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Abstract
Lung cancer has the highest mortality rate of all cancers, and early detection can improve survival rates. In the recent years, low-
dose CT has been widely used to detect lung cancer. However, the diagnosis is limited by the subjective experience of doctors.
Therefore, the main purpose of this study is to use convolutional neural network to realize the benign and malignant classification
of pulmonary nodules in CT images. We collected 1004 cases of pulmonary nodules from LIDC-IDRI dataset, among which 554
cases were benign and 450 cases were malignant. According to the doctors’ annotates on the center coordinates of the nodules,
two 3D CT image patches of pulmonary nodules with different scales were extracted. In this study, our work focuses on two
aspects. Firstly, we constructed a multi-stream multi-task network (MSMT), which combined multi-scale feature with multi-
attribute classification for the first time, and applied it to the classification of benign andmalignant pulmonary nodules. Secondly,
we proposed a new loss function to balance the relationship between different attributes. The final experimental results showed
that our model was effective compared with the same type of study. The area under ROC curve, accuracy, sensitivity, and
specificity were 0.979, 93.92%, 92.60%, and 96.25%, respectively.

Keywords Convolutional neural network . Pulmonary nodule classification .Multi-scale feature fusion .Multi-task learning

Introduction

Lung cancer has the highest mortality rate among all cancer
diseases in the world and poses a great threat to human health.
Statistics showed that the number of new cases and deaths of
lung cancer in 2018 ranked first, accounting for 11.8% of total
new cases of cancer and 18.4% of total deaths of cancer,
respectively [1]. In most cases, it is difficult to detect lung
cancer at an early stage, and it is too late to treat patients once
their initial symptoms begin. However, according to the
American Cancer Society, if lung cancer is detected early,

the survival rate can reach 47% [2]. Therefore, early and ac-
curate interpretation of nodules is of great significance for the
prevention and treatment of lung cancer.

In recent years, low-dose CT imaging technology has
become increasingly mature, has been widely used in clin-
ical examinations, and also has great advantages in the
screening of pulmonary nodules [3]. Pulmonary nodules
are round, opaque local parenchymal lesions with a diam-
eter less than 3–4 cm [4]. In clinical practice, doctors need
to interpret hundreds of CT scan slices according to the
radiological characteristics of nodules [5]. However, the
diagnosis is limited by the subjective experience of the
doctor, the degree of fatigue, and misreading. Therefore,
doctors need reliable computer-aided diagnosis (CAD)
systems to help them interpret the CT slices. Relevant
studies show that a reliable CAD system can help doctors
make correct judgments and can effectively improve effi-
ciency and reduce costs [6]. In the CAD system, there are
two main methods for automatic classification of pulmo-
nary nodules at present, one is the traditional method, and
the other is the classification method using convolutional
neural network (CNN) and deep learning.
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In the recent years, in order to realize the computer-aided
diagnosis of pulmonary nodules, many researchers have ex-
plored various pattern recognition methods to discover the
morphological and imaging features related to the diagnosis,
including original features such as the texture [7], shape [7–9],
and gray-scale [7] of pulmonary nodules. It also includes ad-
vanced features extracted from original features, such asWang
et al. [10] uses based on local binary pattern (LBP) texture
feature and shape feature of the radial gradient histogram
(HOG) to characterize nodules and Farag et al. [11] using
texture and shape features extracted by LBP, Gabor, and
LBP fusion feature descriptors to classify pulmonary nodules.
However, for traditional pattern recognition methods, feature
extraction is not easy and lacks of computer self-learning abil-
ity. Radiologists need to do a lot of research work to discover
many features related to diagnosis.

With the research and development of deep learning, CNN
has become an effective alternative to traditional pattern rec-
ognition methods. CNN can automatically extract features
from the input image and output results on the output end,
which is an end-to-end working manner. Due to the good
performance of CNN in the field of natural image analysis,
some researchers have explored the application of CNN in the
analysis of medical image.

