventilation or oxygen.46 Our findings provide a rationale to use 
dexamethasone, a ligand for glucocorticoid receptor, which interferes with TLR-dependent 
inflammatory signaling through multiple mechanisms.47,48 Indeed, it has been long 
suggested that the blockade of TLR signaling through molecular checkpoints may contribute 
to developing the potential treatment against specific infections and/or other diseases.49 
Taken together, these data provide novel insights into the idea that the amelioration of 
excessive TLR4-mediated innate signaling might be beneficial for treatment of COVID-19.
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Supplementary Table 1
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Supplementary Fig. 1
Immune gene expression profile in SEVERE and MILD COVID-19 patients. (A, C) Scatter 
plots representing 579 immune genes with the log2-transformed FPKM for (A) SEVERE and 
(C) MILD patients compared to HC. (B, D) Top 10 significantly enriched KEGG pathways 
associated with 230 and 255 DEiGs between (B) SEVERE vs. HC and (D) MILD vs. HC, 
respectively. P values were calculated using Mann-Whitney U test and adjusted P values (FDR) 
were shown.

Click here to view

Supplementary Fig. 2
Gene expression profile of cytokine-cytokine receptor interaction pathway. (A) Annotation 
of gene families involved in the cytokine-cytokine receptor interaction pathway. (B) Heatmap 
representing log2-transformed fold changes of 64 DEiGs belonging to the cytokine-cytokine 
receptor interaction pathway. The hierarchical clustering was performed with Euclidean 
distance matrix by the hclust function implemented in stat package in R. P values were 
calculated using Mann-Whitney U test and adjusted P values (FDR) were shown.

Click here to view

Supplementary Fig. 3
Gene expression profile of three cytokine family members. (A) Log2- transformed fold 
changes of interleukin and interleukin receptor genes from MILD vs. HC (x-axis) and SEVERE 
vs. HC (y-axis). (B) Comparisons of expression levels of interleukin and interleukin receptor 
genes of interest labeled on the plot (A). (C-F) Same analyses for IFN and IFN receptor 
genes (C, D), TNF and TNF receptor genes (E, F) were performed. The expression level was 
represented by FPKM. Error bar indicates standard error of mean. P values were calculated 
using Mann-Whitney U test and adjusted P values (FDR) were shown.

Click here to view

Supplementary Fig. 4
Correlation matrix between immune mediators and clinical parameters in COVID-19 patients.
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Supplementary Fig. 5
Correlation matrix among the immune parameters in COVID-19 patients.

Click here to view
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Supplementary Fig. 6
Recombinant NC and S2 ECD proteins of SARS-CoV-2 increase proinflammatory cytokines/
chemokines in human MDMs, but not in the A549 cells. (A, B) qPCR analysis of indicated 
genes in human MDMs treated with recombinant NC, S2 ECD, S1 subunit, or RBD antigen 
(A) and NC or S2 ECD (B) (3 μg/mL each; for 6 hours). (C) qPCR analysis of indicated genes in 
A549 cells treated with recombinant NC, S2 ECD, S1 subunit, or RBD antigen (1 μg/mL each; 
for 6 hours). (D) Level of IL-6 measured by ELISA in cell supernatant from PBMCs treated 
with indicated proteins for 18 hours. Welch's t-test was used to measure the significance 
(A-D). Values are mean ± standard deviation. from a representative of two independent 
experiments performed in triplicate (A-C) or mean ± standard error of mean. of pooled data 
from two independent experiment (D).
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