According to the research on deep learning based on auto-
matic diagnosis of pulmonary nodules, we have got three in-
spirations. Firstly, the spatial information of 3D images is
helpful to improve the classification accuracy. For example,
Nibali et al. [12] established a 2.5D CNN, which uses three
perpendicular 2D images as input and used three identical
residual networks to extract features from three different
views. Polat et al. [13] built a 3D CNN, which can effectively
learn the spatial information of images and achieve a good
classification effect. For 3D spatial images, the classification
accuracy of 3D CNN is usually higher than that of 2D CNN
[14, 15]. Secondly, by using images of multiple sizes, the
network can pay attention to the overall and detailed informa-
tion of the target and make accurate judgments. Liu et al. [16]
built a multi-scale CNN, which uses image patches of multiple
sizes as input, combines context information at different
scales, and successfully applies classification with nodules.
Dou et al. [15] also designed a multi-stream multi-scale
CNN to combine the context information of multi-scale im-
ages to realize the diagnosis and classification of pulmonary
nodules. The method of combining contextual information of
different scale images has been proved to be effective in com-
puter vision tasks [17]. Thirdly, by learning the subtle features
between different attributes, the classification effect of the
network will be better. Li et al. [18] built a multi-task learning
CNN model, combining the eight attributes’ grading of nod-
ules with the benign and malignant classification, effectively
improving the evaluation indicators. Multi-task learning im-
proves network performance by learning multiple objectives

from a shared representations and mining the internal relation-
ship between multiple objectives [19]. However, the classifi-
cation performance of multi-task learning networks depends
on the weight selection between the loss of each task.

Based on the above findings, this paper proposes a new
CNN pulmonary nodule classification model, which com-
bines multi-scale image features with multi-attribute grading
tasks. This network combines a multi-streamCNN structure, a
residual network structure, and a multi-task learning network
structure, so we call it a multi-stream and multi-task (MSMT)
network. Our research contributions can be summarized as
follows:

1. Combining the multi-scale features of pulmonary nodules
with multi-attribute classification is proposed in relevant
studies for the first time.

2. A loss function for multi-task learning is constructed,
which can regulate the loss relationship between different
tasks.

3. In the LIDC-IDRI dataset, the overall performance of our
model is more competitive than the methods proposed in
relevant references.

Materials and Method

Data Acquisition and Preprocessing

To evaluate our method, we used the LIDC-IDRI dataset from
the Lung Image Database Association [20], which is one of
the largest publicly available lung cancer screening datasets.
The dataset collected 1018 clinical lung CT scans from 7 in-
stitutions, and each CT scan contained a relevant XML file
containing the independent diagnostic results of four experi-
enced radiologists. The diagnostic results include the coordi-
nates of the pulmonary nodules larger than 3 mm in diameter,
the degree of malignancy, and the quantitative scores of eight
attributes, Table 1 shows radiologists’ grading rules for malig-
nancy degree and attributes. In addition, the American
College of Radiology recommends that thin-layer CT scans
should be used for nodule classification [21]. Therefore, we
removed scans where the slice thickness is greater than 3 mm,
missing slices, and inconsistent slices spacing. At the same
time, nodules less than 3 mm are considered to be clinically
irrelevant [22]. Therefore, we only retain nodules with a di-
ameter greater than or equal to 3 mm, and at least three of the
four radiologists have made such a diagnosis. Therefore, we
only reserved CT scans with nodule diameters greater than or
equal to 3 mm, and at least three of the four radiologists made
such a diagnosis.

Because these nodules lack the results of histopathology,
we characterize pulmonary nodules based on the doctor’s
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score. First of all, we need to divide the dataset into benign and
malignant according to the score of malignancy degree, with
score ranging from 1 to 5. Since each nodule is independently
diagnosed by four radiologists, different scores may be gener-
ated, so we define the average score of malignancy given by
the four radiologists as the overall degree of malignancy.
Specifically, we consider that nodules with an average score
above 3 to be malignant nodules, while nodules with an aver-
age score below 3 are benign nodules. Nodules with an aver-
age score of 3 were removed to explain the indecisiveness of
the radiologists. In a similar way, we calculate the average
score of each attribute as a final level after rounding. We
eventually obtained a total of 1004 cases of pulmonary nod-
ules, including 554 benign cases and 450 malignant cases.
Since the images collected in the dataset were generated by
different CT scanners and the spatial resolution was slightly
different, we used third-order spline interpolation to regulate
the size of all voxels to 1 × 1 × 1 mm3.

A typical CT scan consists of hundreds of gray-scale im-
ages with a size of 512 × 512. However, because of the small
size of pulmonary nodules, it is unrealistic to classify pulmo-
nary nodules by processing the whole image. Therefore, we
need to extract the pulmonary nodule areas based on the nod-
ule center coordinate marked by the doctor in the XML file. In
this study, we extracted 3D patches of nodules at two different
scales. According to the statistics of nodule diameter distribu-
tion in Table 2, in order to extract the characteristics of nodules
more accurately, we limited the volume of the first patch to
32 × 32 × 6 mm3, in which the pulmonary nodules occupy the

main position. We limited the volume of the second patch to
64 × 64 × 12mm3, covering the entire nodule and surrounding
tissues. And we adjust the size of the second patch to 32 ×
32 × 6 mm3, and the image patches of the two scales are de-
noted as S1 and S2, respectively. Figure 1 shows the morphol-
ogy of the same nodule in different CT scan slices.

Method

In this section, we describe a new CNN model, in which the
features of two different scale image patches are fused by
multi-stream CNN, and the benign and malignant classifica-
tion and attribute classification of pulmonary nodules are re-
alized by multi-task learning. Figure 2 shows the new CNN
model, which consists of three parts: (1) Two 3D image
patches (S1 and S2) with different scales are used as the input
of the model, and the initial feature extraction is realized by
the multi-stream CNN, and then the features are fused by the
early fusion strategy; (2) input the fused 3D feature maps into
the fine-tuned 3D residual network (ResNet-22) to extract the
deep features; (3) by combining the classification of benign
and malignant with the attributes classification of pulmonary
nodules through multi-task learning, the model can output the
classification of benign and malignant and the classification of
eight attributes at the same time. In addition, in order to bal-
ance the relationship between different tasks, we propose a
new multi-task learning loss function.

Multi-stream CNN

Since the multi-stream CNN can focus on the context infor-
mation of the candidate nodules in different scale images, the
features extracted from the different streams can complement
each other. Therefore, it is best to learn the features of different
scale images simultaneously through a network model so that
the network can extract more effective features. For this

Table 2 The statistics of nodule diameter distribution

Size (mm) ≤ 10 (10, 20] (20, 32] > 32

Benign 539 15 0 0

Malignant 201 202 46 1

Table 1 Grading rules for
malignancy degree and attributes Malignancy ① Highly unlikely ② Moderately unlikely ③ Indeterminate

④ Moderately ⑤ Highly suspicious

Subtlety ① Extremely subtle ② Moderately subtle ③ Fairly subtle

④ Moderately obvious ⑤ Obvious

Internal Structure ① Soft tissue ② Fluid ③ Fat

④ Air

Calcification ① Popcorn ② Laminated ③ Solid

④ Non-central ⑤ Central ⑥ Absent

Sphericity ① Linear ③ Ovoid ⑤ Round

Margin ① Poorly defined ⑤ Sharp

Lobulation ① None ⑤ Marked

Spiculation ① None ⑤ Marked

Texture ① Non-solid ③ Part solid ⑤ Solid
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reason, we designed a two-stream CNN with two convolution
layers to extract the features of image patches (S1 and S2) that
were cut by two different sizes and stacked the features map
respectively extracted from the two streams through early fu-
sion strategy to form a new feature map.

Residual Network Structure

The traditional CNN model increases the network depth by
stacking convolutional layers to improve the classification ac-
curacy. But the problem with stacking too many convolution
layers is that the gradient disappears. If the network depth is
simply increased without any supplement, the training accu-
racy will be reduced during learning, and the model will not
converge to the global minimum value. The residual network
(ResNet) proposed by He et al. [23] effectively solved this
problem.

In contrast to the normal network in Fig. 3a , ResNet is
composed of one basic residual block after another. As shown
in Fig. 3b, each residual block is stacked by two convolution
layers. ResNet attempts to learn local and global features by
combining skip connections at different levels so as to over-
come the problem that different levels of features cannot be
integrated in ordinary networks [24]. Figure 2 shows our fine
adjustment ResNet structure, which is stacked with 11 basic
residual blocks.

Multi-task Learning

The diagnosis of pulmonary nodules by radiologists usually
depends on the characteristics of different attributes, so there
is a strong correlation between benign and malignant classifi-
cation and attributes classification. Our study takes note of this
and combines benign and malignant classification with attri-
butes classification of pulmonary nodules through multi-task

learning. The advantage of multi-task learning is that the net-
work can find the internal relationship between different tasks
in an end-to-end manner. As shown in Fig. 2b , the multi-task
learning network includes 9 fully connected layers. The first
fully connected layer FC0 is used to distinguish the benign
and malignant pulmonary nodules. The remaining eight fully
connected layers FCT (T∈1,2,⋯,8) correspond to the eight
attributes classification, respectively. In order to adjust the
relationship between different tasks, we construct a new
multi-task loss function based on the cross-entropy loss func-
tion [25].

The fully connected layer FC0 is connected to two output
nodes. We record these two nodes as oi (i ∈ 1, 2), which rep-
resent benign and malignant prediction results, respectively.
We choose the Softmax function to normalize the prediction
results, so the prediction probability of the nodes correspond-
ing to benign and malignant can be expressed as follows:

p ijxð Þ ¼ eoi

∑2
i¼1eoi

ð1Þ

The cross-entropy loss function for benign andmalignant classification tasks
can be expressed as:

L0 ¼ − ∑
2

i¼1
log p ið Þð Þq ið Þ ð2Þ

where p(i) is the predicted probability of node oi obtained
by formula (1), q(i) is the true probability value of the node, if
the corresponding result of this node is true, and q(i) is equal
to 1; otherwise, q(i) is equal to 0. The smaller the value of the
loss function L0, the closer the prediction probability p(i) is to
the true probability.

For the remaining eight attribute classification tasks,
the corresponding classification rules have been given in
Table 1. We assume that each attribute has k levels, so the
corresponding fully connected layer FCT has k output

Fig. 1 The morphology of the
same nodule in 6 consecutive CT
scan slices. The area marked by
the red circle is the pulmonary
nodule
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nodes, and we record them as oTj (j ∈ 1,⋯, k), which rep-
resent the prediction results corresponding to different
levels, respectively. We also use the Softmax function to
normalize the prediction results, so the prediction proba-
bility of the corresponding node in the attribute classifi-
cation can be expressed as follows:

p jjxð Þ ¼ eoTj

∑k
j¼1e

oTj
ð3Þ

The cross-entropy loss function for attribute classification
tasks can be expressed as:

LT ¼ − ∑
k

j¼1
log p jð Þð Þq jð Þ ð4Þ
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Fig. 2 Overview of the proposed model structure. a Extraction process of
two 3D image patches (S1 and S2) at different scales. b The overall
structure of MSMT network includes three parts: multi-stream CNN,

3D resnet-22, and multi-task classification network (FC0 is used for be-
nign and malignant classification, FC1-FC8 is used for attribute classifi-
cation). c Fine-tuned 3D ResNet-22 network structure
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Fig. 3 Building blocks for normal network and residual network. a
Normal CNN building block. b Residual network building block for
ResNet-22
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Since the MSMT network needs to implement 9 classifica-
tion tasks at the same time, simply adding the loss function of
each task cannot highlight the benign and malignant classifi-
cation tasks that we are more concerned about. In this study,
we set the threshold value of loss function L0 to 1 and set a
hyperparameter λ to adjust the relationship between benign
and malignant classification task and attribute classification
tasks. The value of λ ranges from 0 to 1. Therefore, the final
multi-task loss function can be defined as follows:

L ¼ 1

M
∑
M

i¼1
L0 þ λ•

1

8
∑
8

T¼1
LT

� �
ð5Þ

where L0 is the loss function of benign and malignant clas-
sification tasks, LT is the loss function of attribute classifica-
tion tasks, and M is the mini-batch size.

Experiment and Result

Experimental Setting

The implementation of our network is based on Pytorch [26]
as a backend, and the Pytorch is a deep learning framework
based on Python. Our research was carried out on a worksta-
tion with a Linux operating system. The main hardware of the
workstation consists of two Intel Xeon E5-2620V4 CPUs
working at 2.1 GHz, four 32 G RAMs, and four NVIDIA
GTX 1080 8 GB GPUs.

We evaluated this method in the LIDC dataset using CT
scan image patches of 1004 pulmonary nodules that contained
450 malignant nodules and 554 benign nodules. We choose
stratified 10-fold cross-validation as a rigorous validation
model [27]. All data are randomly divided into 10 subsets.
Nine of these subsets were used for training and one for test-
ing, which was repeated ten times. In the training stage, we
used stochastic gradient descent (SGD) to optimize the model.
We initialize the parameters according to our experience. The
momentum of SGD is 0.9, the initial learning rate is 0.0001,
the weight attenuation is 1 × 10−4, and the mini-batch size is
16. Our experiments had carried out a total of 300 epochs.

Validation of Hyperparameter

In this paper, we need to modify the network parameters re-
peatedly by using the method of stochastic gradient descent
and finally make the result of the loss function reach the min-
imum value. According to the multi-task loss function given
by formula (6), it can be seen that both classification and
classification of tasks have an impact on the results of the loss
function. And λ is a hyperparameter that regulates the rela-
tionship between the losses of two different types of tasks.
According to the description in “Experimental Setting”, ten

experiments with 10 different values of λ were conducted to
select the best value. We change the λ from 0 to 1 at intervals
of 0.1. The final results show that when λ is 0.3, the model can
obtain the best classification performance. Figure 4 shows the
impact of different λ values on model classification
performance.

Comparative Experiment

Influence of Different Depths of ResNet on Model
Classification Performance

Here, we conducted a series of experiments to find the most
appropriate depth of the ResNet. We change the network
depth by changing the number of residual block stacks of
the ResNet structure in Fig. 2. The ResNet structure with
different depths is shown in Table 3. As can be seen from
the result in Fig. 5, deepening the depth of the network may
not improve the classification effect. This problem may be
limited by the size of the number of cases in the dataset and
disappearance of gradient. From the results, we can see that
ResNet-22 can achieve the best classification performance in
our classification model. Therefore, we use ResNet-22 struc-
ture to extract deep features in the MSMT network model.

The Influence of Multi-scale Fusion and Feature Fusion
Strategies on Model Classification Performance

In order to evaluate the influence of multi-scale fusion and
different feature fusion strategies on model classification per-
formance, we designed three comparative experiments. In the
first two experiments, image patches S1 and S2 were used as
the input of single-stream and single-scale CNN, respectively.

Fig. 4 The impact of different λ values on model classification
performance
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In the third experiment, we choose the mid-term fusion strat-
egy used by Kamnitsas et al. [28] to evaluate the impact of
feature fusion strategy on classification performance. In this
section, we compared the mid-term fusion strategy with the
early fusion strategy used by the MSMT network model.
Figure 6 describes the network structure of the mid-term fu-
sion strategy applied in this experiment. The early fusion strat-
egy stacks the feature maps generated by the last
convolutional layer of each stream to form a new combined
feature map. Each stream of the mid-term fusion strategy gen-
erates a 1024 d feature vector and then uses a fully connected
layer containing 1024 nodes to linearly superpose the feature
vectors generated by each stream to form a new 1024 d feature
vector.

Table 4 summarizes the final experimental results.
Compared with single-scale CNN, multi-scale fusion CNN
has significantly improvement classification performance. At
the same time, the mid-term fusion strategy can improve the
classification performance by comparing the feature vectors of
different scales and using Softmax as classifier. However, the

mid-term fusion strategy ignores the pixel correspondence
between different acceptance domain relationships. The early
fusion strategy we use can be regarded as a learning-based
fusion strategy. Each single-scale CNN stacks the feature
maps after two convolution layers. The new feature map is
then imported into the ResNet-22 to extract deep features.
Therefore, we can effectively improve the classification per-
formance of the model by fusing the features of multi-scale
images with early fusion strategy (Fig. 8).

Impact of Attributes Classification on Benign and Malignant
Classification

The MSMT network includes benign and malignant classifi-
cation of lung nodules and classification of eight attributes. In
order to evaluate the impact of different attributes on the

Table 3 The 3D ResNet architecture in different depths

Layer Output size Building block The number of building blocks in the residual network

ResNet-
16

ResNet-
28

ResNet-
34

ResNet-
40

ResNet-
46

Conv_
3.x

32 × 32 × 32 3�3�3;128
3�3�3;128

� �
× 2 × 2 × 3 × 3 × 4

Conv_
4.x

16 × 16 × 16 3�3�3;256
3�3�3;256

� �
× 2 × 4 × 4 × 6 × 6

Conv_
5.x

8 × 8 × 8 3�3�3;512
3�3�3;512

� �
× 2 × 6 × 7 × 8 × 9

Cong_
6.x

4 × 4 × 4 3�3�3;1024
3�3�3;1024

� �
× 2 × 2 × 3 × 3 × 4

S1 S2

3×3×3 conv,32

3×3×3 conv,64

3D ResNet-22

FC1_1 1024d

3×3×3 conv,32

3×3×3 conv,64

3D ResNet-22

FC1_2 1024d

FC2 1024d

Multi-task learning

Fig. 6 The architecture of mid-term fusion strategyFig. 5 The accuracy of 3D ResNet in different depths

875J Digit Imaging (2020) 33:869–878



accuracy of benign and malignant classification, we establish
eight comparative experiments in this section. In eight exper-
iments, we remove an attribute classification task from the
multi-task learning network each time and retrain and test
the network according to the experimental settings in
“Experimental Setting.” The final experimental results are
shown in Fig. 8. The first column gives the benign and malig-
nant classification accuracy of theMSMT network model, and
the next eight columns give the benign and malignant classi-
fication accuracy of the model after removing the correspond-
ing attributes on the coordinate axis. Experimental results
showed that removing any attribute will reduce the accuracy
of benign and malignant classification of the model.

Discussion

The Advantages of the Proposed Method

In this paper, we proposed a lung nodule classification method
that combined the advantages of multi-scale CNN and multi
task learning, which was quite different from simply

deepening the depth of the network. First, the network uses
two 3D image blocks of different scales as input so that the
network pays attention to both the local information of the
nodules and the surrounding information. Secondly, we ob-
tained an effective feature extraction network by changing the
number of residual blocks in the experiment. Finally, the mod-
el could discover the internal relationships between different
tasks by multi-task learning and effectively accelerate the con-
vergence process of CNN. Our multi-task loss function can
balance the relationships between different tasks, highlight the
importance of benign and malignant classification, and effec-
tively improve the performance of benign and malignant
classification.

Comparison with State of the Art

One of the most important advantages of deep learning is the
ability to automatically learn related features from the original
image. Table 5 provides a comparison of our method with
other deep learning methods, including 2D CNN-based stud-
ies [28–30] and 3D CNN-based studies [13, 30].

1) These studies include multi-scale CNNmethods [29], CNN
methods combining texture features and shape features
(Fused-TSD) [30], and multi-view knowledge-based collab-
orative (MV-KBC) deep neural network model [31]. They
all used the LIDC-IDRI database for experiments. Because
the structure of the method proposed by Lyu et al. [29] is
relatively simple, and the amount of data used in the exper-
iment is also small, the final accuracy rate is lower than other
studies. In addition, it can be seen from Table 4; we can see
that compared with 2D CNN, 3D CNN has a significant
improvement in classification performance.

Fig. 8 The model classification accuracy corresponding to the attribute
deleted from model each time

Fig. 7 Receiver operating characteristic (ROC) curve. SS represents sin-
gle scale image, and MS represents multi-scale image patch fusion

Table 4 The effect of multi-scale fusion and fusion strategy on model
classification performance

Accuracy Sensitivity Specificity

Single scale(S1) 91.33% 90.97% 93.16%

Single scale(S2) 90.74% 89.71% 93.25%

Multi-scale
(early fusion)

93.92% 92.60% 96.25%

Multi-scale
(mid-level fusion)

92.33% 91.89% 94.10%
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2) Because CT images contain spatial data, 3D CNN can
extract spatial information of pulmonary nodules
more effectively. Polat et al. [13] proposed a 3D
CNN using radial basis function (RBF) as a classifier
to realize the benign and malignant classification of
pulmonary nodules. Compared with their research, the
indicators of our proposed method have improved.
Causey et al. [32] constructed a deep 3D CNN model
that combined quantitative image features (QIF) to
achieve benign and malignant classification of pulmo-
nary nodules. Although their specificity is slightly
higher than ours, the accuracy and sensitivity of our
method have been improved, and both of which are
more concerned by radiologists. In particular, the
specificity of our method has been greatly improved
compared with these studies.

Limitations and Future Works

Although the performance of our method has improved com-
pared with the previous research, some problems still need to
be solved. Firstly, although 3D CNN can effectively extract
the spatial features of pulmonary nodules, it also contains
more parameters that need to be learned. Therefore, we hope
that in future work, we will expand the existing dataset and
enhance the generalization ability of the model by cross-
validating between different datasets. Secondly, although the
internal relationships between different tasks can be found
more effectively through multi-task learning, it is obviously
unwise to manually adjust the weight combination of the
multi-task loss function. So in future work, we will focus on
exploring an effective way of weight self-learning so that the
weight can be adjusted automatically in the process of
training.

Conclusion

In our research, we proposed a newCNNmodel for the benign
and malignant classification of pulmonary nodules. For the
first time, our study combined multi-scale feature fusion and
multi-attribute classification to construct a new 3DCNNmod-
el and proposed a new loss function to balance the relation-
ships between different tasks in multi-task learning. Firstly,
multi-scale feature fusion can make the network pay attention
to the information of the tissue around the nodule and effec-
tively improve the generalization ability of the network.
Secondly, the grading of different attributes is fused into our
classification tasks through multi-task learning so that the net-
work can pay attention to the subtle differences in images and
improve the classification performance of the network.
Finally, we validated our method on the LIDC-IDRI dataset
and obtained good experimental results.
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